Электронная библиотека (репозиторий) Томского государственного университета

Add to Quick Collection   All 13 Results

Showing items 1 - 13 of 13.
  • «
  • 1
  • »
Sort:
 Add All Items to Quick Collection
Source: Forum mathematicum. 2022. Vol. 34, № 4. P. 1081-1094
Type: статьи в журналах
Date: 2022
Description: We study some close relationships between the classes of transitive, fully transitive and Krylov transitive torsion-free Abelian groups. In addition, as an application of the achieved assertions, we r ... More
Source: Monatshefte für Mathematik. 2022. Vol. 198, № 3. P. 517-534
Type: статьи в журналах
Date: 2022
Description: Extending results from our recent paper in Chekhlov et al. (J Algebra 566(2):187–204, 2021), we define and explore the classes of universally fully transitive and universally Krylov transitive torsion ... More
Source: Communications in algebra. 2022. Vol. 50, № 11. P. 4975-4987
Type: статьи в журналах
Date: 2022
Description: In regard to two recent publications in the Mediterranean J. Math. (2021) and Forum Math. (2021) related to fully and characteristically inert socleregularity, respectively, we define and study the so ... More
Source: Journal of algebra. 2021. Vol. 566. P. 187-204
Type: статьи в журналах
Date: 2021
Description: If H is a subgroup of an Abelian p-group G, we say G is H-fully transitive if using the height valuation from G, for every x ∈ H, every valuated (i.e., non-height decreasing) homomorphism x → G extend ... More
Source: Archiv der Mathematik. 2021. Vol. 117, № 6. P. 593-600
Type: статьи в журналах
Date: 2021
Description: We define an object (group, ring, module, algebra, etc.) to be Bassian if it is not possible to embed it in a proper homomorphic image of itself. Here we study this concept for Abelian groups and achi ... More
Source: Forum mathematicum. 2021. Vol. 33, № 4. P. 889-898
Type: статьи в журналах
Date: 2021
Description: We define the notion of a characteristically inert socle-regular Abelian p-group and explore such groups by focussing on their socles, thereby relating them to previously studied notions of socle-regu ... More
Source: Mediterranean journal of mathematics. 2021. Vol. 18, № 3. P. 122 (1-20)
Type: статьи в журналах
Date: 2021
Description: We define the so-called fully inert socle-regular and weakly fully inert socle-regular Abelian p-groups and study them with respect to certain of their numerous interesting properties. For instance, w ... More
Source: Вестник Томского государственного университета. Математика и механика. 2021. № 71. С. 5-12
Type: статьи в журналах
Date: 2021
Description: We define the classes of strongly ω1-weak pω·2+n-projective, solidly ω1-weak pω·2+n-projective and nicely ω1-weak pω·2+n-projective abelian p-groups and study their crucial properties. This continues ... More
Source: Вестник Томского государственного университета. Математика и механика. 2019. № 61. С. 5-10
Type: статьи в журналах
Date: 2019
Description: A commutative ring R is called feebly invo-clean if any its element is of the form v+e− f , where v is an involution and e, f are idempotents. For every commutative unital ring R and every abelian gro ... More
Source: Вестник Томского государственного университета. Математика и механика. 2018. № 51. С. 15-18
Type: статьи в журналах
Date: 2018
Description: For each natural n we prove that there exists an unbounded n-summable abelian pgroup which is essentially indecomposable. This example parallels a well-known result of this kind established for separa ... More
Source: Вестник Томского государственного университета. Математика и механика. 2017. № 46. С. 21-23
Type: статьи в журналах
Date: 2017
Description: We introduce the concept of pnBext projective abelian p-groups and show that they form a class which properly contains the class of all n-balanced projective p-groups. This somewhat enlarges a result ... More
Source: Communications in algebra. 2015. Vol. 43, № 12. P. 5059-5073
Type: статьи в журналах
Date: 2015
Source: Journal of Group Theory. 2015. Vol. 18. P. 623-647
Type: статьи в журналах
Date: 2015
  • «
  • 1
  • »
^