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Abstract Basic quantum processes (such as particle cre-
ation, reflection, and transmission on the corresponding
Klein steps) caused by inverse-square electric fields are cal-
culated. These results represent a new example of exact
nonperturbative calculations in the framework of QED. The
inverse-square electric field is time-independent, inhomoge-
neous in the x -direction, and is inversely proportional to x
squared. We find exact solutions of the Dirac and Klein–
Gordon equations with such a field and construct corre-
sponding in- and out-states. With the help of these states
and using the techniques developed in the framework of
QED with x-electric potential steps, we calculate charac-
teristics of the vacuum instability, such as differential and
total mean numbers of particles created from the vacuum
and vacuum-to-vacuum transition probabilities. We study the
vacuum instability for two particular backgrounds: for fields
widely stretches over the x-axis (small-gradient configura-
tion) and for the fields sharply concentrates near the ori-
gin x = 0 (sharp-gradient configuration). We compare exact
results with ones calculated numerically. Finally, we consider
the electric field configuration, composed by inverse-square
fields and by an x-independent electric field between them
to study the role of growing and decaying processes in the
vacuum instability.

1 Introduction

Particle creation from the vacuum by strong electromagnetic
and gravitational fields is a remarkable effect predicted by
quantum field theory (QFT). In the late 20s and the early
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30s, Klein [1,2] and Sauter [3] considered the effect in the
framework of the relativistic quantum mechanics. However,
from the very beginning, it became clear that all the ques-
tions could be answered only in the framework of QFT. QFT
with external backgrounds is, to a certain extent, an appro-
priate model for such calculations. In the framework of such
a model, the particle creation is related to a violation of
the vacuum stability with the time. Backgrounds (external
fields) that violate the vacuum stability are electric-like fields
that are able to produce nonzero work when interacting with
charged particles. Depending on the structure of such back-
grounds, different approaches for calculating the effect were
proposed and realized. From a quantum mechanical point of
view, the most clear formulation of the problem of particle
production from the vacuum by external fields is possible
for time-dependent external electric fields that are switched
on and off at infinitely remote times t → ±∞, respectively.
Such kind of external fields are called the t-electric potential
steps (t-step or t-steps). Scattering, particle creation from the
vacuum and particle annihilation by the t-steps were consid-
ered in the framework of the relativistic quantum mechanics,
see Refs. [4–8], a more complete list of relevant publications
can be found in [7,8]. A general nonperturbative with respect
to the external background formulation of QED with t-steps
was developed in Refs. [9–11].

In contrast to the t-electric potential steps, there are many
physically interesting situations where the external back-
grounds are constant (time-independent) but spatially inho-
mogeneous, for example, concentrated in restricted space
areas. The simplest type of such backgrounds is the so-called
x-electric potential steps (x-step or x-steps), in which the
field is inhomogeneous only in one space coordinate and
represents a spatial-like step for charged particles. The x-
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steps can also create particles from the vacuum, the Klein
paradox is closely related to this process [1–3,12]. Impor-
tant calculations of the particle creation by x-steps in the
framework of the relativistic quantum mechanics were pre-
sented by Nikishov in Refs. [5,13] and later developed by
Hansen and Ravndal in Refs. [14,15]. A general nonpertur-
bative with respect to the external background formulation
of QED with x-steps was developed in Ref. [16]. The corre-
sponding calculation is based on the existence of exact solu-
tions of Dirac or Klein–Gordon equation (wave equations, in
what follows) with corresponding external fields. When such
solutions can be found and all the calculations can be done,
we refer these examples as exactly solvable cases. Until now,
there are known only few exactly solvable cases related to
t-steps and to x-steps. In the case of the t-steps, these are par-
ticle creation in the constant uniform electric field [4,17], in
the adiabatic electric field E (t) = E cosh−2 (t/TS) [18], in
the so-called T -constant electric field [19–21], in a periodic
alternating in time electric field [21,22], in an exponentially
decaying electric field [23], in an exponentially growing and
decaying electric fields [24,25] (see Ref. [26] for the review),
in a composite electric field [27,28], and in an inverse-square
electric field (an electric field that is inversely proportional
to time squared [30]). In the case of x-steps these are particle
creation in the Sauter electric field [16], in the so-called L-
constant electric field [29], and in the inhomogeneous expo-
nential peak field [31].

In this article, we present a new exactly solvable case in
QED with x -steps where all nonperturbative characteris-
tics of the vacuum instability can be calculated and analyzed
in detail. The electric field that corresponds to this specific
step is time-independent, it grows from zero in the inter-
val x ∈ (−∞, 0) inversely proportional to x squared and
decreases in the interval x ∈ [0,+∞) also inversely propor-
tional to x squared, with x being the coordinate x = X1. For
brevity, we hereinafter call such a field the inverse potential
step. An exact description of this field is given in Sect. 2.
There, we present exact solutions of the Dirac and Klein–
Gordon equations with such a step and construct correspond-
ing in- and out-states. With the help of these states and using
the techniques developed in the work [16], we calculate per-
tinent quantities for studying all the characteristics of the
particle creation effect occurring in the Klein zone, such as
differential mean numbers of particles created from the vac-
uum, total numbers and vacuum-to-vacuum transition prob-
abilities. These results are presented in Sect. 3. Besides pro-
cesses related to the vacuum instability, in Sect. 4 we calcu-
late amplitudes and probabilities of basic processes occur-
ring beyond the Klein zone, namely reflection and transmis-
sion probabilities. Comparisons between exact results (calcu-
lated numerically) and corresponding asymptotic estimates
are placed in Sect. 5. In Sect. 6, we discuss the role of growing
and decaying processes in developing the vacuum instability

by considering various electric field configuration, composed
by inverse-square fields and by an x-independent electric
field between them. The Sect. 7 is devoted to the concluding
remarks. Useful formulas involving Whittaker functions and
some asymptotic representations of confluent hypergeomet-
ric functions are placed in Appendix A. An unitary operator,
connecting in- and out-vacua in Klein zone, is described in
Appendix B.

2 Solutions of wave equations with inverse potential
steps

2.1 Inverse potential steps

Here we consider wave equations with inverse poten-
tial steps and their solutions. First of all, we describe
more exactly the structure of the electromagnetic field of
inverse potential steps. Such a field is an electric field in
a d = D + 1 dimensional Minkowski space-time. The
latter space-time is parameterized by coordinates X =
(Xμ,μ = 0, 1, . . . , D) = (

X0 = t, r
)
, r = (

X1 = x, r⊥
)
,

r⊥ = (
X2, . . . , X D

)
, the corresponding metric reads

ημν = diag (1,−1, . . . ,−1). The electric field is constant
and has only one component along the x-axis, E (X) =(
E1 (x) = E (x) , 0, . . . , 0

)
. The corresponding electromag-

netic potentials Aμ (X) are:

Aμ (X) = (A0 (x) , Ak = 0, k = 1, . . . , D).

It is assumed that the electric field E (x) = −∂x A0 (x) > 0
is positive on the whole interval x ∈ R = ( − ∞,+∞) and
switches on and off at x → −∞ and x → +∞ respec-
tively. At the same time, its potential A0 (x) tends to certain,
different in the general case, constants values,

lim
x→±∞ A0 (x) = A0 (±∞) , A0 (−∞) �= A0 (+∞) ,

A0 (−∞) > A0 (+∞) . (1)

The field in question consists of two pieces, the first one
is defined on the interval x ∈ I = (−∞, 0) while the second
one is defined on the interval x ∈ II = [0,+∞),

E (x) = E

{
(1 − x/ξ1)

−2 , x ∈ I,

(1 + x/ξ2)
−2 , x ∈ II.

(2)

The corresponding potential reads:

A0 (x) = E

{
ξ1
[
1 − (1 − x/ξ1)

−1] , x ∈ I,

ξ2
[
(1 + x/ξ2)

−1 − 1
]
, x ∈ II.

(3)

The constants ξ1,2 > 0 are length scales characterizing how
“smooth” or “sharp” the electric field evolves from x = −∞
to x = 0 and from x = 0 to x = +∞. At the same time, they
characterize the magnitude of the potential step. On Fig. 1,
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Fig. 1 Inverse-square electric field. In this picture, ξ2 > ξ1

we represent an asymmetrical inverse-square electric field,
in which ξ2 > ξ1.

The potential energy of an electron (with the charge
q = −e, e > 0) in the field of the step is U (x) = −eA0 (x).
It tends to different in the general case constants values
U (−∞) and U (+∞) as x → −∞ and x → +∞ respec-
tively,

U (−∞) ≡ UL = −eEξ1, U (+∞) ≡ UR = eEξ2. (4)

The magnitude U of the potential step is given by the
difference UR − UL:

U = UR − UL = �U1 + �U2 = eE (ξ1 + ξ2) > 0,

�U1 = U (0) − U (−∞) = eEξ1,

�U2 = U (+∞) − U (0) = eEξ2 . (5)

Depending on the magnitude U, the step is called noncrit-
ical or critical one, see [16],

U =
{

U < Uc = 2m, noncritical step

U > Uc, critical step
. (6)

As follows from Eq. (5), this classification can be formu-
lated in terms of the sum (ξ2 + ξ1) of the length scales ξ1,2,

ξ2 + ξ1 < 2�c, noncritical step,

ξ2 + ξ1 > 2�c, critical step,

�c = λ̄c Ec/E, Ec = m2/e, λ̄c = m−1 , (7)

where Ec = m2/e ≈ 1016 V/cm is the Schwinger critical
field andλ̄c is the Compton wave length of the electron. If the
length scales ξ1,2 are large enough, the particle production
from the vacuum could be essential. On Fig. 2 we illustrate
the potential energy U (x) for specific values of ξ1,2 and
electric field amplitude E .

Fig. 2 Potential energies of an electron U (x) in critical inverse-square
electric fields, corresponding to a “smooth” potential step (solid yellow
line) and a “steep” potential step (solid blue line), both with the same
asymptotic values UL/R. The smaller (larger) the value of the length
scales ξ j , the steeper (the smoother) the potential step. In both curves,
ξ2 > ξ1

In the Hamiltonian form, the Dirac equation with the
inverse step reads:

i∂0ψ (X) = Ĥψ (X) ,

Ĥ = γ 0
(
−iγ j∂ j + m

)
+ U (x) , j = 1, . . . , D, (8)

where the spinor field ψ (X) has 2[d/2] components1 and γ μ

are 2[d/2] × 2[d/2] Dirac matrices in d = D + 1 dimensions,
[
γ μ, γ ν

]
+ = 2ημν, ημν = diag(+1,−1, . . . ,−1)︸ ︷︷ ︸

d

. (9)

Because electromagnetic potentials of the inverse steps
have trivial components A = 0, there exist solutions of the
Dirac equation in the form of stationary plane waves propa-
gating along the space-time directions t and r⊥. In this case
the Dirac spinors can be represented as

ψn (X) = exp (−i p0t + ip⊥r⊥) ψn (x) , n = (p0, p⊥, σ ) ,

ψn (x) =
{
γ 0 [p0 − U (x)] + iγ 1∂x − γ ⊥p⊥ + m

}
ϕn (x) vχ,σ ,

(10)

where the spinor ψn (x) and the scalar function ϕn (x)

depend exclusively on x while vχ,σ are eigenspinors of
γ 0γ 1, satisfying γ 0γ 1vχ,σ = χvχ,σ , χ = ±1. Here,
σ = (σs = ±1, s = 1, 2, . . . , [d/2] − 1) denotes a set of
eigenvalues of spin operators compatible with γ 0γ 1, whose

1 [d/2] denotes the integer part of d/2.
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amount depends on the space-time dimensionality d. For
higher dimensions,2 d > 3 + 1, we may construct J(d) =
2[d/2]−1 additional spin operators and subject the constant
spinors vχ,σ to the following supplementary conditions:

iγ 2sγ 2s+1vχ,σ = σsvχ,σ , for even d,

iγ 2s+1γ 2s+2vχ,σ = σsvχ,σ , for odd d,

v
†
χ ′,σ ′vχ,σ = δχ ′χδσ ′σ . (11)

Due to the compatibility of the spin operators with γ 0γ 1 , the
eigenvalues σs , in addition to χ , parameterize the solutions.
Plugging Eqs. (10) into (8), one finds that scalar functions
ϕn (x) obey the second-order ordinary differential equation

{
d2

dx2 + [p0 − U (x)]2 − π2⊥ + iχU ′ (x)

}
ϕn (x) = 0.

(12)

Here π⊥ =
√
p2⊥ + m2 and by a prime a differentiation with

respect to x , U ′ (x) = dU (x) /dx , is denoted.
It should be noted that similar solutions of the Klein–

Gordon equation can be represented as:

ψn (X) = exp (−i p0t + ip⊥r⊥) ϕn (x) , n = (p0,p⊥) ,

(13)

where ϕn (x) satisfy Eq. (12) with χ = 0 . Besides minor
modifications in the normalization constants for scalar parti-
cles (discussed in the next subsection) a formal transition to
the Klein–Gordon case can be done by setting χ = 0 in all
formulas above.

2.2 Solutions with special left and right asymptotics

Introducing new variables

z1 (x) = 2i
∣∣∣pL
∣∣∣ ξ1 (1 − x/ξ1) , x ∈ I,

z2 (x) = 2i
∣
∣∣pR
∣
∣∣ ξ2 (1 + x/ξ2) , x ∈ II, (14)

where pL/R = ζ
∣∣pL/R

∣∣, ζ = sgn
(

pL
)
, ζ = sgn

(
pR
)
, ζ =

±, denotes real asymptotic momenta along the x-axis,3

∣∣∣pL/R
∣∣∣ =

√
π0 (L/R)2 − π2⊥, π0 (L/R) = p0 − UL/R,

(15)

2 The spinning degrees-of-freedom σ are absent in d = 1 + 1 or d =
2 + 1 space-time dimensions.
3 Hereafter, the indexes “L” and “R” (for “left” and “right” , respec-
tively) label quantities with specific asymptotic properties at x → −∞
and x → +∞, respectively.

differential equation (12) reduces to a Whittaker differential
equation4 [32],
(

d2

dz2
j

− 1

4
+ κ j

z j
+ 1/4 − μ2

j

z2
j

)

ϕn
(
z j
) = 0, (16)

whose parameters κ j , μ j are given by

κ1 = i�U1ξ1
π0 (L)
∣∣pL
∣∣ , κ2 = −i�U2ξ2

π0 (R)
∣∣pR
∣∣ ,

μ j = (−1) j (i�U jξ j − χ/2
)
. (17)

General solutions of Eq. (16) are chosen to be combi-
nations of Whittaker functions with regular asymptotics at
infinity [32,33],

Wκ,μ (z) = e−z/2zκ
[
1 + O

(
z−1
)]

, z → ∞,

|arg z| ≤ 3π

2
− 0+, (18)

such that ϕn
(
z j
) = b1

j Wκ j ,μ j

(
z j
) + b2

j W−κ j ,μ j

(
e−iπ z j

)
,

with b1,2
j being arbitrary constants. The Whittaker functions

can be alternatively expressed in terms of confluent hyper-
geometric functions (CHF) as follows:

Wκ j ,μ j

(
z j
) = e−z j /2z

c j /2
j �

(
a j , c j ; z j

)
,

W−κ j ,μ j

(
e−iπ z j

)

= e−iπc j /2ez j /2z
c j /2
j �

(
c j − a j , c j ; e−iπ z j

)
,

a j = μ j − κ j + 1/2, c j = 1 + 2μ j , (19)

and the Wronskian of the independent set Wκ j ,μ j

(
z j
)
,

W−κ j ,μ j

(
e−iπ z j

)
is given by Eq. (13.14.30) in [33].

Due to local properties of Eq. (12) at x → ∓∞ (where the
electric field is zero), the scalar functions ϕn (x) have definite
left “L ” and right “R ” asymptotics:

ζ ϕn (x) = ζN eiζ
∣
∣pL
∣
∣x as x → −∞,

ζ ϕn (x) = ζN eiζ
∣
∣pR
∣
∣x as x → +∞. (20)

Here pL, pR are asymptotic momenta along the x -axis, given
by Eq. (15), whereas ζN and ζN are some normalization
constants. We label the scalar functions by ζ related to the
corresponding momenta.

For the Dirac spinors we have:

p̂x ζ ψn (X) = ζ

∣∣∣pL
∣∣∣ ζ ψn (X) as x → −∞,

p̂x
ζ ψn (X) = ζ

∣∣∣pR
∣∣∣ ζ ψn (X) as x → +∞, (21)

4 The index “ j” distinguishes quantities associated with the interval I
( j = 1) from ones associated with the interval II ( j = 2).
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and

Ĥkin
ζ ψn (X) = π0 (L) ζ ψn (X) as x → −∞,

Ĥkin ζ ψn (X) = π0 (R) ζ ψn (X) as x → +∞, (22)

where Ĥkin = Ĥ − U (x) is the one-particle quantum
kinetic energy operator. Thus, nontrivial sets of Dirac spinors{

ζ ψn (X)
}
,
{

ζ ψn (X)
}

exist for quantum numbers n satis-
fying the conditions

π0 (L/R)2 > π2⊥ ⇒
{

π0 (L/R) > π⊥
π0 (L/R) < −π⊥

. (23)

As a result of the above inequalities, the set of quantum num-
bers n can be divided in specific ranges �k , where the index k
labels distinct ranges and the corresponding quantum num-
bers nk ∈ �k . For critical steps, U > Uc, there are five
ranges of quantum numbers �k , k = 1, . . . , 5, composed by
all spinning degrees-of-freedom σ , perpendicular momenta
p⊥, and by certain energies p0, whose definitions and general
properties are briefly listed below:

1. The ranges �1 and �5 are characterized by energies
bounded from below,
�1 = {n : p0 ≥ UR + π⊥} , and by energies bounded
from above �5 = {n : p0 ≤ UL − π⊥}. In each one of
these ranges, all relations from Eq. (23) are satisfied,
which implies that nontrivial complete sets of solutions{

ζ ψn1 (X) , ζ ψn5 (X)
}

and
{

ζ ψn1 (X) , ζ ψn5 (X)
}

do
exist.

2. The ranges �2 and �4 are characterized by bounded ener-
gies, namely
�2 = {n : UR − π⊥ < p0 < UR + π⊥} and �4 =
{n : UL − π⊥ < p0 < UL + π⊥} if U ≥ 2π⊥ or �2 =
{n : UL + π⊥ < p0 < UR + π⊥} and �4 = {n : UL

−π⊥ < p0 < UR − π⊥} if U < 2π⊥. The relation
π0 (L) > π⊥ is satisfied only for quantum numbers from
�2 while the relation π0 (R) < −π⊥ is satisfied only for
quantum numbers from �4, which means that in �2 there
exist solutions only with left asymptotics

{
ζ ψn2 (X)

}

while in �4 there exist solutions only with right asymp-
totics

{
ζ ψn4 (X)

}
.

3. The range �3 is nontrivial only for critical steps and
perpendicular momenta p⊥ restricted by the inequality
2π⊥ ≤ U. This range is characterized by bounded ener-
gies,
�3 = {n : UL + π⊥ ≤ p0 ≤ UR − π⊥}. In this range,
the relations π0 (L) ≥ π⊥ and π0 (R) ≤ −π⊥ hold true
which means that both sets of solutions

{
ζ ψn3 (X)

}
and{

ζ ψn3 (X)
}

do exist.

The assumption about the completeness of solutions in
some ranges refers to their asymptotic properties at infinitely
remote distances. Because of the properties of the Whittaker

functions with large arguments (18), sets of solutions in the
ranges �1, �3, and �5 are complete asymptotically. More-
over, because of the triviality of right solutions in �2 and left
solutions in �4, certain restrictions on the form of solutions
apply in these ranges. The manifold of all the quantum num-
bers n is denoted by � = �1 ∪ · · · ∪ �5. For noncritical
steps U < Uc, the range �3 is absent. For the correct inter-
pretation of the states

{
ζ ψn (X)

}
and

{
ζ ψn (X)

}
as wave

functions describing electrons and positrons as well as for a
complete discussion about the ranges and further properties,
see Ref. [16].

In view of the asymptotic behavior of the Whittaker func-
tions with large argument (18) and the properties discussed
above, it is possible to classify solutions in the first I and in
the second II intervals according to the sign ζ = ± of the
asymptotic momenta pL/R. Denoting scalar functions in I, II
as ζ ϕn (x) and ζ ϕn (x), respectively, we have:

+ϕn (x) = +NWκ1,μ1 (z1) ,

−ϕn (x) = −NW−κ1,μ1

(
e−iπ z1

)
, x ∈ I,

+ϕn (x) = +NW−κ2,μ2

(
e−iπ z2

)
,

−ϕn (x) = −NWκ2,μ2 (z2) , x ∈ II. (24)

Once the electric field is homogeneous in time and in the
coordinates perpendicular to the field r⊥, the normalization
constants ζN and ζN are calculated with respect to the inner
product on the x-constant hyperplane

(
ψ,ψ ′)

x =
∫

ψ† (X) γ 0γ 1ψ ′ (X) dtdr⊥. (25)

To calculate the inner product, we consider our system
in a large space-time box of the volume V⊥ = ∏D

j=2 K j

and over time T , where all length scales K j , T are macro-
scopically large. Moreover, we impose periodic boundary
conditions on the Dirac spinors ψ (X) in the variables t and
X j , j = 2, . . . , D. Then, the integrations over the transverse
coordinates are performed from −K j/2 to +K j/2 and from
−T/2 to +T/2, where the limits K j → ∞, T → ∞ are
assumed in final expressions; see Ref. [16] for details. Under
these conditions, inner product (25) is x-independent and can
be expressed in terms of the scalar functions as5 follows:
(
ψn, ψ ′

n′
)

x = V⊥T δnn′In,

In = ϕ∗
n (x)

(
i
←−
∂ x − i

−→
∂ x

)
[p0 − U (x) + iχ∂x ] ϕ′

n (x) .

(26)

According to general properties of the left and right asymp-
totics outlined in the previous section, the solutions{

ζ ψn (X)
}

and
{

ζ ψn (X)
}

can be subjected to the orthonor-
malization conditions

5 For ψ ′ = ψ , the inner product (25) divided by T coincides with the
definition of the current density across the hyperplane x = const.
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(
ζ ψn, ζ ψn′

)
x = ζηLδζζ ′δnn′, n ∈ �1 ∪ �2 ∪ �3 ∪ �5,

(
ζ ψn, ζ ψn′

)
x = ζηRδζζ ′δnn′, n ∈ �1 ∪ �3 ∪ �4 ∪ �5,

(27)

where ηL = sgnπ0 (L) and ηR = sgnπ0 (R). Using asymp-
totic properties of the Whittaker functions (18) and the above
conditions, the normalization constants ζN and ζN are

ζN = ζ CY, ζN = ζ CY, Y = (V⊥T )−1/2 ,

ζ C = exp (−iπκ1/2)
√

2
∣∣pL
∣∣ ∣∣π0 (L) − ζχ

∣∣pL
∣∣∣∣

,

ζ C = exp (−iπκ2/2)
√

2
∣∣pR
∣∣ ∣∣π0 (R) − ζχ

∣∣pR
∣∣∣∣

. (28)

Because spinors ζ ψn (X) and ζ ψn (X) with quantum
numbers n ∈ �1 ∪�3 ∪�5 are complete, we can decompose
solutions from one set onto another as

ηL
ζ ψn (X) = +ψn (X) g

(
+|ζ )− −ψn (X) g

(
−|ζ ) ,

ηR ζ ψn (X) = +ψn (X) g
(+|ζ

)− −ψn (X) g
(−|ζ

)
, (29)

where the decomposition coefficients g are given by

g
(

ζ ′ |ζ
)∗ = g

(
ζ |ζ ′) =

(
ζ ψn, ζ ′

ψn

)

x
,

n ∈ �1 ∪ �3 ∪ �5. (30)

Substituting decompositions (29) in normalization condi-
tions (27) we find

g
(

ζ ′ |+
)

g
(
+|ζ )− g

(
ζ ′ |−
)

g
(
−|ζ ) = ζηLηRδζ,ζ ′ ,

g
(
ζ ′ |+) g

(+|ζ
)− g

(
ζ ′ |−) g

(−|ζ
) = ζηLηRδζ,ζ ′ . (31)

The latter relations imply a number of equations on g-
coefficients, in particular,
∣∣g
(
−|+)∣∣2 = ∣∣g (+|−)∣∣2 ,

∣∣g
(
+|+)∣∣2 = ∣∣g (−|−)∣∣2 ,

∣∣g
(
+|−)∣∣2 − ∣∣g (+|+)∣∣2 = −ηLηR. (32)

From Eqs. (10) and (29), one finds similar decompositions
between the left and right scalar functions,

−ϕn (x)=
{

ηL
[

+ϕn (x) g
(
+|−)− −ϕn (x) g

(
−|−)] , x ∈ I

−NWκ2,μ2 (z2) , x ∈ II
,

(33)

and

+ϕn (x)=
{

+NWκ1,μ1 (z1) , x ∈ I

ηR
[ +ϕn (x) g

(+|+
)− −ϕn (x) g

(−|+
)]

, x ∈ II

(34)

The g-coefficients can be obtained imposing continuity con-
ditions of functions and their derivatives at x = 0, namely

−+ϕn (x)
∣
∣
x−0 = −+ϕn (x)

∣
∣
x+0 and ∂x

−+ϕn (x)
∣
∣
x−0 =

∂x
−+ϕn (x)

∣∣
x+0. Thus, we obtain:

g
(
+|−) = 2ηLeiθ+e−iπχ/2

×
√

ξ1
∣
∣π0 (L) − χ

∣
∣pL
∣
∣
∣
∣ ξ2∣∣π0 (R) + χ

∣∣pR
∣∣∣∣

( ∣
∣pL
∣
∣ ξ1∣∣pR
∣∣ ξ2

)χ/2

× exp
[
−π

2

(
ν−

1 + ν+
2

)]
�
(
+|−) (0) ,

�
(
+|−) (x) = � (a2, c2; z2) f +

L (x)

+�
(

c1 − a1, c1; e−iπ z1

)
f −
R (x) , (35)

and

g
(−|+

) = −2ηReiθ−eiπχ/2

×
√

ξ1
∣∣π0 (R) + χ

∣∣pR
∣∣∣∣ ξ2∣∣π0 (L) − χ

∣∣pL
∣∣∣∣

( ∣∣pL
∣∣ ξ1∣∣pR
∣∣ ξ2

)χ/2

× exp
[π

2

(
ν+

1 + ν−
2

)]
�
(−|+

)
(0) ,

�
(−|+

)
(x) = � (a1, c1; z1) f +

R (x)

+�
(

c2 − a2, c2; e−iπ z2

)
f −
L (x) , (36)

where

θ± = ±
(∣∣∣pL

∣∣∣ ξ1 −
∣∣∣pR
∣∣∣ ξ2

)

−eEξ2
1 ln

(
2
∣∣∣pL
∣∣∣ ξ1

)
+ eEξ2

2 ln
(

2
∣∣∣pR
∣∣∣ ξ2

)
,

ν±
1/2 = eEξ2

1/2

(
1 ± π0 (L/R) /

∣∣
∣pL/R

∣∣
∣
)

,

such that

f +
L/R (x) =

∣∣
∣pL/R

∣∣
∣
[

1

2

(
1 + c1/2

z1/2

)
+ d

dz1/2

]

×�
(

c1/2 − a1/2, c1/2; e−iπ z1/2

)
,

f −
L/R (x) =

∣∣
∣pL/R

∣∣
∣
[

1

2

(
−1 + c1/2

z1/2

)
+ d

dz1/2

]

×�
(
a1/2, c1/2; z1/2

)
. (37)

One can map g
(
+|−) onto its complex conjugate g

(−|+
)

exchanging p0 � −p0 and ξ1 � ξ2, simultaneously,
to realize that

∣
∣g
(
+|−)∣∣2 is an invariant. For example,

employing Kummer transformations � (a, c; z) = z1−c�

(a − c + 1, 2 − c, z) to transformed CHF � (c1 − a1, c1;
e−iπ z1

)
� �

(
1 − a2, 2 − c2; e−iπ z2

)
and � (a2, c2; z2)

� � (a1 − c1 + 1, 2 − c1; z1), one finds that�
(
+|−) (x) �

eiπ(1−c2)zc1−1
1 zc2−1

2 �
(−|+

)
(x) to conclude that g

(
+|−)�

g
(−|+

)
for Fermions. This property simplifies the calcula-

tion of differential quantities since one can select a particular
sign of p0 to study g

(
+|−) and generalize results to the oppo-

site sign of p0, as shall be discussed in Sect. 3.
To study arbitrary quantum processes, sometimes it is use-

ful to consider other g-coefficients in addition to the coeffi-
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cients calculated above. For example, to study amplitudes of
particle scattering, one may find convenient to use the expres-
sion for g

(
+|+) rather than the relation (32) once g

(
+|−) has

been calculated. For such cases, the coefficient g
(
+|+) has

the form

g
(
+|+) = −2iei θ̃ ηL

×
√

ξ1
∣∣π0 (L) − χ

∣∣pL
∣∣∣∣ ξ2∣

∣π0 (R) − χ
∣
∣pR
∣
∣
∣
∣

( ∣∣pL
∣∣ ξ1∣

∣pR
∣
∣ ξ2

)χ/2

× exp
[
−π

2

(
ν−

1 − ν−
2

)]
�
(
+|+) (0) .

�
(
+|+) (x) = �

(
c2 − a2, c2; e−iπ z2

)
f +
L (x)

+�
(

c1 − a1, c1; e−iπ z1

)
f +
R (x) , (38)

where θ̃ = ∣∣pL
∣∣ ξ1 + ∣∣pR

∣∣ ξ2 − eEξ2
1 ln

(
2
∣∣pL
∣∣ ξ1
) +

eEξ2
2 ln

(
2
∣∣pR
∣∣ ξ2
)
. It can be obtained through the same con-

tinuity conditions considered above but applied to appropri-
ate decompositions between the left and right solutions, sim-
ilar those given by Eqs. (35) and (36).

With minor modifications, one may extract results from
Eqs. (35) and (36) to obtain corresponding expressions for
scalar particles. For example, on account of the inner product
of the solutions of the Klein–Gordon equation on the hyper-
plane x-constant [16], the orthonormalization conditions are
identical to the ones in Eqs. (27) but with ηL = ηR = 1.
As a result, relations between the g-coefficients for the
scalar case can be extracted from Eqs. (31) and (32) set-
ting ηL = ηR = 1. Moreover, the normalization constants

ζN = ζ CY and ζN = ζ CY are simpler in this case

ζ C = exp (−iπκ1/2)
√

2
∣∣pL
∣∣

, ζ C = exp (−iπκ2/2)
√

2
∣∣pR
∣∣

, (39)

such that coefficients (35) and (36) have the form:

g
(
+|−) = 2

√
ξ1ξ2 exp

×
[
−π

2

(
ν−

1 + ν+
2

)]
eiθ+ �

(
+|−) (0)

∣∣
χ=0 ,

g
(−|+

) = −2
√

ξ1ξ2 exp

×
[π

2

(
ν+

1 + ν−
2

)]
eiθ− �

(−|+
)
(0)
∣∣
χ=0 .

(40)

In contrast to Fermions, one can easily show that g
(
+|−)�

−g
(−|+

)
for Bosons, under the exchanges p0 � −p0 and

ξ1 � ξ2. Hence, the absolute square value
∣∣g
(
+|−)∣∣2 is

also invariant for Bosons. Due to the opposite signs between
g
(
+|−) and g

(−|+
)

under these exchanges in the Dirac and
Klein–Gordon cases, we conveniently introduce a constant6

6 This constant should not be confused with the parameters κ1 and κ2
defined in Eq. (17).

κ to represent the transformations as follows7:

g
(
+|−)� κg

(−|+
)
, κ =

{+1 Fermi

−1 Bose
. (41)

Thus, besides the constant χ , the above constant is frequently
used to map results from the Dirac to the Klein–Gordon cases,
as we will see below. The coefficient g

(
+|+) for Bosons can

be extracted from Eq. (38) setting χ = 0, ηL = ηR = 0 and,
besides, using the normalization constants (39) instead Eq.
(28). Its representation in terms of Whittaker functions can
be found in Appendix A; cf. Eq. (118).

2.3 In and out-states

In contrast to time-dependent electric backgrounds,8 a quan-
tization of Dirac and Klein–Gordon fields with x-electric
potential steps is performed with the help of solutions
describing particles moving to the steps from infinitely
remote distances or leaving the step to infinitely remote dis-
tances. In-solutions are defined as incoming waves (that is,
waves going toward the step) while out-solutions are clas-
sified as outgoing waves (that is, waves going outwards the
step). Since there are five distinct ranges of quantum num-
bers �k , definitions of in- or out-sets are different. For some
of the ranges, these definitions are similar to the one-particle
relativistic quantum theory. In the case under consideration,
the classification is the following9:

in-solutions: +ψn1,
−ψn1; −ψn5 ,

+ψn5 ; −ψn3 ,
−ψn3 ,

out-solutions: −ψn1,
+ψn1; +ψn5,

−ψn5 ; +ψn3,
+ψn3 .

(42)

The sets
{

+ψn1 ,
−ψn1

}
and
{

−ψn1,
+ψn1

}
describe incom-

ing and outgoing electron states respectively, while
{

−ψn5,+ψn5

}
and
{

−ψn5,
+ψn5

}
describe incoming and outgoing

positron states respectively.
One can demonstrate that the sets of solutions are complete

and orthogonal with respect to the inner product on the t-
constant hyperplane

(
ψn, ψ ′

n′
) =

∫

V⊥
dr⊥

∫ K (R)

−K (L)

dxψ†
n (X) ψ ′

n′ (X) ,

V⊥ =
D∏

j=2

K j (43)

7 By “Fermi” and “Bose” we mean “Dirac particles” and “Klein–
Gordon particles” , respectively. For the sake of convenience, we employ
this terminology everywhere in the text.
8 As it is well known, for time-dependent electric backgrounds (more
precisely, t-electric potential steps) the quantization of Dirac/Klein–
Gordon fields is performed using exact solutions describing particle
and antiparticle states at asymptotic times; see e.g., Refs. [6,9–11,26].
9 Similar classification holds for the scalar case, but in �3, +ψn3 ,

+ψn3

are in-solutions whereas −ψn3 ,
−ψn3 out-solutions.
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where the lower/upper cutoffs K (L/R) are supposed to admit
the limits K (L) ∼ T and K (R) ∼ T (and T → ∞) in final
expressions; see Ref. [34] for details. In particular,

(
ζ ψn, ζ ψn′

) = ( ζ ψn, ζ ψn′
) = δn,n′Mn, n, n′ ∈ �1 ∪ �3 ∪ �5,

( ψn, ψn′ ) = δn,n′ , n, n′ ∈ �2 ∪ �4,
(

ζ ψn, −ζ ψn
) = 0, n ∈ �1 ∪ �5,

(
ζ ψn, ζ ψn

) = 0, n ∈ �3,

Mn = ∣∣g (+|+)∣∣2 , n ∈ �1 ∪ �5, Mn = ∣∣g (+|−)∣∣2 , n ∈ �3,

(44)

where we have δn,n′ = δσ,σ ′δ
(

p0 − p′
0

)
δ
(
p⊥ − p′⊥

)
in the

limit K (L/R) → ∞. For each set of quantum numbers n there
exist one or two complete sets of solutions:

(a) For ∀ n ∈ �1 ∪ �5, there are two (ζ = ±) independent
sets of solutions:

{
ζ ψn (X) , −ζ ψn (X)

}
;

(b) For ∀ n ∈ �3, there are two (ζ = ±) independent sets
of solutions:

{
ζ ψn (X) , ζ ψn (X)

}
;

(c) For ∀ n ∈ �2∪�4, there is one set of solutions {ψn (X)}.

The classification of solutions (42), together with the
above properties, allows us to quantize the Dirac and Klein–
Gordon fields in terms of particles and antiparticles. To
quantize the Dirac field operator �̂ (X), we decompose it
using the sets of solutions discussed above on the hyper-
plane t = const., in which the x -independent decomposition
coefficients are creation and annihilation operators of parti-
cles or antiparticles. Because there are two independent sets
of solutions for states within �1 ∪ �3 ∪ �5, two possible
quantizations exist, one formed exclusively with “in” oper-
ators and another formed exclusively with “out” operators,
namely

in-set: +an1 (in) , −an1 (in) ; −bn5 (in) , +bn5 (in) ;
−bn3 (in) , −an3 (in) ,

out-set: −an1 (out) , +an1 (out) ; +bn5 (out) , −bn5 (out) ;
+bn3 (out) , +an3 (out) .

(45)

For states in �2, we have only pairs of creation/annihilation

operators of particles
{

a†
n2 , an2

}
whereas for states in �4 we

have only pairs of creation/annihilation operators of antipar-

ticles
{

b†
n4 , bn4

}
. All a’s and b’s are interpreted as annihi-

lation operators of particles and antiparticles, respectively;
their adjoints, a†’s and b†’s, are interpreted as creation oper-
ators of particles and antiparticles, respectively. Operators
labeled by the argument “in” are in-operators while the ones
labeled by the argument “out” are out-operators. All creation
and annihilation operators with different quantum numbers or
from different ranges �i anticommute between themselves.
For example, the only nontrivial anticommutation relations
for in-operators are:

[
+an′

1
(in) , +a†

n1
(in)
]

+ =
[ −an′

1
(in) , −a†

n1
(in)
]

+
= δn′

1n1
,

[ −an′
3
(in) , −a†

n3
(in)
]

+ =
[

−bn′
3
(in) , −b†

n3
(in)
]

+
= δn′

3n3
,

[
−bn′

5
(in) , −b†

n5
(in)
]

+ =
[ +bn′

5
(in) , +b†

n5
(in)
]

+
= δn′

5n5
,

[
an′

2
, a†

n2

]

+ = δn′
2n2

,
[
bn′

4
, b†

n4

]

+ = δn′
4n4

.

(46)

Furthermore, the in-vacuum state |0, in〉,
|0, in〉 =

∏

i=1,3,5

⊗ |0, in〉(i) ⊗ |0〉(2) ⊗ |0〉(4) , (47)

is defined as the direct product of partial in-vacuum states
|0, in〉(i) states; all vacua annihilated by corresponding anni-
hilation operators

−+an1 (in) |0, in〉(1) = −+an1 (in) |0, in〉 = 0,

−an3 (in) |0, in〉(3) = −an3 (in) |0, in〉 = 0,

−bn3 (in) |0, in〉(3) = −bn3 (in) |0, in〉 = 0,

+−bn5 (in) |0, in〉(5) = +−bn5 (in) |0, in〉 = 0,

an2 |0〉(2) = an2 |0, in〉 = 0, bn4 |0〉(4) = bn4 |0, in〉 = 0.

(48)

Anticommutation relations for out-operators and out-vacuum
states |0, out〉(i) can be introduced following the same con-
siderations above.

Due to the quantization of the Dirac/Klein–Gordon
fields and the canonical transformations between “in” and
“out” sets of creation and annihilation operators in the
ranges �1, �2, �4 and �5 [16], each partial in-vacuum
|0, in〉(i) , i = 1, 2, 4, 5 differs from its corresponding out-
vacuum |0, out〉(i) , i = 1, 2, 4, 5 by a complex phase which,
without loss of generality, can be selected to match one
another, namely |0, in〉(i) = |0, out〉(i) , i = 1, 2, 4, 5. There-
fore, we conveniently represent the direct product of all par-
tial vacua by

|0〉 =
∏

i=1,2,4,5

⊗ |0, in〉(i) =
∏

i=1,2,4,5

⊗ |0, out〉(i) .

This is not the case for the partial vacua |0, in〉(3) and
|0, out〉(3) in the range �3 (Klein zone), which are different
by reasons that shall be briefly discussed below. That is why
the total vacuum-vacuum transition amplitude cv

cv = 〈0, out|0, in〉 = c(3)
v = (3) 〈0, out|0, in〉(3) , (49)

coincides with the vacuum-vacuum transition amplitude in
the Klein zone c(3)

v .
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Notice that in the scalar case, all anticommutation rela-
tions must be replaced by commutation relations and defini-
tions of in- or out-creation/annihilation operators in �3 are
different, namely +an3 (in) and +bn3 (in), are in-operators,
while −an3 (out) and −bn3 (out) out-operators.

3 Processes in the Klein zone

Particle creation from the vacuum occurs exclusively in the
Klein zone (the range �3), defined by bounded energies p0

UL + π⊥ ≤ p0 ≤ UR − π⊥, (50)

bounded perpendicular momenta p⊥ (2π⊥ ≤ U), and quan-
tum numbers σ that may be arbitrary. We recapitulate below
the calculation of main quantities characterizing the vacuum
instability as well as elementary processes occurring in the
Klein zone.

According to the partial decompositions of the quantized
Dirac field �̂ (X) in the range �3 [16],

�̂3 (X) =
∑

n∈�3

M−1/2
n [ −an (in) −ψn (X)

+ −b†
n (in) −ψn (X)],

=
∑

n∈�3

M−1/2
n [ +an (out) +ψn (X)

+ +b†
n (out) +ψn (X)], (51)

and the relations (29), specialized to �3 (where ηL = 1 =
−ηR), one may express the independent set

{ +ψn3 (X) ,

+ψn3 (X)
}

in terms of the independent set
{ −ψn3 (X) ,

−ψn3 (X)
}

(or vice-versa) and use inner products on t-
constant hyperplane (44) to establish linear canonical trans-
formations between in- and out-operators in �3. These trans-
formations are specified by Eqs. (7.4) in [16]. With the aid of
these transformations we may introduce, for instance, the dif-
ferential mean number of in-particles N a

n3
(in) created from

the out-vacuum

N a
n (in) =

〈
0, out

∣∣∣ −a†
n (in) −an (in)

∣∣∣ 0, out
〉

= ∣∣g (+|−)∣∣−2
, n ∈ �3, (52)

and use the identity
∣∣g
(
−|+)∣∣2 = ∣∣g

(
+|−)∣∣2 to realize that

Eq. (52) is identically equal to the differential mean number
of in-antiparticles created from the out-vacuum N b

n3
(in), the

differential mean number of out-particles N a
n3

(out) and out-
antiparticles N b

n3
(out) created from the in-vacuum. That is

why we denote all these quantities by N cr
n ≡ N a

n (in) =
N b

n (in) = N a
n (out) = N b

n (out). Thus, the total number of
particles created N cr correspond to the summation of the
mean numbers N cr

n over the quantum numbers within �3

N cr =
∑

n∈�3

N cr
n = J(d)V⊥T

(2π)d−1

∫

�3

dp0dp⊥N cr
n , (53)

where V⊥ is the space volume perpendicular to the direction
of the electric field, T its time duration and J(d) = 2[d/2]−1

the total number of spinning degrees of freedom (J(d) = 1
for scalar particles), that factorizes out as a multiplicative
constant since the field does not mix different spin polar-
izations. In the rightmost equality, the summations were
converted into multiple integrals in the standard way, viz.
(V⊥T )−1∑

p0,p⊥∈�3 ↔ (2π)1−d
∫

dp0dp⊥, in which V⊥,
T are macroscopically large.

Besides particle creation, there are other elementary pro-
cesses in the Klein zone worth of consideration, such as par-
ticle scattering, creation of a particle-antiparticle pair and
annihilation of a particle-antiparticle pair. The relative (with
respect to the in-vacuum |0, in〉 and the out-vacuum |0, out〉 )
amplitudes of particle scattering wn (+|+), antiparticle scat-
tering wn (−|−), particle-antiparticle creation wn (+ − |0)

and particle-antiparticle annihilation wn (0| − +) are defined
by Eqs. (7.17) and (A9) in [16]. In terms of g-coefficients,
the corresponding probabilities can be expressed as follows:

|wn (+|+)|2 = |wn (−|−)|2 = ∣∣g (+|−)∣∣2 ∣∣g (+|+)∣∣−2

= 1

1 − κ N cr
n

,

|wn (+ − |0)|2 = |wn (0| − +)|2 = ∣∣g (+|+)∣∣−2

= N cr
n

1 − κ N cr
n

. (54)

It is noteworthy that total reflection, which is a direct conse-
quence of the quantization of the Dirac and Klein–Gordon
fields in �3 (51), [16], is the only possible form of particle
scattering in �3. Particle reflection and particle transmission
are allowed beyond the Klein zone, as shall be discussed in
Sec. 4.

The most important quantity characterizing the vacuum
instability is the vacuum-vacuum transition probability Pv

Pv =|cv|2 = ∣∣〈0, out
∣∣V�3

∣∣ 0, out
〉∣∣2 = ∣∣〈0, in

∣∣V�3

∣∣ 0, in
〉∣∣2 ,

(55)

because Pv �= 1 (Pv < 1) indicates that pairs were created
from the vacuum by the external field. Here, cv denotes
the vacuum-vacuum transition amplitude and V�3 an uni-
tary operator connecting the “in” and “out” vacua |0, out〉 =
V †

�3
|0, in〉

V�3 = exp
[
− −a†

n (in) wn (+ − |0) −b†
n (in)

]

× exp
[
− −an (in) ln wn (+|+) −a†

n (in)
]

× exp
[

−b†
n (in) ln wn (−|−) −bn (in)

]

× exp
[− −bn (in) wn (0| − +) −an (in)

]
, (56)
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which, in turn, defines a transformation between “in” and
“out” operators
{ +a†

n (out) , +an (out) , +b†
n (out) , +bn (out)

}

= V †
�3

{ −a†
n (in) , −an (in) , −b†

n (in) , −bn (in)
}

V�3 .

(57)

The representation of V�3 in terms of in-operators (56) is
complementary to the one given in terms of out-operators;
cf. Eq. (7.20) in Ref. [16]. Details on the calculation of V�3

for Bosons can be found in Appendix B.
Using the explicit representations (56) and (129), the prob-

ability that the vacuum remains vacuum Pv reads

Pv = exp

⎛

⎝
∑

n∈�3

ln pn
v

⎞

⎠ , pn
v = (1 − κ N cr

n

)κ
. (58)

One of the consequences of particle creation occurring
exclusively within the Klein zone is the diminishing of N cr

n
near the boundaries of �3. This is a local property result-
ing from the behavior of the asymptotic momenta

∣∣pL
∣∣,
∣∣pR
∣∣

at the boundaries of the Klein zone, namely
∣
∣pR
∣
∣ → 0 at

the vicinity of �2 while
∣∣pL
∣∣ → 0 at the vicinity of �4.

Accordingly, the coefficient g
(
+|−) (or g

(
−|+)) diverges,

which means that N cr
n → 0 near both boundaries. This

is more clearly seen if one expresses g
(
+|−) in terms of

Whittaker functions, whose expressions are given by Eqs.
(117) and (118) in Appendix A, because

∣∣g
(
+|−)∣∣−2 =

O
(∣∣pR

∣∣ ∣∣pL
∣∣) → 0 near the boundaries. This is also true

for the Klein–Gordon case. In the next Sect. 3.1, we study
this property in the most favorable configuration for particle
creation, wherein the differential mean numbers N cr

n are not
necessarily small over a sufficiently wide range of quantum
numbers in the Klein zone.

3.1 Small-gradient configuration

Here, we study the case when a strong electric field is concen-
trated in a wide region on the x-direction with a sufficiently
strong amplitude E and sufficiently large length scales ξ j so
that the parameters |UL| ξ1 and URξ2 are both large, satisfy-
ing the conditions

min (|UL| ξ1, URξ2) � max

(
1,

m2

eE

)
,

ξ2

ξ1
= fixed. (59)

This configuration represents an almost symmetrical electric
field that is growing “smoothly” from x = −∞ to x = 0 and
then is decreasing “smoothly” to x = +∞. The configuration
may be considered as a two-parameter regularization of a
uniform electric field.10 The resulting potential energy of the

10 Because the lenght scales ξ j are large enough, variations of the
derivative E ′ (x) in a neighborhood of any point x is small enough

electron in this field is illustrated by the yellow solid line in
Fig. 2.

To study quantities characterizing the vacuum instability,
one has to compare the above parameters with parameters
involving other quantum numbers. Since particle creation
is directly related to the extent of the Klein zone, which is
parameterized by the asymptotic potential energies UL,R and
the perpendicular energies π⊥, we set an upper bound to
the perpendicular momenta p⊥ in order to consider a suffi-
ciently wide Klein zone, say π⊥ ≤ K⊥, where K⊥ is a num-
ber satisfying the inequality min

(
eEξ2

1 , eEξ2
2

) � K⊥ >

max
(
1, m2/eE

)
. As for the parameter p0/

√
eE , we restrict

the consideration to positive energies 0 ≤ p0 ≤ UR − π⊥
and generalize results to negative energies using the prop-
erties of the coefficient g

(
+|−) (and, therefore, its abso-

lute square value (52)) discussed at the end of SecT. 2.2.
In this case, the left kinetic energy is always large and posi-
tive |UL| ≤ π0 (L) ≤ U−π⊥ , while the right kinetic energy
is always negative, π⊥ ≤ |π0 (R)| ≤ UR. Within this range,
the differential mean numbers N cr

n are significant only in a
subrange β

√
λ < |π0 (R)| /√eE ≤ UR/

√
eE , which can be

divided as follows:

(a)
UR√
eE

− δ√
2

≤ |π0 (R)|√
eE

≤ UR√
eE

,

(b)
√

λ + UR√
eE

(1 − ϒ) <
|π0 (R)|√

eE
<

UR√
eE

− δ√
2
,

(c) β
√

λ <
|π0 (R)|√

eE
≤ √

λ + UR√
eE

(1 − ϒ) , (60)

where δ is a sufficiently small number 0 < δ � 1, ϒ is
a fixed number π⊥/UR < ϒ < 1, and β is slightly larger
than the unity, 1 < β � 1 + (1 − ϒ) UR/π⊥. To study local
properties of the mean numbers N cr

n , we introduce two new
sets of variables

η1 = e−iπ z1 (0)

c1
, η2 = z2 (0)

c2
, Z j = (η j − 1

)W j
√

c j ,

(61)

where W j = ∣∣η j − 1
∣∣−1
√

2
(
η j − 1 − ln η j

)
, sgnZ j =

sgn
(
η j − 1

)
, and take into account that π0 (L) /

√
eE is large

and positive for positive energies, which means that c1 − a1

is fixed while z1 and c1 are simultaneously large throughout
the subranges (a)− (c).

The subrange (a) is characterized by sufficiently small
energies (p0/

√
eE small) and η1 and η2 are sufficiently close

to the unity

Footnote 10 continued
to treat the field as constant, for instance δE ′ (x) = E ′ (x + δx) −
E ′ (x) = (2E/ξ2)

[
3 (1 + x/ξ2)

−4 (δx/ξ2) + O
(
(δx/ξ2)

2)] � 1
since (δx/ξ2) → 0. The combination of small-gradient behavior with
strong amplitudes E is commonly referred in literature by locally con-
stant field approximation (LCFA).
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(a) 1 > η2 ≥ 1 − δ√
2eEξ2

, 1 < η1 ≤ 1 + δ√
2eEξ1

,

(62)

such that Z1 and Z2 are small in this range, |Z1| �
|Z2|, |Z2| ≈ δ. Thus, one can use an asymptotic approx-
imation given by Eq. (66) in [30] and the approxima-

tions ν−
1 = − (λ/2)

[
1 + O

(√
eEξ1

)−1
]

and ν+
2 =

− (λ/2)

[
1 + O

(√
eEξ2

)−1
]

to show that the mean num-

bers asymptotically, in the leading-order approximation, are
given by the equation

N cr
n ≈ e−πλ. (63)

This local approximation, holds both for Fermions and for
Bosons, and coincides with differential mean numbers of
pairs created by a constant electric field [35,36] and locally
by slowly varying time-dependent electric fields (t-electric
potential steps), such as the T -constant electric field [20,26],
Sauter-type electric field [20,26], peak electric field [24]
and inverse-square electric field [30]. Moreover, it also
coincides with local approximations by some small gradi-
ent coordinate-dependent electric fields (x-electric potential
steps), namely the L-constant electric field and Sauter electric
field [16,29], and exponential electric step [31]. For t -electric
potential steps, the local behavior refers to small values of the
longitudinal momentum while for x-electric potential steps
refers to small energies, as was seen above. Distribution (63)
is an universal feature of the differential mean number of
particles created from the vacuum by electric fields, which is
uniform (either with respect to the longitudinal momentum
or the energy) only for homogeneous (either in time or space)
electric fields.

The subrange (c) corresponds to finite energies min(
p0/

√
eE
)

= ϒUR/
√

eE − √
λ and values of parame-

ters η1 and η2 slightly distant from the unity min η1 =
1 + ϒUR/ |UL| − π⊥/ |UL|, η2 � 1 − ϒ , resulting in suffi-
ciently large values to the variables

∣∣Z j
∣∣. Hence, we can use

Eq. (67) from Ref. [30] for �
(
c1 − a1, c1; e−iπ z1

)
and the

first line of Eq. (68) also from [30] for � (a2, c2; z2) to show
that the mean numbers are given by the equation

N cr
n ≈ exp

(
2πν+

2

)
, (64)

in the leading-order approximation, valid both for Fermions
and for Bosons. In the subrange (b), the mean numbers vary
between the asymptotic forms (63) and (64). More accurate
(but less simple) representations for the mean numbers in
this subrange can be calculated using the uniform asymp-
totic approximation given by Eq. (63) from [30]. Despite
being a local approximation, the asymptotic form (64) tends
to uniform approximation (63) in the limit of small energies,
as it can be seen by expanding ν+

2 for small p0/
√

eE . There-

fore, approximation (64) can be extended over all sub-ranges
above.

From the symmetry properties of g-coefficients, we can
generalize the above results to negative energies and find
approximately differential mean numbers

N cr
n ≈

{
exp
(
2πν−

1

)
, if UL + π⊥ ≤ p0 < 0

exp
(
2πν+

2

)
, if 0 ≤ p0 ≤ UR − π⊥

. (65)

The above representation corresponds to dominant con-
tributions. To calculate the total number N cr dominant in the
same approximation, one has to perform integrations over
quantum numbers according to Eq. (53). Then we get:

N cr = J(d)V⊥T

(2π)d−1

∫

√
λ<K⊥

dp⊥
[

I (1)
p⊥ + I (2)

p⊥

]
,

I (1)
p⊥ =

∫ eEξ1

π⊥
dπ0 (L) exp

(
2πν−

1

)
,

I (2)
p⊥ =

∫ eEξ2

π⊥
d |π0 (R)| exp

(
2πν+

2

)
. (66)

Performing a change of variables −λs1 = 2ν−
1 in I (1)

p⊥ and

−λs2 = 2ν+
2 in I (2)

p⊥ , one can represent both integrals as
follows

I ( j)
p⊥ = −

∫ ∞

1
ds j Fj

(
s j
)

e−πλs j , F1 (s1) = dπ0 (L)

ds1
,

F2 (s2) = d |π0 (R)|
ds2

. (67)

Computing the functions Fj
(
s j
)

and restricting ourselves to
the zeroth order term in powers series of λ/eEξ2

j , we obtain

I ( j)
p⊥ ≈ eEξ j

2
e−πλG

(
1

2
, πλ

)
, (68)

where G (α, z) = ezzα� (−α, z) and � (−α, z) is the incom-
plete Gamma function [33]. Neglecting exponentially small
contributions, one can extend the integration domain over the
perpendicular momenta p⊥ (66). Thus, one obtains

N cr = V⊥T ncr, ncr = r cr U

2eE
G

(
d − 1

2
,
πm2

eE

)
,

r cr = J(d) (eE)d/2

(2π)d−1 exp

(
−πm2

eE

)
, (69)

where r cr is the rate of pair creation and ncr denotes the
dominant total density of pairs per unit of time T and vol-
ume V⊥. Then one one can straightforwardly calculate the
vacuum-to-vacuum transition probability (58),

Pv = exp
(−μN cr) , μ =

∞∑

l=0

κ lεl+1

(l + 1)d/2 exp

(
−πm2

eE
l

)
,

εl = G

(
d − 1

2
, lπ

m2

eE

)
G

(
d − 1

2
, π

m2

eE

)−1

. (70)
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It is worth noticing that Eqs. (69) and (70) are in agreement
with universal forms for total dominant densities of particles
created from the vacuum and vacuum-to-vacuum transition
probabilities by weakly inhomogeneous x-electric potential
steps, recently formulated in [37]. It can be readily shown
that Eqs. (69) and (70) can be reproduced using universal
forms for the above quantities and the explicit form of the
external field (2).

According to Eq. (69), the dominant total density of pairs
is proportional to the total work done on a charged particle
by the electric field, π0 (L)−π0 (R) = U. This is a common
feature to electric fields in the small-gradient regime and
therefore allows us to compare the present results with total
quantities obtained in other examples, in particular in the L
-constant electric field [29], E (x) = E, x ∈ [−L/2, L/2],
where L is the length of the applied constant field.

Recalling its dominant total density of pairs created by the
small-gradient regime ncr = Lr cr, one can establish some
relations between both fields. For example, considering the
electric field E and assuming that the total density of pairs
created by the L-constant electric field and by the inverse-
square electric field are the same, we conclude that both fields
are equivalent in pair production provided the total length
of the applied inverse-square electric over the x-direction is
given by

Leff = ξ1 + ξ2

2
G

(
d − 1

2
,
πm2

eE

)
. (71)

By definition, L = Leff for the constant field. Thus, one can
say that both fields are equivalent in pair production provided
that they have the same effective length Leff over the x-axis.

So far, we have discussed the electric field in an almost
symmetrical configuration, characterized by simultaneously
large length scales ξ j but slightly close to one another (fixed
ratio ξ2/ξ1). However, there may be situations where the
field is essentially asymmetrical by physical conditions, for
instance, growing “smoothly” from infinitely remote nega-
tive distances but decreasing “abruptly” to infinitely remote
positive distances. Situations like that correspond to cases in
which one characteristic length ξ is much larger than another
one, in the situation illustrated above, ξ1/ξ2 � 1. More pre-
cisely, electric field (2) can be “concentrated” in a “narrow”
or “wide” region over the x-axis depending on the length
scales ξ1 and ξ2. The larger the characteristic lengths ξ j ,
the “smoother” the electric field grows from or decreases
to asymptotic regions x = ∓∞, respectively. In this way,
we qualitatively say that the electric field is concentrated
in a “wide” region for x < 0 if ξ1 is sufficiently large or
concentrated in a “narrow” vicinity of x = 0 (x < 0) if ξ1

is sufficiently small. For example, for a very asymmetrical
configuration specified by very “large” ξ1 and very “small”
ξ2 provided that the parameters eEξ2

j satisfy the relations

eEξ2
1 � max

(
1,

m2

eE

)
,

eEξ2
2 � min

(
1,

m2

eE

)
,

√
eEξ1

√
eEξ2 � 1, (72)

the results concerning particle creation can be formally
extracted from Eqs. (65)–(70) considering the limit

√
eEξ2

→ 0. The last inequality implies that the parameter eEξ2
2 is

so small that the contribution from the second interval x ∈ II
is negligible for particle creation. To see that, it is enough to
compare the g

(
+|−) coefficient calculated for the asymmet-

rical electric field

E (t) = E

{
(1 − x/ξ1)

−2 , x ∈ I

0, x ∈ II
, (73)

with the one given by Eq. (35) in the limit
√

eEξ2 → 0 to
conclude that both coefficients coincides in the leading-order
approximation.

As a result, dominant contributions to differential and
total quantities can be straightforwardly derived from the
aforementioned expressions. This can be proved following
the same approximations and considerations done for the
inverse-square time-dependent electric field [30], due to the
close analogy between electric fields (2), (73) and their time-
dependent equivalents.

At last but not least, some clarifying remarks concerning
the local properties of differential quantities near the bound-
aries of �3 are in order. As we discussed before, the coef-
ficient g

(
+|−) (or g

(
−|+)) diverges near the boundaries,

which means that the numbers N cr
n vanish at these regions.

For small-gradient fields, this is clearly seen from the asymp-
totic forms given by Eq. (65). In a vicinity of �2, where
p0/

√
eE = UR/

√
eE − √

λ − ε , or in a vicinity of �4,
where p0/

√
eE = UL/

√
eE + √

λ + ε, with ε being an
infinitesimally small positive number, the parameters

ν+
2 = eEξ2

2

(
− λ1/4

√
2ε

+ O (1)

)
,

ν−
1 = eEξ2

1

(
− λ1/4

√
2ε

+ O (1)

)
, (74)

diverge as ε → 0+, resulting in exponentially small con-
tributions to the mean numbers according to Eq. (65). This
result is in agreement with the general theory [16], in which
no particle production occurs beyond the Klein zone. This
property can also be seen in asymmetrical configurations,
corresponding to an electric field growing “smoothly” from
x = −∞ but not decreasing “smoothly” nor “abruptly” to
x = +∞, so that the parameter eEξ2

1 is sufficiently large
while eEξ2

2 is considered finite. Namely,

eEξ2
1 � max

(
eEξ2

2 ,
m2

eE

)
, eEξ2

2 = O (λ) . (75)
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In a vicinity of �4, the mean numbers are exponentially small
on account of the behavior of ν−

1 given by Eq. (74). As for
the vicinity of �2, one must take into account that a2 is large
while z2 and c2 are finite to use asymptotic approximations
(122) from Appendix A to find

∣∣g
(
+|−)∣∣2

≈ 2λ

π
eπ
∣∣ν+

2

∣∣
sinh

(
π
∣∣ν+

2

∣∣)

×
∣
∣∣∣∣

√
2�U2

π⊥
Kc2−1

(
2
√

a2z2
)+ i Kc2

(
2
√

a2z2
)
∣
∣∣∣∣

2

, (76)

for Fermions and
∣∣g
(
+|−)∣∣2

≈ 2λ

π
(2�U2) eπ

∣
∣ν+

2

∣
∣
cosh

(
π
∣∣ν+

2

∣∣)

×
∣∣∣∣∣

√
2�U2

π⊥
Kc2−1

(
2
√

a2z2
)− i Kc2

(
2
√

a2z2
)
∣∣∣∣∣

2

, (77)

for Bosons, in leading-order approximation. Here, Kν (z) are
modified Bessel functions of the second kind [33]. Accord-
ing to Eq. (74), both coefficients diverge exponentially in a
vicinity of �2, which means that N cr

n → 0 in this region.
Note that the combination of the Bessel functions are finite,
once

√
a2z2 = O

(
λ7/4

)
and c2 is fixed. Using the sym-

metries discussed in the end of Sect. 2.2, we can generalize
these results to a configuration opposite to the one under
consideration (75), corresponding to an electric field grow-
ing not too “smoothly” nor too “abruptly” from x = −∞
but decreasing “smoothly” to x = +∞, such that eEξ2

2 �
max

(
eEξ2

1 , m2/eE
)

and eEξ2
1 = O (λ). In particular, the

behavior near the range �4 can be formally derived from
Eqs. (76) and (77) substituting ξ2 → ξ1.

3.2 Sharp-gradient configuration

In contrast to the previous configurations, where one or
both length scales are considered large ξ j , here we consider
the opposite case, characterized by sufficiently small length
scales such that the parameters |UL| ξ1 and URξ2 obey the
following conditions

max (|UL| ξ1, URξ2) � 1,
ξ2

ξ1
= fixed. (78)

This configuration corresponds to a very sharp electric field,
highly concentrated about the origin x = 0, described by a
very “steep” potential step. The potential energy of an elec-
tron in this field is illustrated by the solid blue line in Fig. 2.
This configuration has a special interest because it corre-
sponds to a two-parameter regularization of the Klein step
and may be useful in a discussion of the Klein paradox.

From condition (78) and the fact that energies in the Klein
zone are bounded, see (50), parameters involving kinetic
energies

max (π0 (L) ξ1, |π0 (R)| ξ2) � 1, (79)

as well as the asymptotic momenta
∣∣pL
∣∣ ξ1 and

∣∣pR
∣∣ ξ2

are also small in this case, since
∣∣pL/R

∣∣ < |π0 (L/R)|.
Thus, to study differential quantities in the Fermi case it is
more convenient to use a representation of the coefficients
g
(
+|−) in terms of Whittaker functions given by Eq. (117)

in Appendix A. Thus, we get11:

N cr
n ≈ 4

∣∣pL
∣∣ ∣∣pR

∣∣
(∣∣pL

∣∣− ∣∣pR
∣∣+ χU

)2

∣∣π0 (R) + χ
∣∣pR
∣∣∣∣

∣
∣π0 (L) − χ

∣
∣pL
∣
∣
∣
∣ , (80)

in the leading-order approximation. Distribution (80) has a
maximum at

∣∣pL
∣∣− ∣∣pR

∣∣ = 0, i.e., at p0 = (U 2
R − U 2

L

)
/2U,

max N cr
n ≈ 1 −

(
2π⊥
U

)2

< 1, (81)

which is less than the unity due to the Fermi statistics. Sim-
ilar results were obtained for other exactly-solvable back-
grounds, such as for the Sauter field [16] and the Peak electric
field [31].

For scalar particles, one can use a representation of
g
(
+|−) in terms of Whittaker functions (118) and limiting

form (121) to show

N cr
n ≈ 4π2�U2�U1

{
[U(Y1Y2 + π2/4)

−2(�U1Y1 + �U2Y2)]2

+π2
[

U

2
(Y2 − Y1) + (�U2 − �U1)

]2}−1

, (82)

in the leading-order approximation, where Y2 = ψ (1) +
ln 4 − ln

(
2
∣∣pR
∣∣ ξ2
)
, Y1 = ψ (1) + ln 4 − ln

(
2
∣∣pL
∣∣ ξ1
)

and
−ψ (1) ≈ 0.577 is the Euler constant. Despite the possibility
of a large number of scalar particles be created from the vac-
uum due to the Bose statistics, the differential mean numbers
can be less than the unity due to logarithmic contributions in
the denominator. This is more clearly seen considering the
symmetric case, ξ1 = ξ2 ≡ ξ (then �U1 = �U2 = U/2),
whose maximum at p0 = (U 2

R − U 2
L

)
/2U

max N cr
n ≈

(
π

Y2 + 2Y + π2/4

)2

,

Y = −ψ (1) − ln 2 + ln

⎛

⎝ξ

√
U2

4
− π2⊥

⎞

⎠ , (83)

can be less than the unity depending on the magnitude of
the step U and on the length scale ξ . This feature, particular

11 The differential mean numbers (as well as any physical quantities)
are invariant by the choice of χ . Thus, N cr

n

∣
∣
χ=+1 = N cr

n

∣
∣
χ=−1.
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to the inverse-square electric field, is not seen in the Sauter
electric field [16] nor in the Peak electric field [31], which
may create a large number of Bosons in the small-gradient
field regime. In Sect. 5, we compare approximations (80) and
(82) with numerical calculations and explore further details
concerning particle creation.

With the aid of the above results, we may calculate total
quantities corresponding to sharp-gradient fields and, in par-
ticular, compare them with results obtained through world-
line methods. More precisely, it has been recently discovered
that in the deeply critical regime, defined by

1 − γ 2 �min

{(
eE/m2

)2
,
(

eE/m2
)−2

, 1

}
, γ = 2m

U
,

(84)

the imaginary part of the one-loop QED effective action
exhibits universal properties similar to those of continuous
phase transitions [42,43]. According to our terminology, this
occurs when the Klein zone is sufficiently small, as in the case
of strong fields in the sharp-gradient regime. Indeed, assum-
ing ξ1 = ξ2 for simplicity and rewriting the condition (78)
in terms of the Keldysh parameter γ we obtain a condition
compatible with (84)

1 − γ 2 � 1, (85)

provided the field amplitude is strong enough, E > m2/e.
Thus, to compute total quantities, we simplify calculations
by setting UL = 0, UR = U = 2m/γ , and introduce new
variables

p0

m
= 1 +

(
1 − γ 2

) v

2
,

p2⊥
m2 =

(
1 − γ 2

)
r, (86)

so that
(

pL
)2 ≈ (

1 − γ 2
)
(v − r) and

(
pR
)2 ≈ (

1 − γ 2
)

(2 − v − r) in leading-order, on account of (85). Moreover,
using the condition (85) one can expand all quantities in
ascending powers of 1 − γ 2 to show that the mean number
of Fermions created (80) reads

N cr
n =

(
1 − γ 2

)√
(r − 1)2 − (v − 1)2

+O

((
1 − γ 2

)3/2
)

. (87)

Substituting the leading-order term of (87) into (53) and per-
forming the change of variables (86), the total number of
Fermions created can be expressed as follows

N cr ≈ J(d)V⊥T

(2π)d

md−1πd/2

� (d/2 − 1)

(
1 − γ 2

)1+d/2
∫ rmax

0

dr

r2 rd/2

×
∫ vmax

vmin

dv

√
(r − 1)2 − (v − 1)2,

in which the integration limits vmin ≈ r , vmax ≈ 2 − r ,
rmax ≈ 1 are determined by restrictions of the Klein zone,

given by Eq. (50) and 2π⊥ ≤ U, respectively. Computing the
remaining integrals, we finally obtain

N cr ≈ J(d)V⊥T

(2π)d−1

md−1πd/2

� (d/2 − 1)

4

d
(
d2 − 4

)
(

1 − γ 2
)1+d/2

, d >2.

(88)

Due to the smallness of the scaling factor 1 − γ 2, we
observe that the total numbers are substantially small within
the Klein zone, which means that the vacuum-vacuum tran-
sition probability Pv , given by the general form (58), can
be approximated by the total number of created particles as
Pv ≈ 1 − N cr. At the same time, this probability can be rep-
resented via the imaginary part of a one-loop effective action
Seff according to Schwinger formula [17],

Pv = exp (−2ImSeff) . (89)

Therefore, taking into account that Pv ≈ 1 − 2ImSeff , we
can use the result (88) to establish the following expression
to the imaginary part of the effective action:

ImSeff ≈ N cr/2 if N cr � 1. (90)

The above expression coincides, in particular, with results
obtained for QED in d = 3+1 dimensions; cf. Eq. (13) in Ref.
[43]. This is an independent confirmation of the universal
behavior of pair creation when the Klein zone is sufficiently
small (or, near the criticality, according to Refs. [42,43]).
Moreover, it should be noted that particle creation ceases
when the step approaches the noncritical configuration U →
2m, which means γ → 1 and therefore Pv → 1 (Pv ≤
1). Following the same considerations, it can be shown that

ImSeff ∝
(
1 − γ 2

)1+d/2
for the Klein–Gordon case.

Because the Klein paradox is often discussed in particle
scattering problems by inhomogeneous potential steps, it is
worth considering some relative probabilities listed at the
beginning of this section to clarify the absence of the Klein
paradox through the correct interpretation of these quanti-
ties in �3. To this aim, we use Eq. (80) for

∣∣g
(
+|−)∣∣−2,

the representation (117) for g
(
+|+) and the approximations

(120) to show that the relative probability of a pair creation
|wn (+ − |0)|2 and of electron scattering |wn (+|+)|2 are
approximately given by

|wn (+ − |0)|2 ≈
4
∣
∣
∣pR
∣
∣
∣
∣
∣
∣pL
∣
∣
∣

(∣∣pL
∣
∣+ ∣∣pR

∣
∣+ χU

)2

∣
∣
∣π0 (R) − χ

∣
∣
∣pR
∣
∣
∣
∣
∣
∣

∣
∣π0 (L) − χ

∣
∣pL
∣
∣
∣
∣ ,

|wn (+|+)|2 ≈
⎛

⎝

∣
∣∣pL
∣
∣∣−
∣
∣∣pR
∣
∣∣+ χU

∣
∣pL
∣
∣+ ∣∣pR

∣
∣+ χU

⎞

⎠

2 ∣∣∣π0 (R) − χ

∣
∣∣pR
∣
∣∣
∣
∣∣

∣
∣π0 (R) + χ

∣
∣pR
∣
∣
∣
∣ .

(91)

These probabilities can be larger than the unity in a suffi-
ciently wide range of energies within �3. For example, they
reach their maxima at p0 = (U 2

R − U 2
L

)
/2U
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max |wn (+ − |0)|2 ≈
(

U

2π⊥

)2

,

max |wn (+|+)|2 ≈
(

U

2π⊥

)2

− 1, (92)

and unveil the possibility of particle transmission and particle
reflection larger than the unity if interpreted as transmission
and reflection coefficients, respectively. Such an interpreta-
tion is due to a formal analogy between the above probabil-
ities and reflection and transmission coefficients calculated
for the ranges �1 and �5; cf. Eq. (54) and Eqs. (97), (98)
in the next section. In the Klein zone, an in-electron (or an
in-positron) is subjected to total reflection, whose amplitude
probability is given by wn (+|+) (wn (−|−) for positrons),
and no transmission occurs in this range. Moreover, from
Eqs. (54) and (58) we observe that |wn (+|+)|−2 = 1 −
N cr

n = pn
v describes the probability that the partial vacuum

state, with given quantum numbers n, remains a vacuum
while pn

v |wn (+ − |0)|2 denotes the probability that a pair
of Fermions, with given quantum numbers n, will be cre-
ated. Therefore, from the second line of Eq. (32), we obtain
the probability conservation

pn
v + pn

v |wn (+ − |0)|2 = 1, (93)

resulting from Pauli’s principle, which states that for given
quantum numbers n there are only two possibilities: either
the vacuum state remains vacuum or a pair of Fermions
be created in a cell of the space. This is the correct inter-
pretation of the coefficients

∣∣g
(
+|−)∣∣−2,

∣∣g
(
+|+)∣∣−2 and

∣∣g
(
+|−)∣∣2 ∣∣g (+|+)∣∣−2 in the Klein zone.

Similar interpretations of relative probabilities discussed
above hold for scalar case, namely

∣∣g
(
+|−)∣∣2 ∣∣g (+|+)∣∣−2

is the relative probability of a particle scattering, while∣
∣g
(
+|+)∣∣−2 is the relative probability of a particle-antiparticle

creation. To obtain explicit forms for these quantities, one can
use Eq. (82) for

∣∣g
(
+|−)∣∣−2 and definitions given by Eqs.

(54). The essential difference in comparison with the Fermi
case is the identification of pn

v . From Eqs. (54) and (58),
the probability that the partial vacuum state with a quantum
numbers n remains the vacuum reads: pn

v = (1 + N cr
n

)−1 =
|wn (+|+)|2. From the second line of Eq. (32), we obtain the
identity

pn
v

[
1 − |wn (+ − |0)|2

]−1 = 1, (94)

that can be interpreted as follows: The conditional probability
of a pair creation with quantum numbers n is the sum of
probabilities of creation for any number l of pairs

P (pairs|0)n = pn
v

[ ∞∑

l=1

|wn (+ − |0)|2l

]

, (95)

under the condition that all other partial vacua, labelled by
quantum numbers m �= n, remain vacua. Hence, the conser-
vation of probability (94) is the sum of probabilities of all
possible events in a cell of the space with quantum numbers
n, namely

P (pairs|0)n + pn
v = 1. (96)

4 Processes beyond the Klein zone

The most elementary quantum processes beyond the Klein
zone are particle scattering in the form of reflection from the
potential step and particle transmission through the poten-
tial step, both occurring in the ranges �1 and �5. To study
these processes, it is enough to introduce the relative R+,n

and absolute R̃+,n = cv R+,n reflection amplitudes of right
antiparticles

R+,n5 =
〈
0
∣
∣∣ −bn5 (out) +b†

n5
(in)

∣
∣∣ 0
〉

= g
(
+|+)−1

g
(
+|−) , (97)

and the relative T+,n and absolute T̃+,n = cvT+,n transmis-
sion amplitudes of right antiparticles

T+,n5 =
〈
0
∣∣∣ +bn5 (out) +b†

n5
(in)

∣∣∣ 0
〉
= ηRg

(
+|+)−1

,

(98)

since all remaining probabilities, corresponding reflection∣∣R−,n5

∣∣2 and transmission
∣∣T−,n5

∣∣2 of left antiparticles in �5

or else particle reflection
∣∣Rζ,n1

∣∣2 and particle transmission
∣∣Tζ,n1

∣∣2 probabilities in �1 can be obtained with the aid of
the identities
∣∣R+,n

∣∣2 = ∣∣R−,n
∣∣2 = ∣∣g (+|−)∣∣2 ∣∣g (+|+)∣∣−2

,
∣
∣T+,n

∣
∣2 = ∣∣T−,n

∣
∣2 = ∣∣g (+|+)∣∣−2

,
∣∣Rζ,n

∣∣2 + ∣∣Tζ,n
∣∣2 = 1, n ∈ �1 ∪ �5, (99)

that follows from Eqs. (31) and (32) specialized to �1 ∪ �5.
The representations, in terms of the g-coefficients, in Eqs.
(97) and (98) are determined by linear canonical trans-
formations that can be extracted from Eqs. (4.33) in [16]
after the formal substitutions +−an (out) → +−b†

n (in) and
−+an (in) → −+b†

n (out). Moreover, reflection and transmis-
sion amplitudes for particles in �1 are given by Eqs. (5.3)
and (5.5) in [16]. The expressions for Bosons coincide with
the above equations setting ηR = ηL = +1.

The above probabilities can be studied for any configura-
tions of the electric field, in particular cases where the field
is concentrated over a finite region along the x-axis. Such
configurations are characterized by “small” or even “finite”
length scales ξ j so that the parameters |UL| ξ1, URξ2 are fixed.
First, considering energies and length scales ξ j small enough
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so that the parameters
∣
∣pL
∣
∣ ξ1,

∣
∣pR
∣
∣ ξ2 are sufficiently small,

the coefficient
∣∣g
(
+|−)∣∣−2 formally coincides with Eq. (80)

for Fermions and Eq. (82) for Bosons. Therefore, the reflec-
tion and transmission probabilities acquire the same form as
the relative probabilities in �3

∣∣Rζ,n
∣∣2 ≈

(∣∣pL
∣∣− ∣∣pR

∣∣+ χU
∣
∣pL
∣
∣+ ∣∣pR

∣
∣+ χU

)2 ∣∣π0 (R) − χ
∣∣pR
∣∣∣∣

∣
∣π0 (R) + χ

∣
∣pR
∣
∣
∣
∣ ,

∣∣Tζ,n
∣∣2 ≈ 4

∣∣pR
∣∣ ∣∣pL

∣∣
(∣∣pL

∣∣+ ∣∣pR
∣∣+ χU

)2

∣∣π0 (R) − χ
∣∣pR
∣∣∣∣

∣∣π0 (L) − χ
∣∣pL
∣∣∣∣ , (100)

for Fermions and coincides, in particular, with the reflec-
tion and transmission coefficients calculated for the Peak
electric field [31] in the sharp-gradient regime. For Bosons,
the transmission coefficient can be conveniently calculated
using Eq. (82) and the quadratic relations (32) specialized to

this case, namely
∣∣Tζ,n

∣∣2 =
[
1 + ∣∣g (+|−)∣∣2

]−1
. Once the

transmission coefficient is obtained, the reflection probabil-
ity coefficient can be calculated using the conservation of
probabilities,

∣∣Rζ,n
∣∣2 = 1 − ∣∣Tζ,n

∣∣2.
Next, considering energies and length scales ξ j large

enough so that the parameters
∣∣pL
∣∣ ξ1,

∣∣pR
∣∣ ξ2 are suffi-

ciently large, one can use the asymptotic approximations for
the Whittaker functions with large argument given by Eq.
(13.19.3) in [33] to show that the reflection and transmission
probabilities coincide with Eq. (100) for Fermions. Notice
that despite the formal coincidence between Eqs. (100) and
(91), the reflection and transmission coefficients (100) are
less than the unity beyond the Klein zone. For energies in
the Klein zone, these coefficients can be larger than unity as
we discussed in the previous section. Hence, if interpreted
as reflection and transmission coefficients, this suggests that
more Fermions are reflected from the potential step than com-
ing in and also more Fermions are transmitted by the poten-
tial step than coming in. This is the Klein paradox, which
is removed by the correct interpretation of the rhs. of Eqs.
(100). As for Bosons, the probabilities acquire substantially
different approximations than the previous case, namely

∣
∣Rζ,n

∣
∣2 ≈

(∣∣pL
∣∣− ∣∣pR

∣∣
∣∣pL
∣∣+ ∣∣pR

∣∣

)2

,
∣
∣Tζ,n

∣
∣2 ≈ 4

∣∣pL
∣∣ ∣∣pR

∣∣
(∣∣pL

∣∣+ ∣∣pR
∣∣)2

,

(101)

in leading-order approximation. Eq. (101) coincides with
reflection and transmission coefficients calculated for the
Sauter electric field [16] and the Peak electric field [31]
in the sharp-gradient regime. It should be noted that for
energies well above or far below the asymptotic poten-
tial energies |UL|, UR, the reflection

∣
∣Rζ,n

∣
∣2 and transmis-

sion
∣∣Tζ,n

∣∣2 probabilities tend to zero and one, respectively.

Indeed, if p0 � UR or p0 � −|UL|, one finds
∣∣Rζ,n

∣∣2 =

O
(
π2⊥U

2/p4
0

)
for Fermions and

∣∣Rζ,n
∣∣2 = O

(
U

2/p2
0

)
for

Bosons, while
∣∣Tζ,n

∣∣2 = 1 + O
(
U

2/p2
0

)
for both types of

particles.
At last, but not least, it is worth comparing the above

results with results that can be obtained in the context of non-
relativistic Quantum Mechanics, more precisely, in the study
of one-dimensional particle scattering by inverse-square
electric fields. To this end, we set π⊥ = m, p0 = m + E ,
and choose π0 (L) = m + E , π0 (R) = m + E − U. To con-
sider the nonrelativistic limit for Bosons, it is enough to study
the so-called kinematic factor kb = ∣∣pR

∣∣ /
∣∣pL
∣∣, because the

reflection and transmission coefficients (101) are expressed
in terms of the latter as

∣∣Rζ,n
∣∣2 = (1 − kb)

2 / (1 + kb)
2 and

∣∣Tζ,n
∣∣2 = 4kb/ (1 + kb)

2. In the nonrelativistic limit E � m,
kb is approximately given by [16,41]

kb ≈ kNR
(

1 − U

4m

)
, kNR =

√
E − U

E
. (102)

It is noteworthy that Eq. (101) formally coincides with reflec-
tion and transmission coefficients calculated for the rectangu-
lar potential step in the context of the nonrelativistic Quantum
Mechanics; see e.g. the textbook [41], Sec. 25.

In contrast to the Klein–Gordon case, the reflection and
transmission coefficients for Fermions (100) do not admit
simple representations in terms of a kinematic factor because
of their more complex representations. Nevertheless, for suf-
ficiently small steps U � E + m, the ratio
∣∣π0 (R) − ∣∣pR

∣∣∣∣
∣∣π0 (L) − ∣∣pL

∣∣∣∣ = 1 + U
∣∣pL
∣∣ + O

(
U

2/

∣
∣∣pL
∣
∣∣
2
)

, (103)

allows us to simplify the transmission coefficient (100) as
follows

∣∣Tζ,n
∣∣2 ≈ 4kb

(
1 + U/

∣∣pL
∣∣)

(
1 + kb + U/

∣∣pL
∣∣)2

. (104)

In Eqs. (103), (104), we selected χ = +1 for simplicity.
In the nonrelativistic limit, U/

∣
∣pL
∣
∣ ≈ U/

√
2m E in leading-

order. Combining the latter approximation and Eq. (102) with
Eq. (104) one can easily obtain a nonrelativistic expression
for the transmission coefficient. The reflection coefficient for
Fermions can be obtained through the probability conserva-
tion (99).

5 Comparing asymptotic estimates with exact results

In this section we supplement the study with comparisons
between differential quantities, calculated numerically, and
asymptotic approximations discussed throughout the text. To
this aim, we simplify computations by setting p⊥ = 0 and
work with the system of units where � = c = m = 1. In
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Fig. 3 Differential mean numbers N cr
n of Fermions (left panel) and

Bosons (right panel) created from the vacuum by symmetrical inverse-
square fields (2). The solid lines refer to numerical calculation of the
exact expressions (36), (40) while the dashed curves the asymptotic

approximations (65). In a–c, mξ1 = mξ2 = 10, 50 and 100, respec-
tively, and E = Ec in all cases. The horizontal dashed lines denote the
uniform distribution e−πλ
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Fig. 4 Differential mean numbers of Fermions created from the vac-
uum N cr

n by symmetrical inverse-square electric fields. The exact results
(solid lines) are given by the absolute square value of Eq. (36) and
the asymptotic ones (dashed curves), by Eq. (80). In the left panel,
E = 250Ec and mξ1 = mξ2 = 1/50 while in the right panel,

E = 500Ec and mξ1 = mξ2 = 1/100. The magnitude of the potential
energy step is constant for both plots U/m = 5 = const. and so is
the extension of the Klein zone, which is |p0|/m ≤ 4. The horizontal
dashed lines denote the maximum value (81)

all plots below, the length scales ξ j , energies p0 and elec-
tric field amplitudes E are relative to electron’s mass m and
Schwinger’s critical field Ec = m2/e, respectively.

Starting with quantities defined in the Klein zone, we
present in Figs. 3, 4, and 5 plots of differential mean num-
bers N cr

n given by exact expressions (36) and (40) (solid lines)
and by specific asymptotic approximations (dashed curves)
as functions of the energy p0, for some values of the length
scales ξ j and field amplitudes E . In Fig. 3, one can com-
pare exact results with asymptotic approximations obtained
in small-gradient regime ( 65) while in Figs. 4 and 5, we com-

pare exact results with asymptotic approximations obtained
for electric fields in sharp-gradient regime (80) and (82).

The numerical results represent differential quantities
obtained for electric fields near the small-gradient or the
sharp-gradient regimes. For example, in Fig. 3, the larger the
length scales ξ j the more accurate asymptotic forms (65),
which means that electric fields in Fig. 3 are closer to the
small-gradient regime. Moreover, we see that the differential
means tend to the uniform distribution e−πλ as ξ j increases.
This is expected since inverse-square electric field (2) tends
to the L-constant field [29] as the length scales ξ j increase,
whose differential means are given by e−πλ provided it acts
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Fig. 5 Differential mean numbers of Bosons created from the vacuum
N cr

n by symmetrical inverse-square electric fields. The exact results
(solid lines) are given by the absolute square value of Eq. (40) and
the asymptotic ones (dashed curves), by Eq. (82). In the left panel,
E = 250Ec and mξ1 = mξ2 = 1/50 while in the right panel,

E = 500Ec and mξ1 = mξ2 = 1/100. The magnitude of the potential
energy step is constant for both plots U/m = 5 = const. and so is
the extension of the Klein zone, which is |p0| /m ≤ 4 . The horizontal
dashed lines denote the maximum value (83)

on the vacuum over a sufficiently wide region in the space.
Still in Fig. 3, we observe that the means N cr

n approach
the uniform distribution e−πλ for small energies, while they
approach asymptotic forms (65) as the energy increases, irre-
spective the value of the length scales ξ j . However, increasing
the length scales ξ j and the field amplitudes E the parame-
ters |UL| ξ1, and URξ2 increase as well, which significantly
improve the accuracy of asymptotic approximations (65) as
was discussed in Sect. 3.1. For the values considered on the
Fig. 3, the lines (a), (b) and (c) correspond to Uξ/2 = 100,
2500 and 104, respectively.

In Figs. 4 and 5 we represent mean numbers in the case
of an inverse-square electric field near the sharp-gradient
regime. In these plots, we chose sufficiently large electric
amplitudes E and sufficiently small length scales ξ j , simu-
lating very strong, sharp and critical electric fields. For all
plots on the Figs. 4 and 5, the magnitude of the potential
energy step is fixed, namely U/m = 5. According to the
above results, we see that the accuracy of asymptotic forms
(80) and (82) increases as the length scales ξ j decreases.
As discussed in Sect. 3.2, this results from the fact that the
parameters |UL| ξ1 and URξ2 decrease as ξ j decrease and the
smaller their values the more accurate the approximations.
This explains why the dashed lines are closer to the solid
lines on the right panels than on the left panels on the both
figures.

Although the asymptotic forms are less accurate in the
scalar case, the accuracy of the approximations can be
improved incorporating next-to-leading order terms into Eq.
(82). Furthermore, it should be noted that for the values of
E/Ec and mξ considered on the Fig. 5, the differential mean
numbers are less than the unity. However, for inverse-square

electric fields in intermediate regimes,12 this may not be the
case: a very large number of Bosons can be created from the
vacuum. In these cases, the notion of inverse-square electric
fields as an external one is limited.

Besides the differential mean numbers, there are other
differential quantities worth of consideration, such as trans-
mission probabilities defined beyond the Klein zone, as was
mentioned in the previous section. Thus, on the Figs. 6 and 7
we present transmission probabilities both for scalar and
Fermi cases given analytically by exact expressions (99), (38)
and by appropriate asymptotic representations discussed in
Sec. 4.

Thus, one can see that the asymptotic approximations
agree with exact results within a certain level of accuracy.
In a sufficient wide energy interval, on the Fig. 6 we see
that approximations (100) for Fermions are more accurate
on the right panel than on the left panel. This is a conse-
quence of the fact that the results on the right panel refer to
an electric field sharper than the one of the left panel, which
means that the parameter Uξ/2 is smaller in the former case
than in the latter. According to the discussions presented in
the Sect. 4, the smaller the parameter Uξ/2 the more accu-
rate are transmission probabilities (100). For the values con-
sidered on the Fig 6, we see that Uξ/2 = 0.1 on the left
panel while Uξ/2 = 0.05 on the right panel. This explains
why the dashed lines on the right panel are closer to the
solid lines than on the left panel. Nevertheless, it should be
noted that as the energy p0/m grows the parameters

∣∣pL
∣∣ ξ

and
∣∣pR
∣∣ ξ increase as well, which means that approxima-

12 Electric fields that are not in the small-gradient regime nor in the
sharp-gradient regime.
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Fig. 6 Probabilities of Fermions transmission through symmetrical
inverse potential steps in �1. Exact results, given by Eqs. (99) and
(38), are represented by solid lines while asymptotic ones, given by Eq.
(100), are represented by dashed curves. In the left panel, E = 250Ec

and mξ1 = mξ2 = 1/50 while in the right panel, E = 500Ec and
mξ1 = mξ2 = 1/100. The lower bound of �1 is the same for both plots
which, in this system of units, is p0/m = 6
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Fig. 7 Probabilities of Bosons transmission through symmetrical
inverse potential steps in �1. Exact results, given by Eqs. (99) and
(38), are represented by solid lines while the asymptotic ones are repre-
sented by dashed curves. (a) : approximations given by the coefficient
∣
∣g
(
+|−)∣∣−2 in Eq. (82) and the identity

∣
∣Tζ,n

∣
∣2 =

[
1 + ∣∣g (+|−)∣∣2

]−1
.

(b): approximations given by Eq. (101). In the left panel, E = 250Ec
and mξ1 = mξ2 = 1/50 while in the right panel, E = 500Ec and
mξ1 = mξ2 = 1/100. The lower bound of �1 is the same for both plots
which, in this system of units, is p0/m = 6

tion (100) becomes more accurate irrespective the value of
Uξ/2, as long as it is finite. Technically, this follows from
the fact that the asymptotic approximations for the Whittaker
functions with small or large arguments and fixed param-
eters notably reproduce the same approximation (100) for
Fermions.

The results for Bosons are slightly different than the ones
for Fermions, since there are two approximations: one cal-
culated using the coefficients

∣∣g
(
+|−)∣∣−2 given by Eq. (82)

and the identify
∣∣Tζ,n

∣∣2 =
[
1 + ∣∣g (+|−)∣∣2

]−1
and the sec-

ond one, given by Eq. (101). That is why both panels on the
Fig. 7 display two dashed lines. The dashed lines labelled
by (a) refer to the approximation calculated with the help
of Eq. (82) while the ones labelled with (b), to Eq. (101).
According to the results represented on the left panel, we
see that approximations (101) are much more accurate than
the ones calculated with the help of Eq. (82). This is quite
expected since the electric field parameterized by values con-
sidered on that plot is not “sharp” enough. In other words,
the parameter Uξ/2 is not small enough in comparison to
the unity for making results of electric fields in the sharp-
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gradient regime agree with exact results. Thus, the approxi-
mation for electric fields beyond sharp-gradient regime (101)
is more accurate in this case. One ought to say that this is a
peculiarity of Bosons since for Fermions the approximations
obtained for an electric field in the sharp-gradient regime
(100) are closer to exact results. The results displayed on the
right panel of Fig. 7 are even more interesting since the exact
results “interpolate” between both approximations. For suffi-
ciently small energies, the approximations obtained from Eq.
(82) are more accurate than the ones calculated with the help
of Eq. (101) as was expected, since the parameters

∣
∣pL
∣
∣ ξ ,∣∣pR

∣∣ ξ and Uξ/2 are small enough. Thus, we may say that
an electric field parameterized by the values considered on
the right panel are in the sharp-gradient regime. However,
as the energy grows, the parameters

∣∣pL
∣∣ ξ and

∣∣pR
∣∣ ξ grow

so that approximation (101) eventually will be more accu-
rate than the one obtained from Eq. (82). This explains why
the exact results tend to the dashed lines (b) as the energy
grows. Finally, based on the numerical values on the Figs. 6
and 7, we conclude that for electric fields characterized by
amplitudes E � 250Ec and by length scales mξ � 1/50,
approximations for electric fields beyond the sharp-gradient
regime (101) agree sufficiently well with exact results for
Bosons while for Fermions accuracy approximations (100)
is good enough only for large energies. As for electric fields
parameterized by E � 500Ec and mξ � 1/100, the field is
sharp enough so that approximations (100) agree sufficiently
well over a wide range of energies for Fermions. For Bosons,
approximations of sharp-gradient regime work sufficiently
well only for small energies. For large energies, approxi-
mations (101) must be considered instead. Note that similar
results can be obtained for negative energies in �5. Lastly,
one may arrive at the same conclusions studying reflection
probabilities instead of transmission probabilities, either in
�1 or in �5.

6 Role of the growing and decreasing regions in the field
behavior

As an application of the above results, one can analyze contri-
butions to the vacuum instability from “growing” and “decay-
ing” areas that accompany the arising uniform in space con-
stant electric field. To this end, we consider here a field con-
figuration composed of three independent regions, growing
inversely squared in the first region x ∈ I = (−∞, xL),
remaining constant in the second region x ∈ Int = [xL, xR] ,

and decreasing inversely squared in the last region x ∈ II =
(xR,+∞). Such a field – hereafter referred to as composite
electric field – corresponds to a generalization of the inverse-
square electric field (2) by having, instead of a peak at x = 0,
an intermediate region. Afterward, we compare the vacuum
instability caused by the composite electric field with the one

which is caused by the electric field that “suddenly grows”
and “suddenly decays” at precise positions on the x-axis, say
at x = xL and x = xR, respectively.

Let us consider the L-constant electric field [29]

E (x) = E

⎧
⎪⎨

⎪⎩

0, x ∈ I

1, x ∈ Int

0, x ∈ II

, (105)

which, by the definition, “grows” and “decays” sharply at
x = xL and x = xR, respectively, and the composite electric
field

E (x) = E

⎧
⎪⎨

⎪⎩

[1 − (x − xL) /ξ1]−2 , x ∈ I

1, x ∈ Int

[1 + (x − xR) /ξ2]−2 , x ∈ II

, (106)

whose dependence on x , within I and II, simulate “processes”
of “growing” and “decaying” of the electric field. Thus, in
what follows, we refer the regions I and II as growing and
decaying processes for simplicity. For both cases, the con-
stants xL = −L/2 < 0 and xR = L/2 > 0 sets the spatial
region where the field is constant and shall be the same for
both fields. Potential energies of an electron in each field are:

U (x) = eE

⎧
⎪⎨

⎪⎩

xL, x ∈ I

x, x ∈ Int

xR, x ∈ II

, (107)

and

U (x)=eE

⎧
⎪⎨

⎪⎩

− (ξ1 − xL)+ξ1 [1 − (x − xL) /ξ1]−1 , x ∈ I

x, x ∈ Int

ξ2+xR − ξ2 [1+(x − xR) /ξ2]−1 , x ∈ II

,

(108)

respectively.
We are interested in differential quantities characterizing

vacuum instability, in particular, mean numbers N cr
n . To this

end, it is enough to analyze relevant g-coefficients within
the Klein zone for both examples. For the L-constant field
(105), necessary coefficients have been calculated before; see
Eqs. (2.27) in Ref. [29]. As for the composite field (106), it
should noted that the existence of the intermediate region
Int = [xL, xR] increase the magnitude of the step

U = eE (ξ1 + ξ2 + L) , (109)

which, in turn, modifies asymptotic kinetic energiesπ0 (L/R)

(15) and variables z j (x) (14) only by additive constants

π0 (L) = p0 + eE (ξ1 − xL) ,

z1 (x) = 2i
∣∣∣pL
∣∣∣ [ξ1 − (x − xL)] , x ∈ I,

π0 (R) = p0 − eE (ξ2 + xR) ,

z2 (x) = 2i
∣∣∣pR
∣∣∣ [ξ2 + (x − xR)] , x ∈ II, (110)
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while the asymptotic momenta
∣
∣pL/R

∣
∣ and parameters κ j , μ j

are defined in the same way as in Eqs. (15), (17)
∣∣
∣pL/R

∣∣
∣=
√

π0 (L/R)2 − π2⊥, μ j =(−1) j
(

ieEξ2
j − χ/2

)
,

κ1 = ieEξ2
1
π0 (L)
∣∣pL
∣∣ , κ2 =−ieEξ2

2
π0 (R)
∣∣pR
∣∣ , (111)

but with π0 (L/R) given by Eq. (110). The above modifica-
tions does not interfere on asymptotic properties of the solu-
tions in the intervals I, II and therefore does not change the
classification of solutions with special left and right asymp-
totics. Hence, the exact solutions of wave equations for the
intervals I, II are Whittaker functions, classified according to
Eqs. (24) and whose arguments and parameters are given by
Eqs. (110), (111).

As for the intermediate region x ∈ Int, Dirac spinors
(or KG wave functions) are proportional to Weber Parabolic
Cylinder functions (WPCF) [32] once general solutions of
the second-order differential equation (12) are expressed in
terms of these functions [29]

ϕn (x) = α+u+ (Z (x)) + α−u− (Z (x)) , x ∈ Int. (112)

Here u+ (Z) = Dρ (Z) and u− (Z) = D−ρ−1 (iZ) are WPCF
while α± are arbitrary constants. The argument Z and param-
eter ρ are defined as

Z (x) = (1 − i)

(√
eEx − p0√

eE

)
,

ρ = −ν − χ + 1

2
, ν = iλ

2
. (113)

Thus, with the aid of (112) and the solutions for the intervals
I, II (24) (with the substitutions described above), one may
demand continuity of the wave functions and its derivatives
at x = xL and x = xR [similarly to the derivation of Eqs.
(35), (36)] to obtain the following form for the coefficient
g
(
+|−):

g
(
+|−) = ηL

√ ∣
∣π0 (L) − χ

∣
∣pL
∣
∣
∣
∣

8eE
∣∣pL
∣∣ ∣∣π0 (R) + χ

∣∣pR
∣∣∣∣ ∣∣pR

∣∣

× exp

[
− iπ

2

(
κ1 + κ2 + ν + χ

2

)]

× [F−
2 (x2)G+

1 (x1)−F+
2 (x2)G−

1 (x1)
]
, (114)

in which

G±
j (x) = u± (Z)

d

dx
W−κ j ,μ j

(
e−iπ z j

)

−W−κ j ,μ j

(
e−iπ z j

) d

dx
u± (Z) ,

F±
j (x) = u± (Z)

d

dx
Wκ j ,μ j

(
z j
)

−Wκ j ,μ j

(
z j
) d

dx
u± (Z) . (115)

Henceforward, we shall compare mean numbers of par-
ticles created from the vacuum N cr

n by the L-constant elec-
tric field (105) and by the composite electric field (106) in
situations whose intermediate length L and the field ampli-
tude E are larger than the stabilization characteristic number
max

(
1, m2/eE

)
, namely

√
eE L > max

(
1, m2/eE

)
. The

remaining parameters, related to the length scales ξ j , are
finite. These configurations allow us to compare and ana-
lyze how the mean numbers approach or deviate from the
uniform distribution e−πλ, as the field is supplied by grow-
ing and decaying regions. Figures 8, 9 and 10 display exact
mean numbers N cr

n , as a function of the energy p0, corre-
sponding to the L-constant field [solid lines, (c) and (d)] and
to the composite electric field [solid lines, (a) and (b)] for
some values of the parameters

√
eE L ,

√
eEξ j , E/Ec. For

the computation of the mean numbers, we use the coefficient
given by Eq. (2.27) in Ref. [29] for the L-constant field while
Eq. (114) for the composite field. Energies, length scales and
field amplitudes E are expressed in units of the electron mass
m and Schwinger’s critical field Ec, respectively. Moreover,
we keep the same conventions employed in Sect. 5, namely
we set p⊥ = 0 and work with the system of units where
� = c = m = 1.

Within the range of values chosen for parameters asso-
ciated with length scales L , ξ j , and field amplitude E , we
observe that the mean numbers of particles created N cr

n oscil-
late around the uniform distribution e−πλ in all cases. This
is a direct consequence of the parameter

√
eE L being larger

than the stabilization characteristic number max
(
1, m2/eE

)
,

which is reduced to the unity here because E ≥ Ec. Accord-
ing to general results obtained for the L-constant field [29],
the mean number stabilizes to the uniform distribution e−πλ

provided
√

eE L is sufficiently large; the larger its value, the
closer to the uniform result. This is particularly clear in the
plots of Fig. 8, in which the parameters mξ1 = mξ2 and the
field amplitude E are fixed but the length L of the interme-
diate interval is smaller in (A) than in (B).

To understand the role of growing and decaying length
scales ξ j on the mean numbers N cr

n , we compare results
between external fields in two additional configurations, both
having the same length of the intermediate region L but field
amplitudes E and length scales ξ j assuming the following
values: E = Ec, mξ1 = mξ2 = 1 and mξ1 = mξ2 = 2 in
Fig. 9 while E = 2Ec, mξ1 = mξ2 = 1 and mξ1 = mξ2 = 2
in Fig. 10. According to the results in Fig. 9, we observe that
increasing the length scales ξ j lead to results closer to the
uniform distribution, as it can be seen comparing the ampli-
tude of oscillations of the lines (a), (b) in the left panel (A)
with those in the right panel (B), both in Fig. 9. This feature
does not depend on the amplitude of the electric field, as it
occurs for different values of the field amplitudes; cf. lines
(a) and (b) in the left panel with the ones in the right panel
in Fig. 10. Moreover, comparing results from the composite
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Fig. 8 Differential mean numbers N cr
n of particles created from the

vacuum by the composite electric field (106) [solid lines (a, b)] and by
the L-constant electric field (105) [solid lines (c, d)], with field ampli-
tudes E = Ec and length scales mξ1 = mξ2 = 1. In the left panel
(A), mL = 10, while in the right panel (B), mL = 20. The distribu-

tions have different energy ranges because the extent of the Klein zone
depends on the external field under consideration: for the L-constant
field, |p0| /m ≤ 4 in (A) and |p0| /m ≤ 9 in (B) while for the compos-
ite field, |p0| /m ≤ 5 in (A) and |p0| /m ≤ 10 in (B). The horizontal
dashed lines denote the uniform distribution e−π
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Fig. 9 Differential mean numbers N cr
n of particles created from the

vacuum by the composite electric field (106) [solid lines (a, b)] and by
the L-constant electric field (105) [solid lines (c, d)], with field ampli-
tudes E = Ec and fixed length scale mL = 10. In the left panel (A),
mξ1 = mξ2 = 1, while in the right panel (B), mξ1 = mξ2 = 2.

The distributions have different energy ranges because the extent of the
Klein zone depends on the external field under consideration: for the
L-constant field, |p0| /m ≤ 4 in both panels while for the composite
field, |p0| /m ≤ 5 in (A) and |p0| /m ≤ 6 in (B). The horizontal dashed
lines denote the uniform distribution e−π

field [lines (a) and (b)] with the ones from the L-constant
field [lines (c) and (d)] we see that the former are closer
to the uniform distribution e−πλ than the latter, irrespective
the field amplitude E or length scales ξ j . In other words,
results from composite fields present smaller – in amplitude
– oscillations around e−πλ as compared to results from the
L-constant field. Such a feature can be seen in all cases dis-
played in Figs. 8, 9, 10 and, besides, does not depend on
particle’s statistics, since it occurs both for Fermions as for
Bosons. Furthermore, we also observe that increasing the

amplitude of the electric field E leads to results closer to the
uniform distribution, as it can be seen comparing plots in the
left panel of Fig. 9 with those in the left panel of Fig. 10. The
same can be concluded comparing right panels. This feature
occurs for both external fields.

These results allow us to conclude that growing and decay-
ing processes plays a significant role in the stabilization pro-
cess of differential quantities, once mean numbers resulting
from external fields supplied by growing and decaying pro-
cesses reach the stabilization distribution e−πλ more accu-

123



Eur. Phys. J. C            (2020) 80:88 Page 23 of 27    88 

- 10 - 5 0 5 10
0.0

0.1

0.2

0.3

0.4

- 2 - 1 0 1 2
0.204

0.206

0.208

0.210

0.212

- 10 - 5 0 5 10
0.0

0.1

0.2

0.3

0.4

- 2 - 1 0 1 2
0.204
0.206
0.208
0.210
0.212

(A) (B)

Fig. 10 Differential mean numbers N cr
n of particles created from the

vacuum by the composite electric field (106) [solid lines (a, b)] and
by the L-constant electric field (105) [solid lines (c, d)] with fixed
field amplitudes E = 2Ec and length mL = 10. In the left panel
(A), mξ1 = mξ2 = 1 while in the right panel (B), mξ1 = mξ2 = 2.

The distributions have different energy ranges because the Klein zone
extent depends on the external field under consideration: for the L-
constant field, |p0| /m ≤ 9 in both panels while for the composite field,
|p0| /m ≤ 11 in (A) and |p0| /m ≤ 13 in (B). The horizontal dashed
lines denote the uniform distribution, e−π/2

rately and, as a matter of fact, in a wider range of energies
than fields deprived of such processes. The explanation for
these results stems from stabilization conditions associated
with the composite field (106) and with the L-constant field
(105) being different for the same length L of the interme-
diate region. Recalling that the stabilization condition for
the L-constant field is

√
eE L � max

(
1, m2/eE

)
[29] and

rephrasing it as

√
UL � max

(
1,

m2

eE

)
, U = eE L , (116)

we realize that when applied to symmetric composite fields

ξ1 = ξ2, it leads to a number
√

UL̃ larger than the lhs. of
(106) because the length L̃ ≡ 2ξ + L and the magnitude
of the step U, given by Eq. (109), in this case are larger
than simply

√
eE L . Therefore, it is not unexpected that the

mean numbers of pairs created by the composite field N cr
n are

closer to uniform distribution than the ones created by the L -
constant field, provided L is the same for both fields. At last,
but not least, it is worth pointing out that features similar
to the ones above discussed also occur for time-dependent
composite electric fields, as reported by us previously in [27,
28,30].

7 Concluding remarks

Using nonperturbative approach developed in QED with x-
electric potential steps [16], we have calculated elementary
zero-order processes (with respect to radiative interaction) in

inverse-square critical electric fields. Quantities characteriz-
ing the vacuum instability and particle scattering are studied
in every detail, in particular, in situations where the external
field fits in small-gradient and sharp-gradient configurations.
The calculations were done in the Klein zone and beyond,
mostly in the ranges �1 and �5. The processes considered in
the Klein zone include not only differential mean numbers,
total mean numbers and vacuum-to-vacuum transition prob-
abilities, but also relative amplitudes of particle scattering,
pair creation and pair annihilation. Results obtained for con-
figurations in the small-gradient regime are consistent with
universal expressions for total quantities in arbitrary weakly
inhomogeneous x-electric potential steps. For configurations
in the sharp-gradient regime, differential quantities are con-
sistent with ones obtained for another exactly-solvable exam-
ples in the same regime, such as the Sauter electric field and
the Peak electric field. Moreover, computing total quantities
within the Klein zone allows us to extract the imaginary part
of the QED effective action and confirm, in particular, the uni-
versal behavior of pair creation near the criticality, obtained
previously in the literature. For sharp-gradient fields, we still
studied the nonrelativistic limit of reflection and transmis-
sion coefficients beyond the Klein zone whose expressions
can be compared, once calculated, with results obtained in
scattering problems by inverse-square electric fields in non-
relativistic Quantum Mechanics. We also commented on the
absence of the Klein paradox for inverse-square electric fields
in sharp-gradient configurations.

Comparing exact results with asymptotic approximations
allows us to study parameters characterizing fields in the
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small-gradient or sharp-gradient regime, as well as the accu-
racy of the approximations. For fields in the small-gradient
regime, the asymptotic approximations agree sufficiently
well with exact results over a wide range of energies in
the Klein zone. There are no significant differences between
results for Fermions and Bosons in this case. This is not
true for fields in the sharp-gradient regime, since approxima-
tions in the Fermi case are more accurate than in the scalar
case in general. However, the accuracy of all approxima-
tions increase as the field amplitudes E and the length scales
ξ j decrease. Studying transmission probabilities beyond the
Klein zone, we find that approximations for fields in the
sharp-gradient regime agree sufficiently well with exact
results provided the amplitudes E are large enough and the
length scales ξ j small enough. For the scalar case, approxi-
mations for the sharp-gradient regime represent better results
only for small energies while for large energies approxima-
tions beyond the sharp-gradient regime leads to more accu-
rate results.

We study the role of growing and decaying processes in
the vacuum instability considering various electric field con-
figuration, composed by inverse-square fields and by an x-
independent electric field between them. Using exact expres-
sions for differential quantities, we compute mean numbers
for cases whose length scales L and field amplitudes E are
sufficiently large. Comparing results obtained for the com-
posite field and for the L -constant field with the uniform
distribution e−πλ, we conclude that external fields supplied
by growing and decaying processes lead to mean numbers
closer to the stabilization distribution and in a wider range of
energies than fields deprived of such processes. These results
are supported by the fact that parameters characterizing the
stabilization condition are larger for composite fields than
for L-constant fields.

We conclude this work emphasizing that inverse-square
electric field is an additional example of external background
where all characteristics underlying vacuum instability and
particle scattering can be performed exactly. We believe that
exact results presented here may be useful in studies of par-
ticle creation by electric fields of more complex spatial dis-
tributions, which may not be exactly solvable but decreasing
spatially as the inverse-square electric field.
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A Some g-coefficients and their asymptotic
representations

In this Appendix, we list exact expressions for the coefficients
g
(
+|−) and g

(
+|+) in terms of Whittaker functions as well

as some asymptotic representations of CHF that that may be
useful in the study of differential quantities, complementary
to the ones discussed in our previous publication [30].

Substituting the relations (19) in Eqs. (35) and (38), the
coefficients g

(
+|−), g

(
+|+) for Fermions acquires the fol-

lowing representation

g
(
+|−) = ηL

√ ∣∣π0 (L) − χ
∣∣pL
∣∣∣∣

∣
∣pR
∣
∣
∣
∣π0 (R) + χ

∣
∣pR
∣
∣
∣
∣
∣
∣pL
∣
∣

×e−iπ(κ1+κ2)/2�̃
(
+|−) (0) ,

g
(
+|+) = ηL

√ ∣∣π0 (L) − χ
∣∣pL
∣∣∣∣

∣∣pR
∣∣ ∣∣π0 (R) − χ

∣∣pR
∣∣∣∣ ∣∣pL

∣∣

×e−iπ(κ1+κ2)/2�̃
(
+|+) (0) , (117)

where

�̃
(
+|−) (x) =

∣∣∣pL
∣∣∣Wκ2,μ2 (z2)

d

dz1
W−κ1,μ1

(
e−iπ z1

)

+
∣∣∣pR
∣∣∣W−κ1,μ1

(
e−iπ z1

) d

dz2
Wκ2,μ2 (z2) ,

�̃
(
+|+) (x) =

∣∣∣pL
∣∣∣W−κ2,μ2

(
e−iπ z2

) d

dz1
W−κ1,μ1

(
e−iπ z1

)

+
∣∣
∣pR
∣∣
∣W−κ1,μ1

(
e−iπ z1

) d

dz2
W−κ2,μ2

(
e−iπ z2

)
.

The corresponding expressions for Bosons read

g
(
+|ζ ) = e−iπ(κ1+κ2)/2

√∣∣pR
∣∣ ∣∣pL

∣∣
�̃
(
+|ζ ) (0)

∣∣∣
χ=0

. (118)

The above representations are particularly useful for
obtaining approximate expressions for differential quantities
when the argument of the Whittaker functions are small. For
example, using the connection formulae [40]

Wκ,μ (z)

= π

sin 2πμ

[

− Mκ,μ (z)

�
( 1

2 − μ − κ
)
� (1 + 2μ)
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+ Mκ,−μ (z)

�
( 1

2 + μ − κ
)
� (1 − 2μ)

]

,

W−κ,μ

(
e±iπ z

)

= π

sin 2πμ

[

−exp [±iπ (μ + 1/2)] Mκ,μ (z)

�
( 1

2 − μ + κ
)
� (1 + 2μ)

+exp [±iπ (−μ + 1/2)] Mκ,−μ (z)

�
( 1

2 + μ + κ
)
� (1 − 2μ)

]

, (119)

and the power-series expansion of the Whittaker func-
tions regular at the origin Mκ,μ (z) = zμ+1/2 [1 − zκ/

(1 + 2μ) + O
(
z2
)]

, one can obtain approximate expres-
sions for the Whittaker functions Wκ,μ (z) , W−κ,μ

(
e±iπ z

)

near the origin, specially when κ and μ are fixed.13 Selecting
χ = +1 and considering �U jξ j � 1, one can expand the
Gamma functions and exponents to show that

Wκ,μ (z) ≈ 1, W−κ,μ

(
e−iπ z

)
≈ 1, (120)

in leading-order approximation. These approximations are
useful for Fermions. Under the same conditions, choosing
χ = 0 one finds

Wκ,μ (z) ≈
√

z

π
(− ln z + ψ (1) + ln 4) , (121)

in leading-order approximation. These approximations are
useful for Bosons. Here −ψ (1) ≈ 0.577 is Euler’s constant.

For large a, |arg a| ≤ π − 0+, and fixed c , z, the uni-
form asymptotic representations for the CHF � (a, c; z) are
given in terms of modified Bessel functions of the second
kind Kν (z), as given by Eq. (13.8.11) in [33]. Using these
approximations for z small and az fixed, the CHF and its
derivative are approximately given by

� (a, c; z) ∼ 2
( z

a

)(1−c)/2 ez/2

� (a)
Kc−1

(
2
√

az
)
,

d

dz
� (a, c; z) ∼ −2

( z

a

)−c/2 ez/2

� (a)
Kc
(
2
√

az
)
, (122)

in leading-order approximation.
For z small and a, c fixed, one can use Kummer connection

formula [33]

� (a, c; z) = � (1 − c)

� (a − c + 1)
� (a, c; z)

+� (c − 1)

� (a)
z1−c�(a − c + 1, 2 − c; z) ,

(123)

and the power series expansion of regular CHF at the origin
�(a, c; z) = 1 + (a/c) z + O

(
z2
)

to obtain an approximate

13 A number of limiting forms for Wκ,μ (z)
∣
∣
z→0 derived from Eqs.

(119) can be found in [33].

expression of � (a, c; z). If a and c are also small, one may
choose a value to χ (χ = +1 for example) and expand the
Gamma functions to obtain

� (a2, c2; z2) ≈ 1,
d

dz2
� (a2, c2; z2) ≈ iν+

2 ,

�
(

c1 − a1, c1; e−iπ z1

)
≈ −eiπc1 z1−c1

1 ,

d

dz1
�
(

c1 − a1, c1; e−iπ z1

)
≈ eiπc1 z1−c1

1

(
c1 − 1

z1

)
,

(124)

for Fermions, in leading-order approximation.

B Unitary operator connecting in- and out-vacua in
Klein zone

A fundamental property of linear canonical transformations
between sets of creation and annihilation operators is the
existence of an unitary operator V [38] that connects both
sets in the form α (out) = V †α̃ (in) V , where α (out) denotes
any out-operator and α̃ (in) its corresponding in-operator.
The general method for calculating its explicit form has
been given in Refs. [9–11,19,21,39]. Here we employ this
method for calculating the corresponding unitary operator in
the Klein zone V�3 in terms of in-operators, as a supplement
to the representation calculated in terms of out-operators; cf.
Eq. (7.20) in Ref. [16]. Starting with the representation

V�3 = exp
[ −a†

n (in) B −b†
n (in)

]

× exp
[ −an (in) A −a†

n (in)
]
,

× exp
[

−b†
n (in) D −bn (in)

]

× exp
[

−bn (in) C −an (in)
]
, (125)

for Fermions and

V�3 = exp
[ +a†

n (in) B +b†
n (in)

]

× exp
[ +an (in) A +a†

n (in)
]
,

× exp
[

+b†
n (in) D +bn (in)

]

× exp
[

+bn (in) C +an (in)
]
, (126)

for Bosons, where A, B, C and D are constants, we use the
identities

exp
(
±an Aa†

n

)( ai

a†
i

)

exp
(
∓an Aa†

n

)
=
(

e±κ Aai

a†
i e∓κ A

)

,

exp
(
±b†

n Dbn

)( bi

b†
i

)

exp
(
∓b†

n Dbn

)
=
(

e∓Dbi

b†
i e±D

)

,
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exp
(
±a†

n Bb†
n

)(ai

bi

)

exp
(
∓a†

n Bb†
n

)
=
(

ai ∓ Bb†
i

bi ± κa†
i B

)

,

exp (±bnCan)

(
a†

i

b†
i

)

exp (∓bnCan) =
(

a†
i ± bi C

b†
i ∓ κCai

)

,

(127)

and the canonical transformations given by Eqs. (7.4), (A3)
in Ref. [16], to show that

A =

⎧
⎪⎨

⎪⎩

− ln
[
g
(
+|−) g

(
+|+)−1

]
= − ln

[
g
(+|−

)
g
(−|−

)−1
]
, Fermi,

ln
[
g
(
−|+) g

(
−|−)−1

]
= ln

[
g
(−|+

)
g
(+|+

)−1
]
, Bose,

B =
⎧
⎨

⎩

−g
(
+|+)−1

, Fermi,

g
(
−|−)−1

, Bose,
, C =

⎧
⎨

⎩

g
(−|−

)−1
, Fermi,

−g
(+|+

)−1
, Bose,

D =

⎧
⎪⎨

⎪⎩

ln
[
g
(
−|+) g

(
+|+)−1

]
= ln

[
g
(−|+

)
g
(−|−

)−1
]
, Fermi,

− ln
[
g
(
+|−) g

(
−|−)−1

]
= − ln

[
g
(+|−

)
g
(+|+

)−1
]
, Bose,

(128)

In terms of elementary relative amplitudes of particle scat-
tering wn (+|+), antiparticle scattering wn (−|−), creation
of a pair wn (+ − |0) and annihilation of a pair wn (0| − +)

given by Eqs. (7.17) and (A-9) in [16], the unitary operator
for Fermions (125) is expressed by Eq. (56) while for Bosons
it takes the form

V�3 = exp
[ +a†

n (in) wn (+ − |0) +b†
n (in)

]

× exp
[ +an (in) ln w (+|+)n

+a†
n (in)

]

× exp
[
− +b†

n (in) ln w (−|−)n +bn (in)
]

× exp
[

+bn (in) w (0| − +)n
+an (in)

]
. (129)

With the help of the representations (56) and (129), the
vacuum-vacuum transition probability Pv (55) acquires the
final form (58).
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