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Abstract

The paper deals with the estimation problem of the actuarial present values
of the continuous individual net premiums and connected with these character-
istics life annuities. We considered the following actuarial models: the whole life
insurance, n-year term life insurance, q-year deferred life insurance, and n-year
endowment life insurance. We synthesize nonparametric estimators of net pre-
miums and life annuities for these statuses. The main parts of the asymptotic
mean square errors of the estimators and their limit distributions are found.
The simulations show that the empirical mean square errors of estimators de-
crease when the sample size increases. Also, when the model distribution is
changed, the nonparametric estimators are more adaptable in comparison with
parametric estimators, oriented on the best results only for the given distribu-
tions.

Keywords: nonparametric estimation; life insurance; net premium; life
annuity; asymptotic normality; bias; mean squared error.

Introduction

One of the main issues addressed in actuarial mathematics is to �nd the "right"
ratio between premiums and bene�ts, aided calculation of net premiums intended to
cover damages and giving zero average income of the insurance company. Section
devoted to this area in the monograph "Actuarial Mathematics" [8], in which the
calculation of net premiums was based on the use of mortality tables. Interesting
results based on this approach have been prepared in papers [5, 10, 13, 16, 34, 39, 42].
Modern development of theory of insurance is strongly required the use of complex
mathematical models phenomena and processes taking place in this area. Note the
results obtained in this direction in the papers [1, 4, 6, 18, 19, 22, 37]. Alternative
solution is to build estimators of net premium functionals on the base of information
containing in a sample of individuals' lifetimes. Here we develop this idea embedded
in the articles [20], [25]-[33]. The second part of the paper deals with the study of
life annuities estimators.
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1 Individual Whole Life Insurance: Net Premiums

and Life Annuities

In long-term insurance the calculations of tari� rates take into account change of
money value because the sum of S dollars after t years turns to the sum S eδt dollars,
where δ is instantaneous interest rate. The whole life insurance is example of long-
term insurance; in this situation the person pays p dollars to the insurance company,
and the company pays b dollars to successors of the insured after his death. Though
the premium p is less, than b, the company will receive the necessary sum b, since the
premium is paid at the moment of the conclusion of the contract, and the payment
is done great later. We will use designations of actuarial mathematics later on. Let
random variable X denote the future lifetime, x be the age of the insured at the
moment of policy issue, T (x) = X − x denote the residual time of life. In time T (x)
premium, p, will turn in the sum, p eδT (x), and in this case the income of the company
will be equal to

p eδT (x) − b.

To have the required sum b dollars at the moment of client death, the insurance
company must receive b e−δT (x) dollars at the time of policy issue. In economic terms,
the sum b e−δT (x) expresses discounted value of the future insurance payment. As
the above mentioned this sum is a random variable, so it is natural to take as net
premium its average the symbol of the expectation. In actuarial science the bene�t b
is accepted as a unit payment, that is, b = 1, and the net premium of the whole life
insurance Ax is equal to E{e−δT (x)} :

Ax = E{e−δT (x)} = −
∫ ∞

0

e−δt dP{T (x) > t|T (x) > 0} =

=

−
∫ ∞

0

e−δt dP{T (x) > t ∩ T (x) > 0}

P{T (x) > 0}
=

=

∫ ∞
0

e−δt IT (x)(t > 0)dFT (x)(t)

ST (x)(0)
=

Φ(x, δ)

ST (x)(0)
, (1)

where FT (x)(t) = P(T (x) ≤ t) is the distribution function of the random variable
T (x), ST (x)(t) = 1 − F (t) = P(T (x) > t) is the survival function, IT (x)(t > 0) =
I(T (x) > 0), I(A) is the indicator of set A.

It is known that life annuities are closely related to the corresponding net premi-
ums (see [4]). The idea of life annuity in accordance with ([4], p. 170) is this: from the
moment t = 0 an individual once a year begins to get a certain money, which we take
as the unit of money, and payments are made only for the lifetime of an individual.
As the calculation of the characteristics of life annuity is based on the characteristics
of the respective type of insurance, the average total cost of the present continuous
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annuity is de�ned by the following formula (see [4], p. 184):

ax(δ) =
1− Ax
δ

, (2)

where Ax is a net premium (the average of the present value of a single sum of money
in the insurance lifetime at the age x. Let us introduce the random variable

z(x) =
1− e−δT (x)

δ
, T (x) > 0. (3)

Then, by averaging the random variable z(x) (3), we get the formula of the whole
life annuity (see [8, 21, 30]):

ax(δ) = Ez(x) =
1

δ

(
1− Φ(x, δ)

ST (x)(0)

)
. (4)

2 Collective Life Insurance

A useful abstraction in the collective life insurance is that of "status for which there
are de�nitions of survival and failure" [8]. Consider m members of ages (x1, . . . , xm)
who desire to buy an insurance policy. Denote the future lifetime of the k-th individ-
ual by T (xk) = Xk − xk. Let us put in a correspondence a status U with its future
lifetime T (U) and with a set of numbers T (x1), . . . , T (xm) [20].

In the papers [25]-[33] were considered cases of a joint-life status and a last-
survivor status.

The joint-life status is denoted by U := x1 : . . . : xm and is considered as failed
upon the �rst death, i.e.,

T (U) = min (T (x1), . . . , T (xm)) .

It is evident that the probability

P{T (U) > t} = P{min(T (x1), . . . , T (xm)) > t} = P{T (x1) > t, . . . , T (xm) > t},

so, when the deaths are independent, we have P{T (U) > t} =
m∏
i=1

P{T (xi) > t}.

The last-survivor status is denoted by U := x1 : . . . : xm and fails upon the last
death, and exists as long as at least one member of a group is alive, i.e.,

T (U) = max(T (x1), . . . , T (xm)).

Similarly,

P{T (U) ≤ t} = P{max(T (x1), . . . , T (xm)) ≤ t} = P{T (x1) ≤ t, . . . , T (xm) ≤ t},

and in the case of independent deaths, we have P{T (U) ≤ t} =
m∏
i=1

P{T (xi) ≤ t}.
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We give other statuses used in practice. Consider the general k-survivor status,
which is denoted

U :=
k

x1 : . . . : xm

and exists as long as at least alive k among m individuals (x1), . . . , (xm), i.e., it is
considered destroyed upon the occurrence of the (m−k+ 1) deaths. It is understood
that the joint-life status (k = m) and last-survivor status (k = 1) are the special cases
of the k-survivor status. Also, separately consider the [k]-deferred survivor status

U :=
[k]

x1 : . . . : xm

and there, if alive exactly k of m individuals (x1), . . . , (xm), i.e., it starts at the
(m− k)-th death and lasts until the (m− k+ 1)-th death. This status is widely used
in the calculation sequences payments of limited duration [20]. Note that the new
statuses can be de�ned by compounding. A compound status is said to exist if the
status is a a combination of statuses, and at least one of them is itself a status with
more than one individual. Consider, for example, some compound statuses.

� The status ((x1 : x2 : x3 : x4)

This status persists if alive at least one of (x1) and (x2) and at least one of (x3)
and (x4). The time-until-failure of the status (x1 : x2 : x3 : x4) is

T (U) = min{max{T (x1), T (x2)},max{T (x3), T (x4)}}.

� The status
(
x1 : x2 : (x3 : x4)

)
Such condition persists, if alive at least two of four, namely, (x3) and (x4), or
when only one alive, and that either (x1), or (x2). The time-until-failure of the

status
(
x1 : x2 : (x3 : x4)

)
is

T (U) = max{max{T (x1), T (x2)},min{T (x3), T (x4)}}.

� The status (x1 : x2 : x3 : x4)

The condition persists, if alive (x1), (x2) and when one is alive, and it is either
(x3), or (x4). The time-until-failure of the status (x1 : x2 : x3 : x4) is

T (U) = min{T (x1), T (x2),max{T (x3), T (x4)}}.

Similarly, the fracture point may be found for the combination any statuses.

33



Novosibirsk, 18-20 September, 2019

3 Functionals of the Net Premiums in Collective Life

Insurance

Reasoning as in the derivation of formula (1)), in the case of the m insureds, the
functionals of the net premiums in collective life insurance can be written as

Ax1:...:xm =

∫ ∞
0

e−δt Ix1:...:xm(t > 0)dFx1:...:xm(t)

Sx1:...:xm(0)
, (5)

Ax1:...:xm =

∫ ∞
0

e−δt Ix1:...:xm(t > 0)dFx1:...:xm(t)

Sx1:...:xm(0)
,

where
Fx1:...:xm(t) = P(min (T (x1), . . . , T (xm)) ≤ t)

and
Fx1:...:xm(t) = P(max (T (x1), . . . , T (xm)) ≤ t)

are the distribution functions of the random variables min (T (x1), . . . , T (xm)) and
max (T (x1), . . . , T (xm)),

Sx1:...:xm(t) = 1− Fx1:...:xm(t) = P(min (T (x1), . . . , T (xm) > t))

and
Sx1:...:xm(t) = 1− Fx1:...:xm(t) = P(max (T (x1), . . . , T (xm) > t))

are the corresponding survival functions.
Consider the random variables Zi = Xi−xi, i = 1,m.We order them in ascending

and obtain the order statistics Z(i), i = 1,m. Note that the survival function

Sx1:...:xm(0) = P(min (T (x1), . . . , T (xm) > 0)) = P(T (x1) > 0, . . . , T (xm) > 0) =

= P(X1 > x1, . . . , Xm > xm) = S(x1, . . . , xm).

Then

Ax1:...:xm =

−
∫ ∞

0

e−δ tI(Z(1) > 0)d[1−P{Z(1) > t}]

P{Z(1) > 0}
=

=

−
∫ ∞

0

e−δ tI(min (T (x1), . . . , T (xm)) > 0)d[1−P{min (T (x1), . . . , T (xm)) > t}]

P{min (T (x1), . . . , T (xm)) > 0}
=

=

−
∫ ∞

0

e−δ t
m∏
j=1

I(T (xj) > 0)d[1−P{(T (x1) > t, . . . , T (xm) > t)}]

P{T (x1) > 0, . . . , T (xm) > 0}
=
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=
Φ(x1 : . . . : xm, δ)

S(x1, . . . , xm)
(6)

and

Ax1:...:xm =

∫ ∞
0

e−δ tI(Z(m) > 0)dP{Z(m) ≤ t}

P{Z(m) > 0}
.

By analogy with formula (1), we have

A k
x1:...:xm

=

∫ ∞
0

e−δ tIZ(m−k+1)
(t > 0)dP{Z(m−k+1) ≤ t}

P{Z(m−k+1) > 0}
, (7)

where IZ(m−k+1)
(t > 0) = I(Z(m−k+1) > 0).

In the case of the [k]-deferred survivor status

P
{
Z(m−k) < t < Z(m−k+1)

}
= P

{
t < Z(m−k+1)

}
−P

{
t < Z(m−k)

}
=

= 1−P
{
Z(m−k+1) ≤ t

}
−1+P

{
Z(m−k) ≤ t

}
= P

{
Z(m−k) ≤ t

}
−P

{
Z(m−k+1) ≤ t

}
,

and the net premium is given by the formula

A [k]
x1:...:xm

=

∫ ∞
0

e−δ tI(Z(m−k) > 0)dP{Z(m−k) ≤ t}

P{Z(m−k) > 0}
−

−

∫ ∞
0

e−δ tI(Z(m−k+1) > 0)dP{Z(m−k+1) ≤ t}

P{Z(m−k+1) > 0}
= A k−1

x1:...:xm

− A k
x1:...:xm

.

The functionals of net premiums for compound statuses can be written in the
same way.

4 Estimators of the Net Premiums in Collective Life

Insurance

Let (Z11, . . . , Zm1), . . . , (Z1n, . . . , Zmn) be an m-dimensional random sample and
(Z(1)1, . . . , Z(m)1), . . . , (Z(1)n, . . . , Z(m)n) be corresponding ordered set.

According to (6) as the estimator of the survival function P
{
Z(1) > t

}
, we take

1

n

n∑
i=1

m∏
j=1

I (Zji > t). Let δ(t) be the Dirac function. Then, the nonparametric esti-

mator of net premium (6) is given by

Âx1:...:xm =

−
∫ ∞

0

e−δ t
m∏
j=1

IZj(t > 0)d[1−Pn{Z1 > t, . . . , Zm > t}]

Pn{Z1 > 0, . . . , Zm > 0}
=

35



Novosibirsk, 18-20 September, 2019

=

∫ ∞
0

e−δ t
m∏
j=1

IZj(t > 0)

(
1

n

n∑
i=1

m∏
j=1

I(Zji > t)

)′
dt

1

n

n∑
i=1

m∏
j=1

I (Zji > 0)

=

=
1

1

n

n∑
i=1

m∏
j=1

I (Zji > 0)

1

n

n∑
i=1

∫ ∞
0

e−δ t
m∏
j=1

IZj(t > 0)δ(t−
m∏
j=1

Zji) dt =

=

1

n

n∑
i=1

e−δ
∏m
j=1 Zji

m∏
j=1

I(Zji > 0)

1

n

n∑
i=1

m∏
j=1

I (Zji > 0)

. (8)

As estimators of the distribution function P
{
Z(m−k+1) ≤ t

}
and the survival func-

tion P
{
Z(m−k+1) > 0

}
, we take

1

n

n∑
i=1

I
(
Z(m−k+1)i < t

)
and

1

n

n∑
i=1

I
(
Z(m−k+1)i > 0

)
,

respectively. So, the nonparametric estimator of (4) has the form

Â k
x1:...:xm

=

∫ ∞
0

e−δ t IZ(m−k+1)
(t > 0)

(
1

n

n∑
i=1

I(Z(m−k+1)i ≤ t)

)′
dt

Pn{Z(m−k+1) > 0}
=

=
1

Pn{Z(m−k+1) > 0}
1

n

n∑
i=1

∫ ∞
0

e−δ t IZ(m−k+1)
(t > 0)δ(t− Z(m−k+1)i) dt =

=

1

n

n∑
i=1

e−δ (Z(m−k+1)i)I(Z(m−k+1)i > 0)

1

n

n∑
i=1

I
(
Z(m−k+1)i > 0

)
)

. (9)

In the case of the [k]-deferred survivor status the nonparametric plug-in estimator
of the net premium can be de�ned in the following way:

Â [k]
x1:...:xm

= Â k−1
x1:...:xm

− Â k
x1:...:xm

.

5 Asymptotics of the Functions of Statistics

Introduce the notation according to [12, 6]: the function H(t) : Rs → R1, where

t = t(x) = (t1(x), . . . , ts(x)) is s-dimensional bounded function; Hj(t) =
∂H(t)

∂tj
,
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j = 1, s, ∇H(t) = (H1(t), . . . , Hs(t)); the symbol T denotes the transpose; tn =
(t1n, . . . , tsn) is s-dimensional statistic, tjn = tjn(x) = tjn(x,X1, . . . , Xn), j = 1, s;

‖tn‖ =
√
t21n + . . .+ t2sn is the Euclidean norm of tn; =⇒ Ns {µ, σ} is the symbol

of weak convergence of sequence of random variables to the s-dimensional normal
random variable with mean µ = (µ1, . . . , µs) and symmetric covariance matrix σ =
||σij||, 0 < σjj = σjj(x) <∞, j = 1, s; < is the set of integers.

D e f i n i t i o n. The function H(t) : Rs → R1 and the sequence {H(tn)} are
said to belong to the class Nν,s(t; γ), provided that

1) there exists an ε-neighborhood {z : |zi − ti| < ε; i = 1, s}, in which the

function H(z) and all its partial derivatives
∂H(z)

∂zj
up to the order ν are continuous

and bounded;
2) for any values of variables X1, ..., Xn the sequence {H(tn)} is dominated by a

numerical sequence C0d
γ
n, such that dn ↑ ∞, as n→∞, and 0 ≤ γ <∞.

Theorem 1 [6]. Let the conditions
1) H(z), {H(tn)} ∈ N2,s(t, γ),
2) E||tn − t||i = O

(
d−i/2n

)
hold for all i ∈ <. Then, for every k ∈ <∣∣∣E [H(tn)−H(t)]k − E

[
∇H(t)(tn − t)T

]k∣∣∣ = O
(
d−(k+1)/2
n

)
. (10)

If in formula (10) k = 1, we obtain the principal term E
[
∇H(t)(tn − t)T

]
of

the bias E [H(tn)−H(t)] for H(tn), and at k = 2, we have the principal term
E
[
∇H(t)(tn − t)T

]2
of the mean squared error (MSE) E [H(tn)−H(t)]2.

Theorem 2 (The usual central limit theorem) [1]. If ξ1, ..., ξn, ... is a sequence of
independent and identically distributed s-dimensional vectors,

Eξk = 0, σ(x) = E{ξTk ξk}, tn =
1

n

n∑
k=1

ξk,

then, as n→∞, √
ntn =⇒ Ns{0, σ(x)}.

Theorem 3 [6]. If qn(tn − t) =⇒ Ns{µ, σ} for some number sequence qn ↑ ∞,
the function H(z) is di�erentiable at the point µ, ∇H(µ) 6= 0, then

qn (H(tn)−H(µ)) =⇒ N1{∇H(µ)µT , ∇H(µ)σ∇HT (µ)}.

6 Bias and MSE of Estimator Âx1:...:xm

Here, we will obtain the principal term of the asymptotic MSE and the bias conver-
gence rate of estimator (3).

Theorem 4. If the survival function S(x1, . . . , xm) > 0 and S(t1, . . . , tm) is
continuous at a point (x1, . . . , xm), then
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1) for the bias b
(
Âx1:...:xm

)
of estimator (3) we have∣∣∣b(Âx1:...:xm

)∣∣∣ =
∣∣∣EÂx1:...:xm − Ax1:...:xm

∣∣∣ = O
(
n−1
)

;

2) the MSE u2
(
Âx1:...:xm

)
is given by the formula

u2(Âx1:...:xm) = E
(
Âx1:...:xm − Ax1:...:xm

)2

=

=
Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

nS3(x1, . . . , xm)
+O

(
1

n3/2

)
.

Proof. For estimator Âx1:...:xm (3) in the notation of Theorem 1 we have:

s = 2, tn = (t1n, t2n) = (Φn(x1, . . . , xm, δ), Sn(x1, . . . , xm)),

dn = n, H(tn) =
Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)
= Âx1:...:xm ,

t = (t1, t2) = (Φ(x1, . . . , xm, δ), S(x1, . . . , xm)) , H(t) =
t1
t2

= Ax1:...:xm ,

H1(t) =
1

S(x1, . . . , xm)
, H2(t) = −Φ(x1, . . . , xm, δ)

S2(x1, . . . , xm)
, ∇H(t) = (H1(t), H2(t)) 6= 0.

.
The sequence {H(tn)} satis�es the condition 1) of Theorem 1 with C0 = 1 and

γ = 0. Indeed, according to (3)

H(tn) =
Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)
=

1

n

n∑
i=1

e−δ
∏m
j=1 Zji

m∏
j=1

I(Zji > 0)

1

n

n∑
i=1

m∏
j=1

I (Zji > 0)

≤ 1. (11)

Further, in view of t2 = S(x1, . . . , xm) > 0 the function H(t) satis�es the condition 1)
of Theorem 1 . Also, this function satis�es the condition 2) of Theorem 1 due to
Lemma 3.1 [5], as for all i ∈ < such inequalities hold:

E
m∏
j=1

I i (Zj > 0) = S(x1, . . . , xm) ≤ 1,

Ee−iδ
∏m
j=1 Zj

m∏
j=1

I i(Zj > 0) ≤ S(x1, . . . , xm) ≤ 1.

Therefore,
E|Φn(x1, . . . , xm, δ)− Φ(x1, . . . , xm, δ)|i = O

(
n−

i
2

)
,
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E|Sn(x1, . . . , xm)− Sn(x1, . . . , xm)|i = O
(
n−

i
2

)
.

Taking k = 1 in formula (10), we get

E{Âx1:...:xm} = Ax1:...:xm +
1

t2
E{t1n − t1} −

t1
t22

E{t2n − t2}+O

(
1

n

)
.

Since functions t1 = t1(x1, . . . , xm), t2 = t2(x1, . . . , xm) are continuous, we have

E{t1n} = t1, E{t2n} = t2, and E{Âx1:...:xm} = Ax1:...:xm +O

(
1

n

)
, i.e., Âx1:...:xm is the

asymptotically unbiased estimator.
Now, putting k = 2 in (10) and taking into account unbiasedness of t1n, t2n, we

�nd the formulas for the variances and covariance:

u2(Âx1:...:xm) =
1

t22
D{t1n}+

t21
t42

D{t2n} − 2
t1
t32
cov{t1n, t2n}+O

(
1

n3/2

)
. (12)

Denote

φi(x1, . . . , xm, δ) = e−δ
∏m
j=1 Zji

m∏
j=1

I(Zji > 0),

si(x1, . . . , xm) =
m∏
j=1

I (Zji > 0). In view of the randomness of the sample

(Z11, . . . , Zm1), . . . , (Z1n, . . . , Zmn), we have

D{t1n} = D

{
1

n

n∑
i=1

φi(x1, . . . , xm, δ)

}
=

1

n
D {φ1(x1, . . . , xm, δ)} =

=
1

n

(
E {φ1(x1, . . . , xm, 2δ)} − E2 {φ1(x1, . . . , xm, δ)}

)
=

=
1

n

(
Φ(x1, . . . , xm, 2δ)− Φ2(x1, . . . , xm, δ)

)
,

D{t2n} = D

{
1

n

n∑
i=1

si(x1, . . . , xm)

}
=

1

n
S(x1, . . . , xm) (1− S(x1, . . . , xm)) ,

cov{t1n, t2n} =
1

n
cov {φ1(x1, . . . , xm, δ), s1(x1, . . . , xm))} =

=
1

n
Φ(x1, . . . , xm, δ) (1− S(x1, x2, . . . , xm)) .

Now, we substitute the found expressions in (11) and the second assertion of the
Theorem 4 has been proved.
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7 Asymptotic Normality of Estimator Âx1:...:xm

Theorem 5. Under the conditions of Theorem 4
√
n[Âx1:...:xm − Ax1:...:xm ] =⇒

=⇒ N1

{
0,

Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

S3(x1, . . . , xm)

}
.

Proof. In the notation of Theorem 2 and Theorem 3, we have: qn =
√
n. Since

S(x1, . . . , xm) > 0, function H(t) ∈ N1,2(t). Taking into account unbiasedness of
Sn(x1, . . . , xm) and Φn(x1, . . . , xm, δ), we have µT = 0.

According to Section 6, the elements of the covariance matrix σ are de�ned by
the formulas:

σ11 = Φ(x1, . . . , xm, 2δ)− Φ2(x1, . . . , xm, δ),

σ12 = σ21 = Φ(x1, . . . , xm, δ)(1− S(x1, . . . , xm)),

σ22 = S(x1, . . . , xm)(1− S(x1, . . . , xm)). That is why ∇H(t)µT = 0,

∇H(t)σ∇H(t)T =
Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

S3(x1, . . . , xm)
.

Theorem 5 is proved.

8 Synthesis of Nonparametric Estimators of the Net

Premiums in Collective Life Insurance for Other

Forms of Insurance

The above considered estimators of the net premiums were constructed for whole
insurance; now we will consider other forms of insurances.

� The p-years term life insurance

In this case the bene�t to pay if the insured will die during of the contract
validity. The company does not pay the bene�t if the insured has lived p years.
Then

Â [k]
x1:...:xm

:pe =

1

n

n∑
i=1

e−δ Z(m−k+1)iI(0 < Z(m−k+1)i ≤ p)

1

n

n∑
i=1

I(Z(m−k+1)i > 0)

.

� The p-years endowment life insurance

Such form of insurance provides for a payment either following the death of the
insured or upon his survival to the end of the p-years term. The given form of
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insurance accumulates the client's capital. Then, the nonparametric estimator
of the net premium is

Â
s

[k]
x1:...:xm

:pe =
Sn(x1, . . . , xm)− Sn(x1 + p, . . . , xm + p)

Sn(x1, . . . , xm)
×

×Â [k]
x1:...:xm

:pe +
Sn(x1 + p, . . . , xm + p)

Sn(x1, . . . , xm)
e−δ p.

� The r-years deferred life insurance

This form of insurance provides for a bene�t following the death of the insured
when he dies at least r years following policy issue. Here the net premium is
expressed in the form

r|Â [k]
x1:...:xm

=

1

n

n∑
i=1

e−δ Z(m−k+1)iI(r < Z(m−k+1)i)

1

n

n∑
i=1

I(Z(m−k+1)i > 0)

.

9 Estimation of Joint-Life Annuity

As in the case of individual insurance [4, 30], we determine the joint-life annuity by
making use of the corresponding net premium (see formulas (2)�(4), (6)):

ax1:...:xm(δ) =
1

δ

(
1− Ax1:...:xm

)
=

1

δ

(
1− Φ(x1 : . . . : xm, δ)

S(x1, . . . , xm)

)
. (13)

So, in accordance with (3), we obtain the following estimator of the joint-life annuity:

âx1:...:xm(δ) =
1

δ

(
1− Φn(x1 : . . . : xm, δ)

Sn(x1, . . . , xm)

)
=

=
1

δ

1−

n∑
i=1

e−δ
∏m
j=1 Zji

m∏
j=1

I(Zji > 0)

n∑
i=1

m∏
j=1

I (Zji > 0)

 . (14)

Find the principal term of the asymptotic MSE and the bias convergence rate of
estimator (13).

Theorem 6. If the survival function S(x1, . . . , xm) > 0 and S(t1, . . . , tm) is
continuous at a point (x1, . . . , xm), then

1) for the bias b
(
âx1:...:xm(δ)

)
of estimator (13) we have∣∣b (âx1:...:xm(δ)

)∣∣ =
∣∣Eâx1:...:xm(δ)− ax1:...:xm(δ)

∣∣ = O
(
n−1
)

;
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2) the MSE u2
(
âx1:...:xm(δ)

)
is given by the formula

u2(âx1:...:xm(δ)) = E
(
âx1:...:xm(δ)− ax1:...:xm(δ)

)2
=

=
Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

n δ2 S3(x1, . . . , xm)
+O

(
1

n3/2

)
.

Proof. For estimator âx1:...:xm(δ) (13) in the notation of Theorem 1 we have:

s = 2, dn = n, tn = (t1n, t2n) = (Φn(x1, . . . , xm, δ), Sn(x1, . . . , xm)),

H(tn) =
1

δ

(
1− Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)

)
= âx1:...:xm(δ),

t = (t1, t2) = (Φ(x1, . . . , xm, δ), S(x1, . . . , xm)) , H(t) =
1

δ

(
1− t1

t2

)
= ax1:...:xm(δ),

H1(t) =
1

δS(x1, . . . , xm)
, H2(t) = −Φ(x1, . . . , xm, δ)

δS2(x1, . . . , xm)
, ∇H(t) = (H1(t), H2(t)) 6= 0.

The sequence {H(tn)} satis�es the condition 1) of Theorem 1 with C0 =
1

δ
and

γ = 0. Taking into account (13) and the inequalities 0 ≤ Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)
≤ 1 (see

(11)), we have

H(tn) =
1

δ

(
1− Φn(x1, . . . , xm, δ)

Sn(x1, . . . , xm)

)
≤ 1

δ
.

Further, the proof is carried out similarly to the proof of Theorem 4 and therefore
is not given.

Theorem 7. Under the conditions of Theorem 4

√
n[âx1:...:xm(δ)− ax1:...:xm(δ)] =⇒

=⇒ N1

{
0,

Φ(x1, . . . , xm, 2δ)S(x1, . . . , xm)− Φ2(x1, . . . , xm, δ)

δ2S3(x1, . . . , xm)

}
.

Conclusions

The paper deals with the estimation problem of the current values of net premiums
and life annuities. The asymptotic properties of the estimators are proved: unbiased-
ness, consistency and normality. The principal terms of the asymptotic MSEs of the
proposed estimators are found. Statistical modeling within the framework of the de
Moivre model shows that the quality of estimation according to empirical criterion
improves with the growth of the sample size. Note that the improved estimators of
net premiums and life annuities can be obtained by substituting of empirical survival
functions by the smooth empirical survival functions (cf. [2, 3, 9, 11, 15, 17, 24],
[27]�[29], [8, 36, 38, 40, 41, 43, 44]).
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