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caused an intensive metasomatic reworking of the continental 
lithospheric mantle and provided storage of subducted plates 
in the deep mantle that gave rise to the enrichment in Fe and 
deep-seated melting.
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The Ordovician mafic magmatic event, commonly known as 
the Suordakh event, based on U-Pb baddeleite dating was first 
reported 20 years ago and, after that, it age and distribution was 
supported by more recent SIMS study (Khudoley et al., 2013). 
However, tectonic setting of the Ordovician intrusions are still 
under question, and two possible scenarios have been discussed:

1) Suordakh event mafic intrusions are almost synchro-
nous with a granite intrusion in the area between the Siberian 
craton and Okhotsk cratonal terrane: 445.7±1.5 and 444.1±1.5 
Ma (Kuzmin et al., 2003), suggesting that rather than being 
orogenic related, this silicic magmatism may have resulted 
from partial melting of lower crust by magmatic underplating 
associated with the Suordakh event (Khudoley et al., 2013).

2) The assumption of the location of granitoids and mafic 
intrusions in a single LIP is unlikely due to the fact that the 
granite intrusions belong to I-type. Ordovician magmatism was 
most likely associated with the mantle plume, but not with in-
tense rifting. The synchronous existence of passive and active 
margin is possible as well (Khudoley & Prokopiev, 2018).

However, new isotopic and paleomagnetic data on the Or-
dovician magmatism allow to propose another scenario for 
the formation of the Suordakh complex. Kilian et al. (2016) 

introduced U-Pb zircon age of 446.03 ± 0.21 Ma of a rhyolite 
in the Teel Formation on the Zavkhan terrane of Mongolia 
(Kilian et al., 2016). In study area within the Zavkhan terrane 
Ordovician to Silurian transtension resulted in narrow rift 
basins that accommodated volcanic and minor sedimentary 
rocks of the Teel Formation. The Teel Formation is composed 
of bimodal series of rhyolite and basalt, which intercalated 
with siliciclastic sedimentary rocks (Togtokh et al., 1995). 

The paleolatitude of the Zavkhan terrane at ca. 446 Ma 
was 19±5°N, which is consistent with it being associated with 
the Siberia craton in the Late Ordovician (near the present-day 
southern Siberia margin). A similar geologic history potentially 
links the Zavkhan terrane with the southern Siberian margin 
from ca. 510 to 450 Ma, when the southwestern margin of the 
Zavkhan and Lake terranes may have accreted to southern Si-
beria (Bold et al., 2016). At the beginning of Ordovician, both 
southern Siberia and the Zavkhan and Lake terranes hosted rift-
related extensional magmatism (Yarmolyuk et al., 2011; Bold 
et al., 2016), including the volcanics of the Teel Formation. Due 
to this constraint, Kilian et al. (2016) prefers a model whether 
Zavkhan terrane rifted off of a landmass, likely Siberia, during 
or soon after ca. 446 Ma eruption of the Teel Formation basalts 
in extensional basins (Kilian et al., 2016).
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Fig. 1. Agardag - a field of igneous rocks of the Agardag complex. Suordakh - a field of igneous rocks of the Suordakh complex; A, 
B - elements spidergrammes, normalized (A) - to chondrite, (B) - to the primitive mantle (according to Sun & McDonough, 1989); C, 
D - tertiary discrimination diagrams (Rollinson, 1993), OIT – ocean island tholeiite, OIA – ocean island alkalic, MORB - mid-ocean 
ridges basalt, IAT - island-arc tholeiite, CAB - island-arc calc-alkaline basalt.

However, earlier Ordovician isotopic datings for the region 
are also known. The dikes of the Agardag complex, manifested 
to the north-western margin of the Sangilen block (southeast 
of the Tyva-Mongolian microcontinent), also showed Late Or-
dovician age (Izokh et al, 2001). The Sangilen and Zavkhan 
blocks have a common border, divided by the Bulnai fault 
(Bold et al., 2016) and are considered as parts of associated 
continent (Kilian et al., 2016). This allows usage of data from 
the Sangilen block for comparison with the Suordakh complex.

Samples of both complexes (fig. 1) follow OIB distri-
bution on the spidergrams, however, Suordakh is enriched 
with heavy REEs, and Agardag is enriched with light REEs. 
Agardag complex are characterized by enrichment with large-
ion lithophilic elements (Cs, Rb, Ba) and depletion of U and 
Th relative to Nb and Ta, whose contents on the distribution 
spectrum form a positive anomaly. Two large negative anom-
alies are fixed on K and Sr for Siberian magmatic rocks. In 
the discriminatory diagrams, both complexes occupied fields 
of intra-plate basalts, but Agardag samples fall into the zone 
of calc-alkaline series, while Suordakh rocks turned up in tho-
leiitic series fields (Shelepaev et al., 2018).
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The Tectonomagmatic processes at the turn of Devonian – 
Carboniferous periods (D3 – C1) are large-scale and relatively 
short-term geological processes that took place synchronous-
ly on different paleocontinents and in paleoseas. They caused 
a sharp increase in the number of ore and oil and gas forma-
tions due to enrichment of the Earth’s crust by organic mat-

ter (OM) and chalcophyllic, noble and rare-earth elements. 
This predetermined the formation of evenaged large deposits, 
ore and oil and gas provinces and belts, defining endogenous 
mineralization in orogenic areas and exogenic mineralization 
- on ancient platforms. They were caused by the Early-Herc-
ynian phase of tectogenesis, the nature and extent of crustal 

Figure 1.  Nicaragua, volcano awakens.




