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Heterogeneity of material structure 
determines the stationary surface 
topography and friction
Qiang Li   1, Lars Voll1, Jasminka Starcevic1,2 & Valentin L. Popov   1,2

The character of surface roughness and the force of friction in the stationary state after a sufficiently 
long run-in process are of key importance for numerous applications, e.g. for friction between road 
and tire. In the present paper, we study theoretically and experimentally the asymptotic worn state 
of a bi-phasic material that is arbitrarily heterogeneous in the contact plane, but homogeneous in the 
direction of the surface normal. Under the assumption of Archard’s wear law in its local formulation, 
the asymptotic shape is found in the closed integral form. Given the surface profile, the coefficient 
of friction can be estimated, since the coefficient of friction is known to be strongly correlated with 
the mean square root value of the surface slope. The limiting surface profiles and the corresponding 
coefficient of friction are determined as functions of size, relative concentration and wear ratio of the 
phases. The results of numerical calculations are compared to and validated by experiments carried 
out on simplified model systems. The main conclusion is that the rms value of the surface slope is not 
influenced by the characteristic linear size of inclusions and depends solely on the relative concentration 
of phases, as well as the ratio of their wear coefficients.

Friction and wear occur everywhere in our daily life. One prominent and economically very important example 
is the contact of a vehicle’s tire with the road. Many important functional properties are determined by the exact 
nature of this contact, e.g. skid resistance, which is closely related to the driving safety1,2. In the last few decades, a 
lot of experimental and numerical modeling efforts have been undertaken to study the tire-pavement interaction, 
which led to the development of new measurement devices3, improved characterization of surface texture4, devel-
opment of mixed aggregates and asphalt binder5, and assessment of environmental factors6. A number of tests 
have shown that the properties of the aggregate, including hardness and wear resistance, as well as the mixture 
of coarse and fine aggregates have a strong influence on the frictional properties of the pavement surface7–9. The 
tire-road contact is only one example and a typical representative of a broad class of tribological contacts where a 
relatively stiff rough surface (which, however, is rarely replaced and able to be worn away over time) is in sliding 
contact with an elastomer. The viscoelastic contact partner also undergoes wear, but this is of lesser importance, 
either because it is replaced more often or because its surface profile has lesser influence on the frictional prop-
erties of the contact (both of which is the case with tires). Due to wear, the surface topography of the stiff contact 
partner will evolve over time, which, even more importantly, may lead to changes in the coefficient of friction. 
The coefficient of friction between a rough rigid substrate and an elastomer is known to depend on a number of 
system and loading parameters including sliding velocity, temperature, normal load, etc10. However, under con-
ditions relevant for most practical applications (corresponding to the region of the long plateau of the coefficient 
of friction as a function of velocity) it can be loosely estimated as the root mean square (RMS) of the surface 
gradient11,12. In the present paper, we will therefore consider the root mean square value of the surface gradient 
(surface slope) as a parameter roughly characterizing friction coefficient.

The system we study in the present paper is schematically shown in Fig. 1. It represents a cylindrical punch 
with multiphasic composition sliding horizontally with velocity v on an elastic half space in the presence of a 
normal load FN. Similar problems have been studied in the past using the finite element method13,14, the discrete 
element method15 and molecular dynamics16. However, if we are only interested in the limiting shape, solution can 
be obtained in closed integral form, which enables extensive parameter studies.
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Results
We consider a cylindrical punch composed of a multiphasic material, whose phases i have the wear coefficients ki 
(defined by eq. (2)) and the cross-sectional areas Ai. Let us denote the initial shape of the indenter face as f0(x, y). 
To achieve a qualitative understanding of the wear process, we make the following simplifying assumptions: (a) 
only the indenter is subject to wear, (b) the elastic properties of all phases are equal, while their wear coefficients 
may have arbitrary ratios, (c) wear is governed by Archard’s law in its local form, which means that the depth 
change df at the coordinate (x, y) due to wear is proportional to the local pressure p(x, y) and the sliding distance 
ds, and is inversely proportional to the material hardness σ0

σ
= .f x y k p x y sd ( , ) ( , )d

(1)
wear

0

kwear is a constant that depends on the material couple and is called the wear coefficient. Introducing the notation 
k = kwear/σ0, we can rewrite (1) in the form df (x, y) = kp (x, y) ds. For a multiphasic indenter, this equation is valid 
for each particular phase: dfi (x, y) = kipi (x, y) ds. Dividing by the time increment dt, the linear wear rate (wear 
depth per unit time) is obtained:

= .
f x y

t
k p x y v

d ( , )
d

( , ) (2)
i

i i

The steady state is achieved when the linear wear rate at all points of the indenter is the same. This means that 
the pressure inside the area of each particular phase reaches a constant value, which we just continue to denote 
pi = pi (x, y) (despite the fact that the pressure no longer depends on the coordinates inside one phase; it is still a 
function of coordinates in the sample as a whole), while pressures in different phases fulfil the condition:
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The constant C can be determined from the equation for the total normal force
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The pressures in particular phases are now determined with (4) in explicit form

Figure 1.  A punch with heterogeneous phases sliding on an elastic half-space.
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With this pressure distribution, the normal deformation of the elastic half space can be calculated as11

π
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where E* = E/(1 − ν2) is the effective modulus of elasticity of the elastic half-space, E is its Young’s modulus, ν is its 
Poisson ratio, and = − ′ + − ′r x x y y( ) ( )2 2  is the in-plane distance between the points (x, y) and (x′, y′). As 
we consider the indenter to be much stiffer than the counter-body, the deformation of the latter is equal to the 
worn shape of the indenter. Thus, the limiting worn profile is given by
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This equation provides the final worn profile in explicit integral form, so that both the profile and all parame-
ters depending on the profile (as e.g. the rms value of the slope) can be calculated very effectively.

Limiting worn profile of a homogeneous cylinder.  Let us start consider some specific examples. We 
begin with the simplest case of a monophasic cylinder with radius a and wear coefficient k. In the final state, the 
pressure over the whole contact will be constant and equal to π=p F a/( )N

2. The integral (8) has, in this case, the 
known analytical solution11,17
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Here r is the polar coordinate and E(k) denotes the complete elliptical integral of the second kind
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value of the surface gradient of this profile is equal to

π π
∇ =











= . ≈∞
∞∬ ⁎ ⁎f

A
f
r

A p
E

p
E

1 d
d

d 1 0109 4 4

(12)A

0
2

Note that neither the limiting shape nor the rms slope depend on the wear coefficient, and are completely 
determined by the average pressure in the contact and the effective elastic modulus.

Limiting worn profile of a biphasic cylinder.  In the following, we consider bi-phasic indenters. We con-
tinue to consider a cylindrical sample with radius a, which, however, is now composed of two different materials: 

Figure 2.  Limiting worn profile of a homogeneous cylinder.
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phase 1 having the wear coefficient k1 and area A1, and phase 2 with k2 and A2 (an example of a typical phase 
distribution considered in this paper is shown in Fig. 3a; the phases are marked with black and grey colors). Let 
us introduce the “fill factors” of phases
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With this notation, the final surface topography according to (9) is
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where p  is the average pressure in contact. Taking into account (12), one can introduce a normalized shape
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which does not depend on the normal force and elastic properties of the contacting bodies and is completely 
determined by the geometry of the phase distribution and the ratio of wear coefficients.

The generation of phase distributions and numerical evaluation of the integrals (15) is described in the 
“Methods” section. An example phase distribution and the resulting limiting worn profile are shown in Fig. 3a,b 
correspondingly. The main target parameter of our study is the rms value of the surface slope, ∇f. Let us start by 
elucidating the role of scaling in the formation of the limiting value of ∇f. For this sake, we generated four sam-
ples with the same statistical properties of phase distribution but different characteristic scale, as shown in 
Fig. 4(a) for the case of ρ1 = ρ2 = 0.5. Similar structures have been produced for fill factors ρ2 varying linearly from 

Figure 3.  (a) An example of a biphasic material with wear coefficients of phases k1, k2 and areas A1 (gray), A2 
(black); (b) corresponding surface topography in the stationary state for k2/k1 = 10.

Figure 4.  (a) Four samples of biphasic materials with the same ρ2 = 0.5 but different size of ‘cells’; (b) 
dependence of the surface gradient on the density ρ2 and the ratio of wear coefficients k2/k1.
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0.05 to 0.95 and for a number of ratios of wear coefficients, k2/k1, varying logarithmically from 10−3 to 103. The 
value of the rms slope for each set of parameters was averaged over 10 random realizations of the phase distribu-
tion. The results of these simulations are shown in Fig. 4b, where the normalized rms slope ∇ ∇ ∞f f/ 0  is plotted. 
Figure 5a, shows detailed dependencies of the rms slope on the fill factor ρ2 for five different values of the ratio of 
wear coefficients and for all four samples with different coarseness of phase distribution (which are marked with 
different symbols). One can see that the points corresponding to the same values of wear ratio but different 
coarseness collapse onto a common curve, thus clearly showing that the scaling has no influence on the rms slope. 
Therefore, in Fig. 5b we only show the results for the sample 2 as a representative of structures with arbitrarily 
coarse grain.

Thus, the asymptotic rms slope is a function of only two parameters: the fill factor (e.g. ρ2) and the ratio of 
wear coefficients k2/k1. It is clear that this dependency remains invariant by transformation ρ1 →ρ2, k1/k2 → k2/k1, 
which just changes notation without changing the configuration of the contact: ρ ρ∇ = ∇ −f k k f k k( , / ) (1 , / )2 2 1 2 1 2 . 
From the overview in Fig. 4(b), one can see that the largest values of the rms surface gradient (and thus coefficient 
of friction) correspond to the case when both ρ2 and k2/k1 are large or when both are small. In other words, large 
final rms slopes correspond to structures with a small fill factor of the phase with the smaller wear coefficient. In 
this case, the low-wear phase represents a dilute solution of particles in an easily worn matrix. In this extreme case 
the resulting surface topography resembles a set of “pillars”. It is intuitively clear that such a brush-like structure 
will have a large coefficient of friction. In the other extreme case of large concentration of the low-wear phase, the 
worn surface will consist almost entirely of this phase with only small number of shallow “dimples”, where the 
softer inclusions have been worn away. Two surface topographies with the same fill factor ρ3 = 0.3 but different 
ratios of wear coefficients (k2/k1 < 1 and k2/k1 > 1 correspondingly) are shown in the insert of Fig. 5b.

Let us take a closer look at the extreme “pillars” case, assuming that
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In this case, the profile (14) takes the form
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where we used relation ρ≈p p2 2 which, under the above assumptions, follows from (7). Assuming for simplicity 
that the hard inclusions have a circular cross-section, we can find the rms slope by immediate use of eq. (12)
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In this limiting case, the rms slope does not depend any more on the ratio of wear coefficients and is inversely 
proportional to the fill factor of the hard phase. This asymptote can be easily seen in Fig. 5(a) for k2/k1 = 10−3. 
Note that the rms gradient depends only on the overall fill factor, but not on the radius of the inclusions, which is 
consistent with the lack of scale-dependence found above in the study of random configurations. We thus come 
to the conclusion that the best way to maintain a high coefficient of friction in the stationary worn state is to use 
a matrix with a small fraction of hard (low-wear) inclusions. As an example, consider the problem mentioned in 
the introduction – wear and friction in the tire-road contact. Assuming that the deformation of tire in the contact 
area is of the order of magnitude of 8%, and thus ≈ .⁎p E/ 0 08, a stationary rms slope of the order of unity will be 

Figure 5.  Detailed dependence of the RMS of surface gradient (a) on the concentration of phase 2 for varying 
ratios of the wear coefficient; (b) on the ratio of wear coefficients for varying phase concentration.
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achieved with ρ2 ≈ 0.1. Thus, for producing a stationary coefficient of friction on the order of unity, the area fill 
factor of hard inclusions should be of the order of 10%.

Experimental results.  To experimentally validate the results of our numerical simulations, we investi-
gated the worn shape of homogeneous and heterogeneous cylinders. We did not aim to carry out comprehensive 
parameter studies as in the foregoing theoretical analysis, and confined ourselves to three model systems, which 
we consider to be representative generic cases: (i) a homogeneous sample, (ii) high-wear matrix with low-wear 
inclusions, and (iii) low-wear matrix with high-wear inclusions.

We first studied wear of a homogeneous cylinder made of epoxy with a radius r = 4 mm. The cylinder was 
pressed against a rubber band with the normal load FN = 10 N and pulled back and forth with a constant velocity 
v = 0.01 m/s. The worn surface, measured with a scanning laser interference microscope (see Section “Methods”), 
is shown in Fig. 6a, and the profiles of four cross sections, marked in Fig. 6(a) with numbers 1 to 4, are shown in 
Fig. 6b. For comparison, the theoretical solution given by equation (10) is shown in the same plot (green line). It is 
seen that the theoretical curve is quite close to the experimentally obtained profiles. The small asymmetry is likely 
the result of a slightly inclined sample.

In the next step we prepared bi-phasic brass-steel cylinders. In Figs 7 and 8, one can see the final worn pro-
files of bi-phasic cylinders consisting of five rods with radius r = 2.5 mm embedded in a cylinder with radius 
r = 10 mm: Fig. 7 shows the results for brass rods in a steel matrix and Fig. 8, correspondingly, steel rods in a 
brass matrix. In Fig. 7a, the steel rods are less worn and produce visible protrusions. In the case of brass in steel, 
the rods are worn more intensively and clearly result in the formation of dimples (Fig. 8a). The numerical results 
with parameters FN = 35 N and ksteel/kbrass = 1.7 for both cases are shown in the corresponding subplots. The elastic 
modulus of the elastic counterpart was assumed to be E* = 1.3 MPa in all cases, as determined from experiments 
with homogeneous cylinders. To allow for a more detailed comparison of the effects of heterogeneity on the worn 

Figure 6.  (a) Worn surface of an epoxy cylinder after sliding on an elastomer. (b) Profile of cross sections in 
comparison with theoretical solution (calculated with E* = 1.3 MPa).

Figure 7.  (a) Worn surface of biphasic cylinder (steel rods in brass matrix) due to wear in contact with an 
elastomer. (b) Differential profile of cross sections in comparison with numerical results.
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profile, in Figs 7b and 8b differential profiles of four cross sections are shown. Differential profiles were determined 
as the difference between the profile of some cross section and the “averaged profile” obtained by averaging the 
surface height over ring segments at any given radius r. In this way, the macroscopic curvature of the sample is 
subtracted and the resulting profile shows more clearly the effect of the phase heterogeneity (for a homogeneous 
material the differential profile would be approximately constant.) It can be observed that the experimental find-
ings match theoretical predictions reasonably well in both cases of steel rods in brass and brass rods in steel. A 
possible cause for the observed small discrepancies between experimental findings and theoretical results could 
be the use of the glued abrasive paper, while in simulation we assumed the counter body to be a homogeneous 
elastomer.

Discussion
Under the assumption of Archard’s wear law, we proposed a method for calculating the surface topography of 
a multiphasic punch in the stationary worn state. The limiting shape of the body after a long run-in process has 
been obtained in explicit integral form. The evaluation of the integrals was carried out using an in-house BEM 
code described in18. The obtained solution is applicable to systems with an arbitrary number of different phases 
and arbitrary geometrical in-plane configuration of the phases. A detailed numerical study was carried out only 
for the case of bi-phasic indenters.

Using the obtained limiting profiles, the rms slope has been determined as a topographic property most 
directly related to the coefficient of friction. Both simulations and analytical estimations show that the limiting 
shape does not depend on the coarseness of the phase structure. Thus, compositions that only differ in coarseness 
of the grain will have the same limiting rms slope. The complete set of parameters determining the final state and 
the limiting rms slope was determined to be: average (apparent) pressure in the contact area, fill factors (area frac-
tions) of the phases, and the ratio of the wear coefficients. The largest limiting rms slope is obtained in the case of 
a small fraction of hard (low-wear) fibers, which leads in the final state to a “pillar-like” structure. In the case of a 
composite with a small concentration of very hard inclusions, the final rms slope is roughly inversely proportional 
to the area fill factor of the hard phase. The obtained result provides a rule for the design of composite structures 
with specified frictional properties after run-in.

For validation of the underlying contact mechanics, we carried out experiments on homogeneous and het-
erogeneous samples and compared the results with theoretical predictions. The experimental results show very 
good qualitative and acceptable quantitative agreement with theoretical predictions. They confirm that the use of 
Archard’s law of wear in its local formulation is a sensible assumption, allowing correct understanding of wear of 
composite structures.

It should be stressed that the above results are not universal, and rely on a number of assumptions: (1) The 
wearable composite contact partner (cylindrical punch in Fig. 1) was assumed to be heterogeneous in the contact 
plane but homogeneous in the z-direction (depth), effectively consisting of a bundle of fibers or rods oriented 
normal to the surface; (2) the normal load is kept constant during the wear process; (3) the sliding velocity is 
assumed to be constant over the entire contact area. This means that that gross sliding is assumed. However, the 
actual velocity is not relevant and may even vary in time; (4) the counter-body is considered to be elastic and 
either non-wearable or regularly replaced; (5) finally we assume the validity of Archard’s wear law in a local form. 
However, the results will be similar for any local wear law that is not necessarily linear in normal load.

The assumption (4) may look strange at first glance, but it was chosen with the motivation of pavement wear 
due to contact with tires described in the introduction. With regard to elasticity, the road can be considered rigid, 
while tires have significant elasticity. With regard to wear, the situation is the opposite: We assume that only the 
road is worn, and tires not. With the described conceptual background, it is not important, whether the tires 
wear or not, as they are changed out regularly, while the road remains the same over long intervals of time. In the 

Figure 8.  (a) Worn surface of biphasic cylinder (brass rods in steel matrix) due to wear in contact with an 
elastomer. (b) Differential profile of cross sections in comparison with numerical results.
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experiments, we sought to give our model system the same conceptual properties: a rigid and wearable sample 
and soft and replaceable counter body.

In real systems one or many of these assumptions may be violated. Thus, the assumption (1) (cylindrical 
geometry) is of course very artificial. In real composites such as asphalt pavement the composite components 
have a general three-dimensional geometry. For such geometry, a stationary state will never be reached, since 
some inclusions are worn down completely, while others become exposed. However, if the ratio of the wear coef-
ficients is not too large, we expect that the worn state will be very similar to that described in the present paper 
at any given time, although the exact statistical realization of the topography will change slowly with progressive 
wear. However, if the ratio of wear coefficients is very large, then the system with three dimensional inclusions 
will be far from the stationary state described here. For such systems, additional analysis, probably using different 
numerical approaches, would be needed. With respect to the wear law, the results are more robust. As a matter of 
fact, the only required assumption used in the paper is that the wear rate is local and depends only on pressure. 
The pressure-dependence can be nonlinear, but if the wear law is non-local (e.g. we consider the finite size of wear 
particles), then the results will be violated and additional analysis will again be needed. Since the wear law tends 
to be strongly system-dependent, one cannot make a more general statement of the range of validity of the pre-
sented results. The present study has thus to be considered as a mathematical model under some strict conditions, 
which have to be checked for particular applications.

Methods
Boundary Element Method.  The final surface topography (9) was calculated using the Boundary Element 
Method (BEM), with the given pressure distribution (7). This Method is based on the evaluation of integrals of 
the type of (8) using a fast convolution based on the Fast Fourier Transform18–20. In the present contact problem, 
the evaluation of integrals (14) was implemented as a module for our in-house BEM code.

Generation of surface patterns.  The biphasic surface patterns have been generated using the method of 
Voronoi diagrams, which has many practical applications in various scientific fields, such as geometry, biology, 
meteorology, architecture, etc.21. In this algorithm, seed points are distributed randomly in a plane, after which 
cells are formed around each seed by assigning every point in the plane to its closest seed point. In the four sam-
ples of Fig. 4a, cells with a total number of 202, 402, 802 and 1602 points have been generated. Afterwards, seeds 
were randomly labelled as phase 1 or phase according to the defined fill factor. The “average diameter” of the cells 
in the four samples is approximately 1, 1/2, 1/4 and 1/8 relative to each other. The produced structures can be 
considered self-similar under magnification.

Experimental investigation.  The experiment was carried out with the experimental set-up shown in 
Fig. 9. The rubber block with a size of 380 × 40 × 40 mm was glued to a linear stage that moved horizontally 
with controlled velocity. The material of the band is polyurethane with elastic modulus of about 1.3 MPa. The 
indenter was fixed on another linear stage that could move vertically. The normal load was measured by a force 
sensor placed between the actuator and the sample. To increase and precisely control the wear rate, abrasive fine 
sandpaper was glued to the rubber band.

The indenter was pressed into the rubber band with a fixed load; subsequently, the linear stage moved hori-
zontally with a constant velocity 0.01 m/s. After 50 times of back and forth linear movement, the sandpaper was 
replaced to provide constant wear conditions. The orientation of the indenter remained unchanged during the 
whole experiment.

Measurement of surface topography.  The topography of the worn samples was measured with the con-
focal 3D laser scanning microscope VKX150/160 of Keyence. This microscope uses a laser light receiving element 
with 16 bit PMT, a color CCD image sensor with a recording resolution of 3072 × 2304 pixels and confocal optics 
with pinhole. A single recorded image has a size of 168 × 126 μm with a height resolution of 5 nm. To measure 

Figure 9.  Experimental set-up for wear contact between a cylinder and a rubber block covered by a sandpaper.
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the entire sample 340 images were taken and merged them to a single image 20 × 20 mm in size with the help of 
the “Auto Stage for intelligent xy control-program”. Photos of the two worn samples that were measured in Figs 7 
and 8 are shown in Fig. 9.
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