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Modern X-ray diffraction techniques are now allowing researchers to collect

long-desired experimental verification data sets that are in situ, three-

dimensional, on the same length scales as critical microstructures, and using

bulk samples. These techniques need to be adapted for advanced material

systems that undergo combinations of phase transformation, twinning and

plasticity. One particular challenge addressed in this article is direct analysis of

martensite phases in far-field high-energy diffraction microscopy experiments.

Specifically, an algorithmic forward model approach is presented to analyze

phase transformation and twinning data sets of shape memory alloys. In the

present implementation of the algorithm, the crystallographic theory of

martensite (CTM) is used to predict possible martensite microstructures (i.e.

martensite orientations, twin mode, habit plane, twin plane and twin phase

fractions) that could form from the parent austenite structure. This approach is

successfully demonstrated on three single- and near-single-crystal NiTi samples

where the fundamental assumptions of the CTM are not upheld. That is, the

samples have elastically strained lattices, inclusions, precipitates, subgrains,

R-phase transformation and/or are not an infinite plate. The results indicate that

the CTM still provides structural solutions that match the experiments.

However, the widely accepted maximum work criterion for predicting which

solution of the CTM should be preferred by the material does not work in these

cases. Hence, a more accurate model that can simulate these additional

structural complexities can be used within the algorithm in the future to improve

its performance for non-ideal materials.

1. Introduction

The desirable behaviors of many advanced alloys can be

attributed to complex three-dimensional micromechanics

including combinations of twinning, phase transformation and

plasticity, all of which interact due to interface compatibility

constraints. For example, the well known functional behaviors

of shape memory alloys (SMAs) – superelasticity, shape

memory effect and actuation – are enabled by a reversible,

diffusionless solid-to-solid phase transformation from a high-

temperature austenite phase to a low-temperature martensite

phase (Duerig et al., 1990; Otsuka & Wayman, 1998). These

properties are further influenced by strong interactions with

microstructure heterogeneities such as phase interfaces,

stacking faults and grain boundaries, as well as precipitates,

inclusions and plasticity resulting from processing (Otsuka &

Ren, 2005). Pristine materials with microstructures composed

solely of perfection-compatible interfaces are the exception

(Chen et al., 2013; Song et al., 2013; Ni et al., 2016). Improved

understanding of these coupled, multidimensional micro-
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mechanics is required for the continuing development of

advanced alloys.

In the case of SMAs, fundamental micromechanical theory

and modeling have been an active area of research for more

than 70 years (Wechsler et al., 1953; Bowles & Mackenzie,

1954; Bilby & Crocker, 1965). The crystallographic theory of

martensite (CTM) (Wechsler et al., 1953; Bilby & Crocker,

1965; Bowles & Mackenzie, 1954; Ball & James, 1987;

Bhattacharya, 2003; Abeyaratne & Knowles, 1991; Hane &

Shield, 1998) provides the foundation for our current under-

standing of SMA micromechanics (see Appendix A1 for SMA

terminology definitions). However, this theory has funda-

mental assumptions: it ignores defects, precipitates, plasticity

and strained lattices, and it assumes an infinite sample.

Because of the challenge of providing direct experimental

verification, the line between where the CTM assumptions

apply and where they do not is still unclear, as is how to

modify the theory for the cases where they do not. The lack of

such experimental verification data can be attributed to

several factors. First, the length scales of microstructure

interfaces in an SMA routinely span 10 nm to 1 mm, making it

difficult to use a single measurement technique to simulta-

neously observe all of the critical features during micro-

structure evolution (Li, 2002; Zhang et al., 2000; Liu et al.,

1999, 2000; Inamura et al., 2012; Nishida et al., 1988, 2012;

Coughlin et al., 2012; Norfleet et al., 2009). Second, most

experimental techniques for observing microstructure evolu-

tion across the relevant length scales are limited to surface

observations (Gall et al., 2002; Kimiecik et al., 2013, 2016;

Laplanche et al., 2017; Kim et al., 2015; Shaw, 2000; Paul et al.,

2017) and typically cannot measure the out-of-plane defor-

mations that result from these three-dimensional deformation

mechanisms. Third, the three-dimensional measurement

techniques that do exist are either destructive and prohibit in

situ measurements (Hornbuckle et al., 2015; Henrie et al., 2005;

Liu et al., 2015) or are averaged over millions to billions of

grains (Stebner et al., 2013; Dunand et al., 1996; Khalil-Allafi et

al., 2004; Šittner et al., 2004; Šittner & Novák, 2004; Buhrer et

al., 1983).

With the introduction of high-brilliance synchrotron X-rays,

a number of novel X-ray-based imaging and diffraction tech-

niques have emerged that promise the ability to acquire the

desired data sets. Collectively, these techniques can be used

nondestructively to study in situ microstructure evolutions in

three dimensions and across several length scales. Techniques

for studying phenomena between 1 mm and 1 mm in length are

well established, and more recent

techniques currently in development

now extend capabilities down to

100 nm (Simons et al., 2015, 2016), with

even higher magnifications on the

horizon. In this work, we focus on one

of the diffraction-based classes of these

new techniques, which has been called

three-dimensional X-ray diffraction

(3DXRD), high-energy X-ray diffrac-

tion (HEXD) and high-energy X-ray

diffraction microscopy (HEDM)

(Poulsen et al., 2001; Poulsen, 2004,

2012; Lauridsen et al., 2001; Lienert et

al., 2011). More specifically, we use the

far-field HEDM (ff-HEDM) tech-

nique, in which the X-ray detector is

placed far away from the sample

(�1 m) relative to traditional diffrac-

tion configurations (see Appendix A2

for HEDM terminology and Appendix

B for experimental setup details). This

technique can be used to measure the

grain-specific lattice (elastic) strain

tensors, crystallographic orientations,

centroid locations and volumes within

bulk specimens (�1 mm3) all in three

dimensions (Pagan & Miller, 2014;

Miller & Dawson, 2014; Schuren et al.,

2015). Using this information, several

long-standing questions can be

answered, such as (i) what are the

evolution pathways of different, often

interacting deformation mechanisms?
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Figure 1
Summed ff-HEDM patterns for (a) an austenitic polycrystalline NiTi sample, (b) a partially
transformed polycrystalline NiTi sample, (c) an austenitic single-crystal NiTi sample and (d) a
partially transformed single-crystal NiTi sample. All patterns are summed over the full 360� of
sample rotation.



(ii) how do existing micromechanical theories fare at

predicting them? and (iii) what improvements can we make in

how we use these micromechanical theories?

Researchers are already gaining novel insights into SMAs

from ff-HEDM experiments. Using three-dimensional micro-

metre-scale studies, researchers were able to investigate the

localized initiation and propagation of the transformation

front in NiTi wires (Sedmák et al., 2016), the pronounced

rotation of austenite grains as a result of cycling through

transformation (Berveiller et al., 2011), and the heterogeneous

stress response of austenite grains as a result of granular

interaction and proximity to the surface (Paranjape et al.,

2017). To date, however, most insights gained from ff-HEDM

data have been confined to direct studies of only the austenite

phase.

The martensite phase presents unique challenges in

analyzing ff-HEDM data, which relies upon the ability to

uniquely separate and identify Bragg reflections from indivi-

dual crystals in the sample. (i) The small domain sizes of the

martensite phase can lead to size-effect broadening and

overlapping Bragg reflections. (ii) The low symmetry of the

martensite crystal structure leads to many low-structure-factor

(hkl) rings (see Appendix A2 for a definition) that may start to

overlap with each other and/or with the higher-symmetry

austenite rings. (iii) Plasticity and/or elastic strains typically

coincide with transformation events, also causing broadening

(e.g. Paranjape et al., 2018; Pagan & Miller, 2014). These

signatures convolute when the effects occur simultaneously,

thereby making it difficult to identify individual reflections or

even separate (hkl) rings. Fig. 1(a) shows the summed ff-

HEDM pattern from an austenitic NiTi polycrystal that is

ideal for ff-HEDM analysis with distinct, high-intensity

reflections that are well separated (see inset). Fig. 1(b) shows

the summed ff-HEDM pattern of the same sample after it has

partially transformed, resulting in a powder-like pattern that is

unideal for ff-HEDM. The complication of the diffraction

pattern for ff-HEDM analysis is present even for initially

austenite single-crystal samples, as shown in Figs. 1(c), 1(d)

where distinct, high-intensity austenite reflections (Fig. 1c)

partially transform to diffuse, overlapping, low-intensity

martensite reflections situated very close to austenite reflec-

tions and to other martensite reflections (Fig. 1d).

After documenting the materials and measurements used in

this work in xx2.1–2.2, a forward model algorithm to analyze

the microstructures (i.e. martensite orientations, twin mode,

habit plane, twin plane and twin phase fractions) of SMA

martensite phases in ff-HEDM data sets is presented (x2.3 and

Appendix C1), enabling the quantification of stress-induced

transformation modes and other related micromechanics (see

Appendix A1 for SMA terminology). This approach utilizes

the fact that in most ff-HEDM analyses of SMAs, although the

martensite phase cannot be directly quantified on a crystal-by-

crystal basis, the austenite phase can. If the initial austenite

microstructure is known, then all of the possible martensite

microstructures can be predicted using known relationships

given by the CTM. The diffraction patterns of the possible

martensite microstructures are then simulated and compared

with the experimentally measured diffraction patterns [i.e.

forward modeled (Wong et al., 2013; Pagan & Miller, 2014)],

and the observed martensite microstructures are identified by

the closest statistical comparison between the simulated and

experimental patterns. The comparisons are performed on

unit pole figures, which isolate the orientation information

within HEDM data; these pole figures can also be used to

determine orientation distribution functions within crystals,

such as in the work of Barton & Bernier (2012), where

researchers used a pole figure to study the � ! " phase

transition in iron. We validate this approach in x3 by applying

it to three single- and near-single-crystal NiTi ff-HEDM data

sets of martensite microstructures.

To apply this approach to future polycrystalline data sets

like that of Fig. 1(b), a method for ranking the likelihood

of each martensite microstructure is desired to accelerate

the algorithm and to improve the statistical probability of

finding the right answer. For example, a NiTi polycrystal

with n illuminated grains will have 192n possible stress-

induced microstructures assuming one twin system per grain.

This would likely result in an undetermined system when

hundreds of grains are considered simultaneously, especially

considering that several twin systems may form within each

grain, further increasing the statistical ambiguity if all possible

solutions are considered. Hence, in x3.5, we also present an

investigation of using a widely accepted analytic model for this

purpose: the maximum transformation work criterion (Bhat-

tacharya, 2003; Zhang et al., 2000; Chu, 1993; Shield, 1995)

(see Appendix A and Appendix C2.4). This model states that

the transformation system that produces the most mechanical

work is the most likely to form, providing a simple and

straightforward ranking method for the probability of

martensite microstructures to form during phase transforma-

tion, just as Schmid factor calculations provide a simple,

analytic model for predicting the probabilities of slip systems

to activate during plastic deformation. This aspect of the

article builds from the work of previous researchers (Lind et

al., 2014; Abdolvand et al., 2015) who used HEDM results to

test the Schmid ranking of twinning systems in zirconium

polycrystals.

The discussion in x4.1 focuses on what worked well in these

initial applications of the algorithm; namely, martensite

microstructure solutions provided by the CTM were found to

be in good agreement with experiments. x4.2 documents why,

in spite of the successes in using the CTM to identify the

martensite microstructure solutions, the use of the maximum

transformation work criterion to rank the likelihoods of those

solutions was unsuccessful. xx4.3–4.5 then evaluate possible

strategies for improving the statistical rankings of the CTM

solutions, including accounting for the elastic strain of the

austenite grains just before transformation. In addition to

summarizing the key points, the conclusion in x5 also suggests

other approaches for improvement for more complex data,

such as using full-field micromechanical models within the

algorithm.

Finally, it is recommended that readers unfamiliar with

SMAs first review the SMA terminology we use in this work
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(Appendix A1) and those unfamiliar with ff-HEDM first

review the HEDM terminology (Appendix A2), as well as the

experimental approach overview (Appendix B). Appendix C

documents the details of the calculations and is recommended

for those readers who want to use and/or modify the algo-

rithm.

2. Materials and methods

2.1. Sample preparation and initial microstructures

The three samples were electrical-discharge-machined

(EDM) from a 40 mm-diameter near-single-crystal Ni50.6Ti49.4

ingot. The ingot was grown by an advanced Bridgman tech-

nique consisting of remelting a cast ingot into a graphite

crucible under an inert helium gas atmosphere. The material

was found to have TiO2/TiC inclusions and Ni4Ti3 precipitates

– the microstructure is documented in greater detail by

Paranjape et al. (2018). Aside from these secondary phases,

the samples are B2 cubic austenite at room temperature (see

0 MPa load diffraction patterns in Fig. 2).

The specimen geometry, shown in Fig. 3, consists of a 1 mm2

gauge cross section with 1 mm gauge length. At the energies

typically used for ff-HEDM experiments (i.e. 50–80 keV),

X-rays can transmit through 1–2 mm of most metals, including

NiTi (the maximum path length for X-rays through a 1 mm

square cross section is 1.41 mm). This specimen geometry was

modified from that used by Turner et al. (2016) to reduce the

gauge section length to 1 mm and add compression shoulders.

These modifications were made to ensure that the phase

transformation occurred within the diffracted volume, which is

1 mm tall in this work, and to allow for tension–compression

reversed loading (though we do not use the latter feature in

this work). Samples 1 and 2 were cut parallel to the ingot axis,

and sample 3 was cut with its axis 30� from the ingot axis. The
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Figure 2
Integrated intensity versus d-spacing line profiles for (a) sample 1, (b) sample 2 and (c) sample 3 at incremental load steps in the primarily elastic loading
regime.

Figure 3
Square gauge specimen geometry.

Figure 4
Initial austenite (B2) orientations for all three samples shown in an equal
area projection inverse pole figure (IPF) with respect to the loading axis.



orientations for all three samples are shown in Fig. 4. The B2

orientations were measured using the MIDAS ff-HEDM

analysis suite (Sharma et al., 2016). Note that sample 2 was

found to have three austenite subgrains in the diffracted

volume of the gauge section. The plasticity Schmid factors, m,

associated with these orientations are provided in Table 1.

2.2. ff-HEDM measurements and loading

The loading and in situ ff-HEDM measurements were

performed at the F2 beamline at the Cornell High Energy

Synchrotron Source (CHESS). The loading was performed on

the RAMS2 load frame (Shade et al., 2015). The samples were

quasi-statically loaded in tension in displacement control to

induce transformation while periodically fixing the crosshead

in displacement to take ff-HEDM measurements. As discussed

in Appendix B, the ff-HEDM technique requires that the

sample be rotated while being held in the load frame. In our

particular experiment, the load train of the RAMS2 load

frame was on air bearings and could rotate continuously

(rather than the whole load frame being on a rotation stage).

At user-defined points in the loading, the loading was paused

and the specimen was rotated while maintaining the load using

a servomotor, gear reducer, preloaded linear ball spline and

two timing belts [see Shade et al. (2015), Schuren et al. (2015)

for more details]. When the loading was paused for ff-HEDM

measurements, the detector data were binned at 0.1� incre-

ments for a full 360� rotation, resulting in 3600 recorded

detector images. A dark image for background subtraction

was collected at each load step.

The X-ray beam was collimated to 1 mm tall � 2 mm wide

for all measurements. The detector was a GE41RT amorphous

silicon area detector with 2048 � 2048 pixels and 200 �

200 mm pixel size. The detector calibration parameters (i.e.

sample-to-detector distance, detector center, detector tilt and

detector distortion) were obtained from a CeO2 powder

sample using MIDAS. The monochromatic X-ray beam

energy and sample-to-detector distance were 55.618 keV and

1012 mm for samples 1 and 3, and 61.332 keV and 797 mm for

sample 2. To measure the macroscopic strain, the optical

features contrasted directly from the EDM finish (i.e. no

speckle pattern was applied) were recorded with an FLIR

(Point Gray) Grasshopper GS3-U3-50S5M-C camera with a

Sony ICX625 2448 � 2048 (2/300) CCD with 3.45 mm pixel size

and a Standard & Precision Optics (SPO) TCL0.8X-110-HR

lens with a 110 mm working distance, 14.9 mm resolution and

0.0255 numeric aperture. The displacement fields and strains

were calculated from these images using Ncorr digital image

correlation (DIC) software (Blaber et al., 2015) using a subset

radius of 15 pixels and a subset spacing of 2 pixels. The

analyses reported strain values with a strain noise of�4� 10�4.

Only the data collected from the 1 mm-tall, 1 mm-wide gauge

section surface area that faced the camera during loading were

used to calculate the macroscopic strains for the mechanical

responses given in Fig. 5. The reported values are the mean

values over the gauge face.

2.3. Forward modeling algorithm

A detailed description of the forward modeling algorithm is

provided in Appendix C1 and shown in Fig. 14. The virtual

diffractometer portion of the algorithm was constructed

following the procedure outlined by Pagan & Miller (2014),

Bernier et al. (2011). The algorithm can be summarized as

follows. (i) The initial austenite microstructure [crystal

orientation(s), lattice parameters] is measured using tradi-

tional ff-HEDM software such as FABLE (Gotz et al., 2007),

HEXRD (Bernier et al., 2011) or MIDAS (Sharma et al., 2016).

(ii) The austenite information is used to construct a list of

possible martensite microstructure predictions using the CTM.

(iii) Each possible martensite orientation is forward modeled

using the same laboratory conditions as the actual experiment.

Because these samples are near-single crystals the samples

were centered on the rotation axis, the martensite orientations

were simulated from the center of the virtual sample and all

perturbations introduced by precession were assumed to be

small enough to be ignored. (iv) The virtual diffraction

patterns are compared with the experimental diffraction

patterns, and the closest agreement of virtual and measured

diffraction patterns is used to determine the martensite

microstructures. In this work, we considered the Bragg

reflections in the three innermost monoclinic B190 (hkl) rings:

(001)B190, (011)B190 and (100)B190 (see Fig. 1d). These (hkl) rings

are sufficiently high-intensity and relatively well separated in
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Table 1
Austenite (B2) plasticity Schmid factors corresponding to the orienta-
tions plotted in Fig. 4.

Sample 2

Sample 1 Subgrain 1 Subgrain 2 Subgrain 3 Sample 3

m 0.23 0.23 0.25 0.23 0.46

Figure 5
Stress–strain curves for the three single-crystal NiTi samples loaded in
tension to induce transformation. The stars mark the load steps that were
selected for ff-HEDM analysis.



2� from other B2 and B190 (hkl) rings.

There were a total of 32 reflections per

twin, or habit plane variant (HPV)

(see Appendix C2.3) within these

three (hkl) rings. For these 32 reflec-

tions, we used summed and normal-

ized Euclidean distances between

the reflections produced by the

virtual diffractometer (VD) and the

experimental diffractometer (ED),

k VD� ED k, on a unit pole figure

(see Appendix C1). The results were

used to construct a ranked table, in

which the highest-ranked HPV solu-

tion is the one with the smallest

k VD� ED k. In the case in which

two HPV solutions had effectively

identical k VD� ED k, the twin

volume fraction f was used as a final

criterion.

Because these are single-crystal

samples that produced a small number

of martensite orientations during

phase transformation, the martensite

reflections could be deconvoluted

from the austenite reflections via

manual inspection. Specifically, the

detector images for each rotation

increment were stacked vertically, and

the pixels exceeding a baseline inten-

sity threshold were plotted with

50% transparency, creating a three-

dimensional visualization of the

reflections. Overlapping B2 and B190

reflections were separated by 2�, and

overlapping B190 reflections were separated by identifying

maxima separated in � and !. Finally, the centroids of the

individual reflections were calculated based on the reflection

intensity maxima. The intensity maxima may have some noise

associated with them, especially due to the combination of the

disparity in orientation volumes and the dynamic range of the

detector. In general, a more sophisticated technique may be

applied such as a batch processing algorithm to deconvolute

close or overlapping reflections using image processing or

statistical algorithms (Sharma et al., 2016). For samples

with hundreds to thousands of grains that become very

powder-like upon transformation, this approach can

be modified to compare developing martensite textures on a

volume basis.

3. Results

3.1. Mechanical responses and in situ diffraction data

All three stress–strain curves are shown in Fig. 5, and the

sequences of frames from the DIC analysis showing the

Lagrangian strain in the loading direction between no load

and peak load are shown in Fig. 6. Note that, while strains

outside of the gauge sections are shown in Fig. 6 to give a

complete visualization of the surface deformations, the

macroscopic strain values plotted in Fig. 5 are the mean strain

only from the 1 mm-tall, 1 mm-wide gauge section portions of

the analyzed regions (see x2.2). Stress relaxation can be seen

at many but not all of the points where we paused to take ff-

HEDM measurements in Fig. 5. The star markers in Figs. 5 and

6 indicate the load steps that correlate with the

ff-HEDM diffraction data collected under load that are

presented in this article. These points were chosen for two

reasons: (i) the martensite volumes are large enough to

produce reflections with high intensities; (ii) additional

microstructure changes due to plasticity can be largely

avoided (although the interaction between transformation and

plasticity is of some interest, the purpose of this work is to

identify martensite microstructures).

Fig. 7 shows the sequences of summed ff-HEDM patterns

during the transformation plateau for samples 1 (Fig. 7a), 2

(Fig. 7b) and 3 (Fig. 7c). Only a quarter slice of the detector is

shown given the symmetry of the diffraction pattern [e.g. Fig.

1(d) illustrates the quarter slice region of interest for sample
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Figure 6
Frames showing the longitudinal Lagrangian strain "YY from the DIC analysis for (a) sample 1, (b)
sample 2 and (c) sample 3. The macroscopic strain corresponding to each frame is labeled underneath
it and a star is placed on the frames that correspond to the load steps selected for ff-HEDM analysis.



2]. Fig. 7 shows that the twins that formed upon transforma-

tion initiation were the only twins that formed during loading

(within the resolution capabilities of the technique).

Shown in Table 2 are the macroscopic strains before the

transformation plateau "e, the maximum strains (within the

illuminated volume) at the load steps of interest "�, the

transformation strain at the load steps of interest estimated by

"transf ¼ "� � "e, and the fractions of the austenite that trans-

formed to martensite (within the illuminated volume) at the

load steps of interest ��. These fractions were calculated by

comparing the B2 (hkl) ring intensities before loading and at

the load steps of interest. All strain values are the Lagrangian

strains in the loading direction.

With respect to Fig. 5, the seemingly elastic region of the

mechanical response exhibited by sample 3 deviates from

those exhibited by samples 1 and 2 after about 0.15%. In NiTi

SMAs, this type of nonlinear elastic behavior well before the

transformation plateau is usually indicative of an intermediate

R-phase transformation. To investigate the emergence of R-

phase, we looked at the integrated intensity versus d-spacing

line profiles at different load steps within the elastic (or

seemingly elastic) regions, shown in Fig. 2. The small peak to

the left of the highest-intensity (110) B2 peak at a d spacing of

�2.1 Å could possibly be the (202, 022) reflections of R-phase

or the (312, 4�12) and/or (051) reflections of Ni4Ti3 precipi-

tates. However, this peak is absent in the structure of sample 3

at 0 MPa (Fig. 2c), only appearing under load and being most

pronounced at 446 MPa. Because Ni4Ti3 precipitates do not

grow during loading at room temperature, this result implies a

partial transformation from B2 to R-phase in sample 3 prior to

the B190 transformation plateau. The illuminated volumes of

samples 1 and 2 did not exhibit an R-phase transformation

that could be detected with this technique.

3.2. Initial measurements needed for algorithm inputs

The B2 crystal orientation measurements (Fig. 4) together

with the B2 and B190 lattice parameters are required inputs to

the analysis algorithm (Fig. 14). The initial B2 lattice para-

meters and the average B190 lattice parameters as described

by monoclinic symmetry, measured using the MIDAS ff-

HEDM analysis suite (Sharma et al., 2016), are shown for each

sample in Table 3. Table 3 also shows the experimental twin

fractions f, where f is applied to the minor correspondence

variant (CV) i in a twin pair i–j [see equation (7) in Appendix

C]. The twin fractions were calculated in the following way.

For each (hkl) ring, some reflections would be of relatively low

intensity (corresponding to the minor CV reflections), some

reflections would be of relatively high intensity (corre-
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Table 2
Summary of results for samples 1–3.

Sample 1 Sample 2 Sample 3

Macroscopic strain in loading direction
before transformation plateau, "e

1.12% 1.27% 1.16%

Maximum strain in loading direction
at load step of interest, "*

4.35% 4.32% 5.58%

Transformation strain in loading direction
at load step of interest, "transf = "* � "e

3.23% 3.05% 4.42%

Fraction of B2 transformed to B190

at load step of interest, �*
0.82 0.70 0.79

Figure 7
Sequences of the summed ff-HEDM patterns for samples 1 (a), 2 (b) and 3 (c) marked with the macroscopic strain values at which the ff-HEDM data
were collected. A star is placed on the frames that correspond to the load steps selected for the analysis. All patterns are summed over the full 360� of
sample rotation. The sections of the patterns used in this figure take advantage of the fourfold symmetry of the summed diffraction pattern, illustrated in
Fig. 1(d).



sponding to the major CV reflections). The twin phase frac-

tions were measured by comparing the intensities of the

lower-intensity martensite reflections with those of the higher-

intensity martensite reflections.

As discussed in x1, we are also interested in testing the

effectiveness of using the maximum transformation work

criterion to predict the most preferred and therefore most

likely martensite microstructures. As discussed in Appendix

C2.4, the crystal stress state is needed to calculate the trans-

formation work. The stress states that should be used are the

cubic elastic stresses within the elastic loading regime just

before any transformation initiates that might result in

relaxation. For comparison, we used both the macroscopic

stress state as well as the crystal (grain-averaged) stress states.

The macroscopic stress state is uniaxial tension in ŶYL (as

defined in Fig. 13). The full crystal lattice strain tensors were

measured using MIDAS and the crystal stress states were then

calculated assuming the elastic constants published by Mercier

et al. (1980). The root-mean-square (RMS) strain errors for

the measurements reported by MIDAS were 0.05% for sample

1 and 0.14%, 0.15% and 0.13% for the three subgrains for

sample 2. The normalized macroscopic and crystal stress states

within the elastic loading regime are provided in Table 4

(written in the laboratory coordinate system shown in Fig. 13).

The grain-averaged, unrelaxed elastic stress state for sample 3

could not be measured because of the early partial R-phase

transformation, so only the macroscopic stress state was used

for this sample.

3.3. Identified martensite microstructures

The identified HPVs for all three samples are shown in

Table 5 (see Appendix C2 for definition of the notation).

Experimental observations of the f110g HPV types have

previously been reported by Gupta & Johnson (1973), Onda et

al. (1992), Madangopal & Banerjee (1992), Otsuka et al.

(1971), and others. For sample 2, all three subgrains were

found to form the same HPV, so only the solution for subgrain

2 is shown. For sample 3, two HPVs, 3�11 I(+) and 3�11

II(�), were found to be present in the experimental data, with

the former having a larger overall volume fraction.

As mentioned in x2.3, the HPVs given in Table 5 were

statistically selected by the algorithm as the HPVs with the

virtual diffraction pattern that produced the smallest

k VD� ED k (again, the error between the VD and the ED

patterns). The twin fraction f was used as the deciding

criterion when multiple solutions resulted in the same

k VD� ED k. For example, considering sample 1, the

martensite orientations for inverse HPV pairs 10�4 I(�) and

4�10 I(�) are almost identical: thus, the k VD� ED k for

these inverse HPV pairs will be effectively identical. (‘Inverse

HPVs’ are used here to mean the same twin types composed

of the same CVs, where the minor and major CVs are swit-

ched.) The only difference is whether the twin fraction f favors

CV 10 or CV 4. The relative favoring of one variant or the

other is directly observable from the diffraction data, as

described in x3.2 and given in Table 3. The experimental f
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Table 3
Initial B2 lattice parameters and average B190 lattice parameters, as well as twin fractions of the minor CV in the unidentified martensite twins at the load
steps of interest.

Sample a0 a b c � Twin fraction, f

1 3.011 2.914 4.137 4.580 97.12� 0.09
2 Subgrain 1 3.008 2.902 4.141 4.582 97.11� 0.28

Subgrain 2 3.009
Subgrain 3 3.009

3 3.001 2.923 4.104 4.593 97.00� 0.25

Table 4
Normalized macroscopic and crystal stress components.

�11/||� || �22/||� || �33/||� || �23/||� || �13/||� || �12/||� ||

Macroscopic for all three samples 0 1 0 0 0 0
Crystal for sample 1 0.346 0.878 0.309 �0.008 0.002 0.121
Crystal for sample 2 Subgrain 1 0.077 0.983 0.090 0.073 0.054 0.104

Subgrain 2 0.135 0.968 0.169 0.073 0.050 0.088
Subgrain 3 0.092 0.985 0.064 0.059 0.050 0.109

Table 5
Identified HPV solutions.

Sample 1 2 3

HPV type 10�4 I(�) 9�1 I(�) 3�11 I(+) 3�11 II(�)
Twin plane, n̂nB2 {110} {110} {110} {4.010 1.000 1.000}
Shear vector, aB2 {0.272 0.099 0.068} {0.270 0.106 0.075} {0.285 0.091 0.059} {0.216 0.206 0.020}
Habit plane, m̂mB2 {0.870 0.490 0.046} {0.867 0.696 0.047} {0.835 0.547 0.062} {0.928 0.358 0.104}
Shape strain vector, bB2 {0.095 0.049 0.028} {0.095 0.061 0.031} {0.096 0.041 0.025} {0.099 0.044 0.000}



values are listed again in Table 6 next to the theoretical f

values for the sake of more direct comparison. This result will

be further discussed in x3.5.

3.4. Virtual versus experimental diffraction patterns

The virtual reflections of the HPVs are plotted on top of the

experimental diffraction patterns in Fig. 8. Only the first three

B190 (hkl) rings are shown, and only a quarter slice of the

detector is shown given the symmetry of the diffraction

pattern [e.g. Fig. 1(d) illustrates the quarter slice region of

interest for sample 2]. The solution shown for sample 2

(Fig. 8b) is for subgrain 2, but the other solutions are effec-

tively identical. The insets show close-ups of the regions

marked by white boxes. In Fig. 8(c), the virtual reflections of

the HPV 3�11 II(�) are shown, and in Fig. 8(d), the virtual

reflections of the HPV 3�11 I(+) are shown. While both

systems appear to be present, the HPV 3�11 I(+) in Fig. 8(d)

has a much larger overall volume fraction. The larger volume

fraction of this HPV is illustrated by the large, bright (100)

reflection in the lower-left corner, which corresponds only to

this HPV in Fig. 8(d).

3.5. Maximum work criterion

Table 7 shows the ranking of each solution according to the

maximum work criterion using the macroscopic stress state

(third column) and grain-averaged crystal stress state (fourth

column). The first-ranked HPV would have produced the

maximum work and the last-ranked would have produced the

minimum work (for example, if the HPV that formed in

sample 1 has a ranking of 28, then that HPV produced the 28th

largest work compared with all 192 HPVs that could have

formed in sample 1). The calculations for these values are

provided in Appendix C2.4. For both the macroscopic and the

crystal stress states, the ranking is closest to ideal (ideal being

a ranking of 1) for sample 1, which is a B2 single crystal with

inclusions and precipitates. The ranking is lower for sample 2,

which differs from sample 1 by having subgrains. Finally, the

ranking is lowest for sample 3 [using the high-volume 3�11

I(+) HPV], which differs from samples 1 and 2 by having a

large tendency for plasticity and exhibiting an intermediate

R-phase transformation.

In Fig. 9, k VD� ED k versus work is plotted for all 192

possible HPVs for all three samples. In Figs. 9(a), 9(c), 9(e) the

macroscopic stress state was used to calculate work, and in

Figs. 9(b), 9(d) the grain-averaged crystal stress state was used

to calculate work. For all three samples, the eight HPVs with

the lowest k VD� ED k values belong to the same CVs. For

example, for sample 1 (Figs. 9a, 9b), the eight HPVs with the

lowest k VD� ED k values are all of the 10�4 or 4�10 HPVs

[i.e. 4�10 I(�), 4�10 I(+), 4�10 II(�), 4�10 II(+), 10�4 I(�),

10�4 I(+), 10�4 II(�) and 10�4 II(+)]. This demonstrates the
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Table 7
Work ranking for samples 1, 2 and 3 using both the macroscopic stress
state and the crystal stress state.

Sample HPV

Maximum work
ranking using
macroscopic stress

Maximum work
ranking using
crystal stress

1 10�4 I(�) 28 48
2 9�1 I(�) 38 49
3 3�11 I(+) 56 —

Table 6
Theoretical twin fractions f and theoretical transformation twinning strains.

Also included for comparison are the experimental twin fractions (reprinted from Table 3) and the experimental transformation strains (reprinted from Table 2).

Sample HPV

Theoretical
twin
fraction

Experimental
twin
fraction

Theoretical
transformation
strain

Experimental
transformation
strain

1 10�4 I(�) 0.29 0.09 3.21% 3.23%
2 9�1 I(�) 0.29 0.28 2.64% 3.05%
3 3�11 I(+) 0.31 0.25 1.57% 4.42%

Figure 8
The virtual reflections are plotted on top of the experimental diffraction
patterns for the identified HPVs for samples 1 (a), 2 (b) and 3 (c), (d).
Two HPV solutions are shown for sample 3, because both HPV solutions
are present. All patterns are summed over the full 360� of sample
rotation. The sections of the patterns used in this figure take advantage of
the fourfold symmetry of the summed diffraction pattern, illustrated in
Fig. 1(d).



robustness of the algorithm in identifying present CVs for

future cases in which this may be the only measurement of

interest. All other CV pair types have substantially larger

k VD� ED k values. The closeness of the solutions for

inverse HPVs are pointed out for each sample in the insets

[e.g. HPVs 9�1 I(�) and 1�9 I(�) in Fig. 9(c)], reaffirming
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Figure 9
|| VD � ED || versus work for all 192 HPV solutions using the macroscopic stress state to calculate work for sample 1 (a), sample 2 (c) and sample 3 (e)
and using the crystal stress states to calculate work for sample 1 (b) and sample 2 (d). In the cases where the macroscopic stress state was used, the work is
equivalent to the strain in the loading direction.



the need to incorporate twin fractions as a final solution

criterion.

4. Discussion

4.1. The CTM provides martensite microstructure solutions
that match experiments, even for materials that do not meet
the assumptions of the CTM

The identified HPVs given in Table 5 and discussed

throughout x3 have been largely validated with the following

supporting evidence. (i) The error between the virtual and

experimental diffraction patterns, k VD� ED k, is small

(Fig. 9), hence the experimental and virtual diffraction

patterns are in very good quantitative and qualitative agree-

ment (Fig. 8). (ii) The predicted twin fractions and the

experimentally observed twin fractions agree (Table 6). The

experimental twin fraction for sample 1 is unusually low, so the

discrepancy between the experimental and theoretical twin

fractions for sample 1 could be due to the dynamic range of

the detector and the attenuation setting during this particular

test. (iii) The theoretical and experimental transformation

twinning strains agree (Table 6). Sample 3 drastically under-

estimates the transformation strain for both the strained and

unstrained case, but this is not surprising as this sample also

exhibited an R-phase transformation, substantial plastic

deformation and additional transformation modes that were

not measured in our analyses. (Fig. 10 highlights some low-

intensity reflections that were not included in the procedure.)

(iv) The more theoretically favorable HPVs, according to the

maximum work criterion, produce virtual diffraction patterns

that are far from the experimental diffraction patterns (i.e.

have large k VD� ED k values) (Fig. 9).

This study has validated the CTM-based forward model

algorithmic approach to identify stress-induced martensite

microstructures in single- and near-single-crystal ff-HEDM

data sets, even when these samples do not adhere to the

assumptions of the CTM (i.e. defect-free, strain-free, no

finite boundaries such as grain boundaries or free surfaces).

This demonstration was a necessary first step to applying

the same approach to polycrystalline ff-HEDM data sets.

However, our results also indicate that further advancements

are needed to evaluate martensite in polycrystalline data

sets. For example, the solution for sample 3 was optimized

based on the assumption of one HPV, but there were at least

two HPVs present. As shown in Fig. 10, there may also be

additional low-volume-fraction twins present in sample 3

that are not accounted for by the two solutions shown in

Figs. 8(c), 8(d). In this work, the two HPV solutions for

sample 3 were manually identified, but the presence of

multiple HPVs forming in one grain demonstrates a need to

automate the selection process to include cases where more

than one HPV forms and/or when reorientation events occur.

One way to do this in the future is to estimate the number of

HPVs (or combinations of HPVs and CVs in the case of

reorientation) using the number of experimental martensite

reflections, and then use combinations of HPVs in the forward

model virtual versus experimental diffraction pattern statis-

tical comparison.

Another current challenge in applying this procedure to

polycrystalline data sets is in the hardware used for the

experiments. More specifically, the limited dynamic range of

existing detectors makes it difficult to simultaneously analyze

microstructures that have features with both large and small

diffracting volumes. Setting attenuation levels low enough to

measure the reflections of the small-volume features will cause

the reflections of the large-volume features to saturate the

detector, while setting the attenuation such that the reflections

of the large-volume features do not saturate will cause the

reflections of the small-volume features to fall into the

detector background noise. This limitation is also why most

studies of polycrystals strive for grains of similar size with a

low standard deviation (Sedmák et al., 2016; Paranjape et al.,

2017), why it is challenging to observe fine twins within large

grains of Mg and other alloys (Aydiner et al., 2009), why

observing transformation nucleation events is not possible,

and why it is difficult to measure all transformation micro-

structures.

Realistically, transforming polycrystalline data sets will

produce powder patterns like the one shown in Fig. 1(b),

where the many martensite reflections are low in intensity

relative to the austenite reflections and highly overlapping. In

these cases, the virtual and experimental patterns will need to

be compared on a texture basis using statistical analyses;

textures are much easier to measure than individual grains in

the cases of diffuse, low-intensity, overlapping reflections.

Similarly, it will not be possible to measure the martensite

lattice parameters through ff-HEDM analysis suites in these

cases. For these future cases, the average B190 lattice para-

meters may be measured using a traditional lattice parameter

refinement approach at the onset of transformation. Again,

one will need to consider combinations of HPVs and the

possibility of multiple HPVs per grain, likely resulting in an
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Figure 10
Low-intensity reflections not included in the analysis that likely belong to
other low-volume-fraction HPVs in sample 3.



undetermined system. To address this issue, we used this initial

validation of the algorithmic approach to evaluate the efficacy

of using the maximum transformation work criterion to reduce

the number of possible HPVs, discussed in the next section.

4.2. The maximum transformation work criterion only ranks
the probabilities of martensite microstructures for materials
that exactly meet the assumptions of the CTM

Consistent with the previous report on sample 2 by

Paranjape et al. (2018), the HPV that would have produced the

largest mechanical work under tension did not form in sample

2. In fact, we find that the HPV that would have produced the

largest mechanical work did not form for any of the three

single-crystal samples explored in this article. None of the

solutions even have strain rankings in the top ten out of 192

formed, which is even more significant considering that many

of the 192 solutions actually produce compressive transfor-

mation strains under tensile load (i.e. are physically implau-

sible). Considering that Miyazaki et al. (1984) performed

experiments on NiTi crystals that satisfied the fundamental

assumptions of the CTM and found that the maximum

transformation work criterion did accurately rank the most

probable martensite microstructure in those samples, it is

nearly certain that the reason the model did not work for these

experiments is due to deviations from the fundamental

assumptions of the CTM. All three samples have precipitates

and inclusions, and are not an infinite plate. Additionally, in all

three samples the martensite is forming from strained auste-

nite, where the CTM assumes strain-free interfaces.

Most interestingly, it appears that there may be a hierarchy

of assumption violations. Sample 1, which is a B2 single crystal

with a low Schmid factor (for slip) but contains Ni4Ti3 preci-

pitates along with carbide and/or oxide inclusions, most closely

met the predictions of the maximum work criterion (Table 7).

Sample 2 differed from sample 1 by having three low-angle

misoriented subgrains, and in this case the maximum work

criterion rankings performed worse. Sample 3 differed from

sample 1 by having a high Schmid factor (for slip) and an

intermediate R-phase transition, and in this case the maximum

work criterion rankings performed worse yet.

These results illustrate that materials deviating from the

underlying assumptions of the CTM will affect the ability to

predict transformation modes using the CTM + maximum

work criterion. They also suggest that more assumption

deviations will lead to poorer performance of the model,

which is expected. It is possible that modifying the CTM +

maximum work criterion framework to model the real

microstructure complexities could still result in an analytic

framework that can be used for more complex materials. The

remaining discussion points of this article may help direct

future studies in this regard. Another option is to resort to

forward modeling through full-field models of the micro-

structures, as was shown in a parallel work (Paranjape et al.,

2018) and is commonly used for plasticity (Wong et al., 2013;

Pagan & Miller, 2014; Obstalecki et al., 2014). However, the

latter option greatly increases the required computation, and

at the full-field scale, phenomena such as twinning are still

very difficult to model accurately across many length scales, as

they present themselves in SMAs. So further development is

needed either way.

4.3. Preferential shearing mechanisms could provide a
crystallographic means to rank preferred HPVs

There is one possibly revealing similarity between the

identified HPVs that formed in each sample. From the pole

figures in Fig. 11, it can be seen that the identified HPVs

formed so that the {011}B190 and {100}B190 directions are closely

aligned with the {001}B2-type directions. This is not necessarily

unique to these HPVs. What is unique, however, is how the

{011}B190 poles sheared away from the {001}B2 poles. For all

three samples, the {011}B190 poles are rotated away from the

{001}B2 poles about the loading axis (Y). This is especially clear

for the (010)B2 poles, which is the B2 {001}B2-type pole most

aligned with the loading direction. That is, a CV i {011}B190-

type pole and a CV j {011}B190-type pole are arranged on either

side of the (010)B2 poles, rotated about the loading direction.

This did not occur for any of the higher-ranked HPVs for any

of the three samples. In effect, the {011}B190 poles are shearing

away from the {001}B2 poles so that new {011}B190 poles remain,

on average, in the same direction as the {001}B2 poles. This

tendency to maintain the average pole directions could be a
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Figure 11
The initial {001}B2 poles and the {100}B190 and {011}B190 poles from the
identified HPVs for each sample. The B2 poles are black squares and the
B190 poles are colored circles (CV i) and diamonds (CV j) according to
the same designations as in Fig. 8. All pole figures are equal area
projections.



way to minimize distortion between the transformed lattice

and the untransformed lattice, or it could be an effect of the

constraint that the loading is placing on the lattice. This is

simply an observation at this time and would require a larger

number of samples to substantiate.

4.4. Using strained versus unstrained B2 lattice parameters
will change the predictions made using the CTM

A fundamental assumption of the CTM is that making the

calculations using unstrained lattice parameters properly

predicts the HPVs that will form. In superelasticity and

actuation behaviors, however, strained martensite forms from

strained austenite. To our knowledge, calculations for incor-

porating strained lattice parameters into the existing CTM

framework have not been previously reported. The CTM

calculations for cubic-to-monoclinic transitions outlined in

Appendix C2 are based on the crystal symmetry relationships

between the B2 and B190 point groups. An elastically strained

lattice will not maintain this crystal symmetry except in the

case of hydrostatic loading. Thus, the prediction of HPVs that

are geometrically compatible during superelastic transforma-

tions requires a modified CTM framework in which both the

austenite and martensite crystal lattices can take on arbitrary

(triclinic) symmetries due to elastic strains. Deriving this

theory is beyond the scope of the current work, though such

theory could easily be inserted into the ‘CTM Calculations’

box of the algorithm procedure shown in Fig. 14.

The work of Miyazaki et al. (1984) suggests that perhaps

strain does not matter, since in their case they found the

preferred HPVs formed from strained austenite. Here, we

make one easy check towards evaluating if that is a generally

applicable result, or just circumstance. We assume that the B2

lattice is hydrostatically strained at the time of transformation,

thereby maintaining the B2 crystal symmetry and the existing

cubic-to-monoclinic CTM framework. We study if this

presence of hydrostatic strain can alter the predictions of

HPVs. While the samples in our experiments are not hydro-

statically strained, it is possible that in a polycrystal, a grain

could predominantly experience hydrostatic strain, or that the

local strain state at a stress concentration could be approxi-

mately hydrostatic. In any case, this analysis provides a

general evaluation of the effect of strain on CTM predictions

before making the recommendation to consider strains that

break symmetry and requiring derivations of the CTM equa-

tions for triclinic-to-triclinic cases.

The boundary conditions for the strains we considered in

this simple analysis were inspired from the DIC analysis

frames of the three experiments just

before the onset of the transformation

plateau, i.e. frames corresponding

to macroscopic strains of 1.06% for

sample 1, 1.16% for sample 2 and

1.11% for sample 3 in Fig. 6. While

these macroscopic strains just before

transformation are �1%, larger local

strains (�1.5%) were observed in the

DIC frames. Considering that regions

either embedded within the sample

volume or below the spatial resolution

of the DIC analysis could have exhib-

ited even larger strains, we evaluate up

to 2% strains for this study. We also

evaluate strains in compression to

account for the possible local strain

states influenced by precipitates and

inclusions (see Paranjape et al., 2018).

Fig. 12 shows the effects of varying

the B2 lattice parameter a0 between

�2 and 2% on k VD� ED k, twin

phase fraction and transformation

strain. Figs. 12(a)–12(c) show the

results for sample 1. The same HPV

solution (given in Table 5) was found

to minimize the error between the

virtual and experimental diffraction

patterns, k VD� ED k, for all values

of a0, but this HPV solution produced

virtual diffraction patterns that were

variably closer to or farther from

the experimental diffraction pattern
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Figure 12
Effects of varying the input B2 lattice parameter between �2 and 2%. The ||VD � ED || versus a0

strain is shown in (a), (d), (g), the theoretical twin fraction, f, versus a0 strain is shown in (b), (e), (h),
and the theoretical transformation twinning strain (in the loading direction) versus a0 is shown in (c),
(f), (i).



depending on whether an unstrained or strained a0 was used

(Fig. 12a). The corresponding twin phase fractions (Fig. 12b)

and transformation strains (Fig. 12c) for this HPV also varied

greatly depending on whether an unstrained or a strained a0

value was used. The same dependence on the a0 strain is

demonstrated for sample 2 (Figs. 12d–12f) and sample 3 (Figs.

12g–12i). Note that the HPV solution that minimized

k VD� ED k changed only for sample 2, subgrain 3 [see the

‘kink’ in Fig. 12(d)], and HPV solutions do not exist for strains

larger than 1.4% for sample 3 (Figs. 12g–12i), i.e. transfor-

mation is not possible.

As a first exploration of the effect of using strained lattice

parameters to make HPV predictions using the CTM, this

study considered a hydrostatically strained austenite lattice in

order to maintain the symmetries underlying the cubic-to-

monoclinic framework of the CTM. Although the lattices in

these three samples were not hydrostatically strained (except

for perhaps at local strain states influenced by precipitates and

inclusions), this study demonstrates how using strained versus

unstrained lattice parameters as inputs to the CTM will have

significant effects on the HPV predictions.

4.5. Using local stress heterogeneities instead of grain-
averaged stress states may improve the CTM + maximum
work criterion analytical model

Paranjape et al. (2018) showed how local stress hetero-

geneities at inclusions can serve as initiation sites for trans-

formation much like a notch on the sample surface. Consider a

hypothetical case where a specific HPV initiates at a stress

concentration at an inclusion. In cases where it costs less

energy for the initiated HPV to propagate than for additional

HPVs to nucleate, the HPV that initiates at the stress

concentration at this inclusion will propagate throughout the

grain until it has fully transformed. This inclusion can be

thought of as a ‘critical microstructure feature’, because it

dictates the deformation process and therefore the overall

response of the grain. Some of the microstructure features that

violate the underlying assumptions of the CTM and are

present in these three samples (inclusions, precipitates, grain

boundaries, plasticity and R-phase) may be acting as critical

microstructure features. In these cases, the maximum work

criterion could more accurately predict the most likely HPV if

the local stress state of the critical microstructure feature was

known and used instead of the grain-averaged stress state.

Therefore, the framework of using the CTM + maximum work

criterion may be significantly improved by incorporating, for

example, an Eshelby-type calculation for stress concentrations

based on the microstructure features observed in the material.

Implementing this modification to the forward model algo-

rithm will cost more computationally than the current version,

but not as much as a full-field microstructural model such as

the one used by Paranjape et al. (2018). Furthermore, this

modification may save computational power for polycrystal-

line data sets by drastically reducing the number of micro-

structures that need to be forward modeled.

5. Conclusion

A forward model for identifying martensite microstructures

from ff-HEDM data sets was presented and verified on bulk

NiTi single-crystal samples in the presence of precipitates and

inclusions, subgrains, R-phase, plasticity and strain. Using this

approach, the HPVs that formed under stress were identified

for all three samples with a search space narrowed by using the

CTM. The results showed that the CTM can reliably be used

to make HPV predictions even for materials that do not

necessarily meet the assumptions of the CTM. The results also

showed that there is much room for improvement in the

application of the maximum transformation work criterion for

materials that do not meet the assumptions of the CTM.

Suggestions for improvements include considering prefer-

ential shearing mechanisms, developing a new triclinic-based

framework for the CTM where elastic distortions of the crystal

structures can be incorporated, and using local stress

concentrations at precipitates, inclusions, grain boundaries

and other ‘critical microstructure features’ instead of the

grain-averaged stress states. This need for improvement

demonstrates the utility of these three-dimensional, in situ,

bulk specimen data sets to shed light on our existing micro-

mechanical theories and lead us towards greater capabilities in

modeling and prediction of complex material systems.

This forward model approach is a necessary step in adapting

novel diffraction techniques to advanced alloys that may

exhibit phase transformation and twinning. These are, after

all, the materials research areas most in need of the three-

dimensional, microscale experimental data sets. We have used

the version of the CTM-based forward model approach

presented in this article to measure the HPVs (i.e. martensite

orientations, habit plane, twin plane and twin phase fractions),

an approach which can be immediately applied to martensitic

transformations in steels, ceramics and minerals. To measure

other interesting microstructure features such as twin fineness

and local strain heterogeneities, the forward model procedure

outlined in this article can be augmented. One interesting

augmentation would be to combine it with a sophisticated

microstructure model such as phase field modeling as done by

Paranjape et al. (2016). The simulated microstructure from

the phase field model would replace the boxes between

‘Martensite Lattice Parameters’ and ‘Virtual Diffractometer’

in the User Input sequence in the algorithm flowchart shown

in Fig. 14, and each voxel from the simulated microstructure

would be forward modeled. This could be incorporated with a

machine learning feedback loop that used comparisons

between the virtual diffraction pattern from the simulated

microstructure and the experimental diffraction pattern to

improve the simulation parameters.

This research marks the first step in adapting the powerful

diffraction techniques being developed to complex phase-

transforming and twinning material systems. The types of

algorithmic approaches demonstrated in this article combined

with the necessary advancements in microstructure prediction

will lead to experimental data sets that are in situ, three-

dimensional and on the length scale of the critical micro-
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structure features, and are strongly needed for the develop-

ment of fundamental micromechanical theory and modeling of

advanced materials.

APPENDIX A
Terminology

A1. Shape memory alloy terminology

Refer to Bhattacharya (2003) for further reading.

Correspondence variant (CV). Because of the symmetry

disparity between the austenite phase and the martensite

phase, the martensite can form in several unique orientations

of crystals relative to an austenite orientation. These are called

correspondence variants (CVs), or simply ‘variants’. In NiTi,

there are 12 possible martensite CVs, as the cubic austenite

crystal structure has 24 symmetry rotations, while the mono-

clinic martensite crystal structure has 2, and 24/2 = 12. The

number of variants that can form in a martensitic transfor-

mation can be similarly calculated through the ratio of

symmetries of the austenite and martensite point groups for

other materials.

Crystallographic theory of martensite (CTM). Also called

the phenomenological theory of martensite or the theory of

martensite crystallography, the CTM is a continuum model for

calculating allowable microstructures that arise from marten-

sitic transformations. This theory is based upon the lattice

shapes, sizes and orientation relationships between the

austenite and martensite phases and restricts the allowable

microstructures that can form via transformation to those that

satisfy or approximate geometric compatibility (also called

‘kinematic compatibility’ or just ‘compatibility’ in the open

literature), i.e. how the lattices from the two phases are able to

fit together sharing a common plane of undistorted atoms.

Habit plane. The crystallographic plane that defines the

interface between the austenite and martensite phases.

Habit plane variant (HPV). Because the austenite and

martensite phases in NiTi (and most other SMAs) are not

perfectly geometrically compatible, the martensite will form in

twins of pairs of CVs, each with a very specific volume frac-

tion, in order to approximate geometric compatibility at the

austenite–martensite interface in an average sense. The most

compatible martensite twin morphologies are calculated using

the CTM and these structures are called habit plane variants

(HPVs). There are 192 theoretically possible HPVs in NiTi.

Martensitic transformation. A solid-to-solid phase transfor-

mation between a high-symmetry phase and a low-symmetry

phase. In NiTi, the high-symmetry, high-temperature phase is

called austenite and it is a B2 cubic phase. The low-symmetry,

low-temperature phase is called martensite and it is a B190

phase. A martensitic transformation is defined by the fact that

the movements of the individual atoms are diffusionless and

the resultant lattice deformation is homogeneous (i.e. the

atom movements are coordinated). The defining characteristic

of SMAs is that the martensitic transformations are thermo-

elastic, where they are not in other materials.

Maximum transformation work criterion. A criterion

commonly used to predict which HPV will form as a result of

stress-induced transformation. This criterion states that the

HPV that produces the most mechanical work when formed

from the parent austenite crystal is the most likely.

Stress-induced transformation. Martensitic transformation

can be induced by loading an SMA when it is in the austenite

phase and the temperature is above but relatively close to the

critical temperature for transformation. When the load is

released, the material will return to the austenite phase. This is

called stress-induced transformation, or superelastic loading.

Transformation modes. This is a general term for the

different possible martensite microstructures that can form as

a result of transformation. It is analogous to a slip mode in

plasticity. In this article, it refers to the HPVs that can form as

a result of stress-induced transformation.

Transformation strain. In this article, the transformation

strain, or transformation twinning strain, is the macroscopic

strain due to an austenite crystal (partially) transforming to a

martensite twin, or HPV. This strain is typically less than the

local, microstructural transformation strain from one part of

the austenite crystal transforming to one martensite CV,

because it is the weighted average of the strain contributions

from the two CVs that compose the HPV, where the strains

are weighted by the twin phase fractions.

A2. Far-field high-energy diffraction microscopy terminology

Refer to Poulsen (2004) for further reading.

Bragg condition. The condition for the X-rays scattered by

atoms to constructively interfere when the atoms are arranged

in some kind of periodic fashion (e.g. in a lattice).

Bragg reflections. When the Bragg condition for a plane of

atoms is met, the X-rays scattered by the atoms will

constructively interfere in two particular directions. When

these directions intersect the plane of an X-ray detector, the

detector measures the intensity distributions of the X-rays.

These intensity distributions are called Bragg reflections.

Diffraction pattern. When a sample is illuminated by an

X-ray beam, the (hkl) planes inside the sample that are in the

Bragg condition will diffract. That is, the X-rays scattered by

the atoms in these planes will constructively interfere. When

the diffracted X-rays intersect the plane of an X-ray detector,

the detector will record the intensity distributions of the

diffracted X-rays. This two-dimensional detector measure-

ment is called a diffraction pattern.

Far-field high-energy diffraction microscopy (ff-HEDM).

The detector is placed far from the sample (on the order of

1 m). The reciprocal-space distribution of lattice strains and

orientation dominate the diffraction pattern, and quantities

like grain-averaged lattice strains, orientation and volume can

be resolved.

Forward model. Creating virtual or simulated diffraction

patterns of a virtual microstructure using the same laboratory

parameters as an actual experiment including rotation direc-

tion and increment, detector size, detector pixel size, detector

calibration parameters and X-ray energy.
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High-energy diffraction microscopy

(HEDM). A diffraction-based tech-

nique where the sample is illuminated

by high-energy (50–100 keV), high-

brilliance monochromatic X-rays. The

sample is rotated about an axis

perpendicular to the X-ray beam

direction and diffraction patterns are

collected in some user-defined rota-

tion increment (every 0.1�, 0.25� or

0.5�). The series of diffraction images

collected over each full rotation of the

sample is then analyzed using vector

calculus, and the resulting data can be

used to visualize the microstructure of

the sample in three dimensions, which

leads to the use of the term ‘micro-

scopy’.

(hkl) rings. In ff-HEDM, the Bragg

reflections of planes with equal inter-

planar spacings, or d spacings, will lie

in a circle on the detector called a

Debye–Scherrer ring. Because planes

of equal d spacing correspond in

crystallography to (hkl) families, we

call these rings (hkl) rings.

Summed diffraction pattern. In the case of HEDM, a

diffraction pattern is recorded every rotation increment. For

ease of representation, these individual diffraction patterns

can be aggregated into a summed diffraction pattern. Typi-

cally, the summed diffraction pattern shows the maximum

intensity at each pixel; it can also show the average intensity or

total intensity at each pixel.

Virtual diffractometer. A virtual microstructure is diffracted

through a virtual diffractometer, which is the name for the

entire computational system of simulating the diffraction

patterns using the same laboratory parameters as an experi-

ment.

APPENDIX B
High-energy diffraction microscopy technique

A schematic of the ff-HEDM experimental setup is shown in

Fig. 13. The laboratory coordinate system fX;Y;ZgL is

defined by the incoming X-ray beam and the rotation axis. The

test specimen may be a single crystal or polycrystal. Each

crystal is described in its own crystal coordinate system

fX;Y;ZgC, defined by the crystal orientation. The test

specimen is placed in the path of the incoming X-ray beam

(�ZL) on a 360� rotation stage that rotates in ! about an axis

perpendicular to the incoming X-ray beam (YL). Along each

rotation increment �!, the integrated diffraction pattern is

recorded by the detector, producing 360�/�! images. Each

Bragg reflection can then be defined in the detector’s Carte-

sian coordinate system in fX;YgD or in a polar coordinate

system in f2�; �; !g. In other words, even though ! refers to

the rotation of the test specimen, it can be used in the data

processing to add a third spatial dimension to the detected

data. The diffraction intensity is the measured signal in this

three-dimensional space. This technique can be used to

measure the grain-specific lattice (elastic) strain tensors,

crystallographic orientations, centroids and volumes within

bulk specimens (�1 mm3) all in three dimensions (Pagan &

Miller, 2014; Miller & Dawson, 2014; Schuren et al., 2015).

Challenges from Bragg reflection overlap (also known as

‘spot overlap’) in ff-HEDM are not unique to SMAs. Several

approaches are being developed to address this problem in

ff-HEDM, including (i) improved preprocessing algorithms to

better deconvolute overlapping reflections from the detector

images (Sharma et al., 2016), (ii) forward modeling diffraction

through virtual microstructures to create virtual diffraction

patterns, which are then statistically compared with the

experimental patterns (Pagan & Miller, 2014; Wong et al.,

2013), and (iii) annealing the samples to a state where they

have large, deformation-free grains and crystals that may give

rise to larger deformed domains that are easier to observe

directly (Paranjape et al., 2017; Sedmák et al., 2016; Pagan et

al., 2017).

APPENDIX C
CTM-based algorithm details

C1. Algorithm structure overview

Fig. 14 shows the general framework for the CTM-based

forward model algorithm for using a ff-HEDM data set to

identify martensite microstructures that formed from an

initially austenite microstructure. To generate the HEDM
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A schematic of the ff-HEDM experimental setup showing the relations between the pertinent
coordinate systems. Sample gauge thicknesses for the HEDM technique are typically 0.5–2 mm,
depending on the X-ray energy and the sample material attenuation and grain sizes, as discussed
in x2.1.



inputs for the algorithm, the austenite microstructure is

completely analyzed with ff-HEDM software [e.g. FABLE

(Schmidt, 2014), HEXRD (Bernier et al., 2011) or MIDAS

(Sharma et al., 2016)] to determine the unstrained lattice

parameters and crystallographic orientations for each crystal

in the sample. The austenite analysis can either be performed

(i) on the initial, unloaded sample, and the unstrained auste-

nite lattice parameters can be used, or (ii) on the loaded

sample where the austenite grain is within the elastic regime,

and the strained austenite lattice parameters can be used. If it

is also possible to measure the austenite grain center-of-mass

position, then this position in the virtual sample should be

used when forward modeling the martensite microstructures.

The transformation work is calculated for each possible

martensite microstructure; this calculation (discussed in the

next section) requires the austenite stress state. If the auste-

nite ff-HEDM analysis is being performed for an elastically

loaded austenite grain, then the crystal stress state may be

used. Otherwise, the macroscopic stress state can be used.

The possible martensite microstructures (i.e. martensite

orientations, habit plane, shape strain direction, twin plane,

shear direction and twin phase fractions) that could form from

each crystal are then calculated according to the CTM using

these inputs (a detailed explanation of these calculations

follows in Appendix C2). Using all of the same experimental

setup parameters as the actual experiment (e.g. X-ray energy,

detector position, detector tilts etc.), the martensite orienta-

tions are then forward modeled through each of the possible

martensite microstructures, producing a virtual diffraction

pattern. Next, the virtual martensite diffraction pattern is

statistically compared with the experimental martensite

pattern, and the martensite microstructure that produces the

virtual diffraction pattern that is closest to the experimental

diffraction pattern is the identified martensite microstructure.

In this article, we use the following procedure.

In the experimental diffraction patterns, the martensite

Bragg reflection centroids (x and y location on the detector,

and the sample rotation frame !) are identified from the

deformed sample measurements for

some user-defined choice of (hkl) rings.

This can be done manually or using the

‘spot indexing’ feature of a ff-HEDM

software, though complete analyses of

the martensite data are not necessary.

The reflection centroid locations are

also calculated for each virtual diffrac-

tion pattern. The actual martensite

microstructure that formed under

deformation is then identified by

finding the smallest difference between

the virtual and experimental reflection

locations. The detector (x, y and !)

coordinates have a relative scaling that

is sensitive to the detector size, the

detector pixel size and the ! rotation

increments chosen for the experiment.

To equally weight the absolute differ-

ences between experimental and

virtual reflections, reflection centroids

are converted from their detector (x, y

and !) coordinates to the (�, � and �)

coordinates of a unit pole figure, which

are equally weighted, using the proce-

dure described by Schuren & Miller

(2011), Pagan & Miller (2016). Using

these pole figure coordinates, the

Euclidean distance between a virtual

reflection centroid and an experimental

reflection centroid is calculated and

used as the metric for reflection

distance comparisons. More specifi-

cally, the sum of the minimum Eucli-

dean distances between all of the

virtual and experimental reflections for

a given crystallite (or pairs of marten-

site CV crystallites if making HPV
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calculations, as we do in this work) for all of the user-defined

(hkl) rings is computed. We use the term k VD� ED k to

indicate the total Euclidean distances between virtual and

experimental Bragg reflections.

C2. CTM-based calculation details

The CTM for calculating compatible austenite–martensite

interfaces has been published many times (Wechsler et al.,

1953; Bilby & Crocker, 1965; Ball & James, 1987; Hane &

Shield, 1999; Bhattacharya, 2003). Here, even though we are

using the established CTM verbatim, we reintroduce many of

the well established equations and conditions to present the

forward modeling procedure as clearly as possible. Specifi-

cally, there are many potential points of confusion between the

CTM calculations and experimental orientation measure-

ments, and it is not possible to discuss these nuances in detail

without the fundamental equations of the CTM. The following

discussion walks through a demonstration for cubic-to-

monoclinic-I transformation of a NiTi sample. We will refer to

monoclinic I as simply monoclinic here. This procedure can be

used for other martensitic transformations as well and

becomes simpler in cases of higher-symmetry martensites.

C2.1. Transformation matrices. The fundamental compo-

nents of the CTM calculations are the transformation

matrices, usually approximated as the Bain matrices, which are

the pure stretch components of the deformation gradient

between the austenite lattice and the martensite lattice. The

transformation stretches 	, ", � and 
 that make up the

transformation matrices, Ui, are calculated directly from

the austenite and martensite lattice parameters according to

Bhattacharya (2003, p. 53–55) [or according to Hane & Shield

(1999), using different symbols]. The subscript i is used to

indicate the martensite CV, where the number of CVs is equal

to the number of symmetries in the austenite point group

divided by the number of symmetries in the martensite point

group (Bhattacharya, 2003). For cubic-to-monoclinic trans-

formations, there are 12 CVs, each with its own unique

transformation matrix, U1; . . . ;U12.

Cubic-to-monoclinic transformation matrices are defined

using the tetragonal representation of the cubic lattice, as this

description of the transformation properly describes the

volume change of the transformation. The full transformation

from the cubic lattice to the monoclinic lattice is given in

equation (1), where c1;2;3 are the cubic lattice vectors in the

traditional cubic representation defined in standard crystal-

lography texts (Nye, 1985), m01;2;3 are the monoclinic lattice

vectors and QUiR45T is the complete transformation from

cubic to monoclinic. (Dot products are implied when two

tensors are next to each other or when a vector is next to a

tensor.) This complete transformation is comprised of R45T,

the transformation that converts the cubic representation of

the cubic lattice vectors to the tetragonal representation, and

QUi, the phase transformation from the tetragonally

described cubic lattice to the monoclinic lattice. Each opera-

tion of the entire transformation is illustrated sequentially in

Fig. 15: T stretches the primitive lattice vectors of the cubic

lattice into the correct tetragonal lattice vector lengths (Fig.

15a); R45 correctly orients the tetragonal representation by

rotating the stretched cubic lattice 45� about the cubic lattice

vector that has the same length as both the cubic and tetra-

gonal representations (Fig. 15b); Ui applies the pure (Bain)

stretch of the phase transformation from the tetragonally

described cubic lattice to the monoclinic lattice (Fig. 15c); Q

applies an additional small rotation that accompanies the

stretch during the phase transformation (Fig. 15d). Q is the

same for all CVs. This transformation is commonly reported in

most discussions of cubic-to-monoclinic transformation

calculations (Bhattacharya, 2003; Hane & Shield, 1999).

One nuance that is not commonly discussed but is critical to

calculate the correct martensite microstructures for forward

modeling is that different CVs require different tetragonal

representations of the cubic lattice. For CVs 1–4 [following the

numbering convention of Bhattacharya (2003, p. 55)], the

cubic-to-tetragonal transformation is given by equation (2).

For CVs 5–8 the transformation is given by equation (3). For

CVs 9–12 the transformation is given by equation (4).

C2.2. Twin elements. The twin elements are the unknowns

in the twinning equation in equation (5). This equation

describes the compatible interface between two martensite

variants i and j. This interface is called the twin plane, denoted

by the vector normal to the plane n̂n. The lattices on either side

of the twin plane are related through a simple shear defor-

mation of the lattice on one side of the twin plane in the

direction of the vector a by a magnitude equal to the length of

a; hence, a is the twinning shear vector. Note the extra rota-

tion, R, that is required to satisfy the twin relation. In most

references, including this article, this rotation is applied to Ui.

All possible variant pairs i–j do not form compatible

interfaces with each other – that is, only some of them satisfy

the twinning equation, equation (5). A list of pairs that have

solutions to the twinning equation can be found on p. 28 of

Hane & Shield (1999). The twin element calculations are

most computationally straightforward using the eigenvalue

approach found in the work of Hane & Shield (1999) or Ball &

James (1987), where the sorted eigenvalues of the symmetric

matrix Cij ¼ U�1
j U2

i U�1
j are used to calculate a and n̂n. The

necessary extra rotation can then be calculated using equation

(6). For each twin pair that satisfies the twinning equation,

there are two possible solutions referred to as type I and type

II twins, denoted as aI, n̂n
I
, RI and aII, n̂n

II
, RII, respectively.

C2.3. Habit elements. The habit elements are the unknowns

in what is commonly referred to as the habit plane equation in
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equation (7), where I is the second-order identity tensor.

According to the CTM, the austenite and martensite

phases are only compatible if the middle eigenvalue of the

transformation matrices is equal to 1 (�II ¼ 1; it will be the

same for all Ui) (Ball & James, 1987). For almost all SMAs, this

condition is not satisfied, and the austenite and martensite

phases are not perfectly compatible. The martensite can

approximate compatibility through an average deformation

formed by a twin pair i–j, where variants i and j have relative

volume fractions f and (1� f ), respectively. The twin pair that

satisfies the habit plane equation is called an HPV. The habit

plane equation describes the ‘approximately compatible’

interface that forms between the austenite and the twinned

martensite microstructures. This interface, called the habit

plane, has a normal m̂m, and the vector b is called the shape

strain. The habit plane components can be calculated using a

similar eigenvalue approach as was performed for the twin

elements. This approach is based upon propositions of Ball &

James (1987) and can be found in the work of both Hane &

Shield (1999) and Bhattacharya (2003). Note the added

rotation R̂R that must be applied to the twinned martensite

microstructure. This extra necessary rotation, which will be

applied to Uj and RUi, can then be calculated using equation

(8). For each twin pair that satisfies the twinning equation,

there are up to four possible habit plane solutions, denoted as

bI�, m̂m
I�

, R̂R
I�

, bIþ, m̂m
Iþ

, RIþ, bII�, m̂m
II�

, R̂R
II�

and bIIþ, m̂m
IIþ

,

R̂R
IIþ

. (Not all possible twin pairs will have a solution to the

habit plane equation.)

The notation used to describe HPV types in this article is

the same as that used by Ball & James (1987), Bhattacharya

(2003), Hane & Shield (1999), where I or II refers to a rational

twin plane or a rational twinning shear direction, respectively,

and (þ) or (�) refers to the sign of the constant � as defined

by, e.g., Hane & Shield (1999), Bhattacharya (2003).

C2.4. Maximum transformation work criterion. The trans-

formation twinning strain is the strain observed when an

austenite crystal fully transforms to a martensite HPV (Bucsek

et al., 2016). Summarizing the derivations given by Stebner et

al. (2013) and Bucsek et al. (2016), this strain can be calculated

from the habit elements as follows. The deformation gradient

F0 that takes the austenite lattice to the twinned martensite

lattice is a simple shear and can be defined as in equation (9),

where, again, b is called the shape strain and m̂m is the habit

plane normal (see Appendix C2.3). The habit elements are

typically defined in the cubic orientation of the cubic basis

(Hane & Shield, 1999), so this deformation is expressed in the

cubic lattice frame, or the cubic crystal coordinate system in

Fig. 13. To express F0 relative to the laboratory coordinate

system, a transformation from the crystal coordinate system

to the laboratory coordinate system must be applied. In

diffraction, this transformation is the measured cubic orien-

tation OA (Bernier et al., 2011), so the transformation is given

by equation (10). The transformation twinning strain can then

be written in terms of the habit elements using equation (11).

The transformation work, W, for some stress state, r, is then

given by equation (12). The maximum transformation work

criterion states that the HPV that produces the largest trans-

formation work is the most favorable and likeliest to form

(James, 1986; Bhattacharya, 2003; Zhang et al., 2000). For an

alloy that has n possible HPVs, the maximum work criterion is

given by equation (13). Note that, for cases of uniaxial tension,

this degenerates to a criterion of producing the maximum

strain in the loading direction.

C2.5. Orientation conversions. For each HPV, full

descriptions of the martensite lattices on either side of the

twin plane within the HPV can be found by combining

equations (1), (6) and (8). For cubic-to-monoclinic transfor-

mations where the cubic lattice vectors are given by

c1 ¼ a0f100g, c2 ¼ a0f010g, c3 ¼ a0f001g, the martensite lattice

description that results is shown in equation (14). Notice that

the small rotation Q from equation (1) is not included. This is

because the twin and habit relations were formed using only

the pure stretch (Bain) matrices; thus, the rotations R̂R and R

were derived using only the Bain matrices. It is important to

use the appropriate R45 and T matrices depending on which

CVs are present, as dictated by equations (2)–(4).

At this point, the monoclinic lattice descriptions resulting

from equation (14), m01;2;3, do not necessarily follow a

conventional monoclinic lattice vector convention. For

example, one common lattice vector convention for a mono-

clinic crystal system is m1 ¼ af100g, m2 ¼ bf010g,

m3 ¼ cfcos �0 sin �g, where a< b< c and � 6¼ 90�. The

deformations R̂RRUi and R̂RUj might transform the lattice

vectors so that, for example, k m01 k > k m02 k or

m03 ¼ �cðcos�0 sin �Þ. In other words, these descriptions

accurately describe the lattice, but do not construct the lattice

vectors in a way that is crystallographically conventional. The

following procedure outlines how to convert the martensite

lattice descriptions m01;m02;m03 to a standard crystallographic

lattice vector system m1;m2;m3, assuming all of the twin and

habit elements have already been calculated.

A martensite lattice description, m01;m02;m03, resulting from

applying equation (14) can be converted to a conventional

orientation, O, with a series of three ‘fixes’. Several such

transformations could be derived; here we chose the one that

was most logical in our work. The first step is to check the

ordering of vector magnitudes and, if required, reorder them

so that k m01 k < k m02 k < k m03 k. The second step is to

check the sign of the angle between m01 and m03 and, if

required, reverse the direction of m03 (i.e. m03 ¼ �m03) so that

cos�1½ðm01 	m
0
3Þ= k m01 kk m03 k
 = 90�. The monoclinic orien-

tation, OM, can now be calculated as the rotation component

of the deformation that takes the conventional lattice vectors

m1;m2;m3 to the calculated lattice description m01;m02;m03.

This can be done through polar decomposition [equations (15)

and (16)], where F must be converted to principal component

form to perform equation (16). The third and final step is

to check the determinant of OM and, if required, remove

any inversion from the operation. In other words, if

detðOMÞ ¼ �1, set OM ¼ �OM such that detðOMÞ ¼ þ1. This

must be done for both CVs i and j for each HPV pair. The

resulting orientations do not change atomic positions but are

now written with respect to the conventional monoclinic

lattice vector choices for monoclinic space groups.
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C3. Unique HPV orientations

For the cubic-to-monoclinic transformation in NiTi, there

are 192 theoretically possible HPVs. Each of these HPVs

results in two monoclinic CV orientations (384 total CV

orientations). These orientations are unique with respect to

each HPV. In other words, the two monoclinic orientations

that occur in one HPV do not occur together in any other

HPV. The uniqueness of the CV orientations within each HPV

is shown in the pole figures of Fig. 16. The poles are colored so

that blue corresponds to the ith orientation in an HPV and

orange corresponds to the jth. Although many of these

orientations appear to be closely oriented, they are sufficiently

distinct by diffraction measures. In this example, the most

closely orientated orientations are misoriented by 0.5�. Most

ff-HEDM analyses can distinguish crystallite orientations

within an uncertainty of approximately 0.01�, though these

will be functions of the instrumentation, the choices made in

data collection resolution, the calibration measurement and

analysis software options (Bernier et al., 2011; Oddershede et

al., 2010; Sharma et al., 2012). In the cases where it is not

possible to statistically distinguish between two HPV solu-

tions, correlating the added criteria of relative twin volume

fractions f and ð1� f Þ with the intensities (volumes) of the

grains in the ff-HEDM data will assist in uniquely identifying

the correct HPV. This is demonstrated in the main body of the

article. It is possible that for higher-symmetry martensites, or

even different materials, this could be an issue in applying our

forward model, so one must check these numbers carefully in

studying other materials.

C4. Equations

m01;2;3 ¼ QUiR45Tc1;2;3 ð1Þ

R45 ¼

1 0 0

0 21=2 21=2

0 �21=2 21=2

0
@

1
A; T ¼

1 0 0

0 21=2 0

0 0 21=2

0
@

1
A ð2Þ

R45 ¼

21=2 0 �21=2

0 1 0

21=2 0 21=2

0
@

1
A; T ¼

21=2 0 0

0 1 0

0 0 21=2

0
@

1
A ð3Þ

R45 ¼

21=2 21=2 0

�21=2 21=2 0

0 0 1

0
@

1
A; T ¼

21=2 0 0

0 21=2 0

0 0 1

0
@

1
A ð4Þ

RUi �Uj ¼ a� n̂n ð5Þ

R ¼ ða� n̂nþUjÞU
�1
i ð6Þ

R̂R½f RUi þ ð1� f ÞUj
 � I ¼ b� m̂m ð7Þ

R̂R ¼ ðb� m̂mþ IÞ½f RUi þ ð1� f ÞUj

�1

ð8Þ

F0 ¼ Iþ b� m̂m ð9Þ

F ¼ OAF0OT
A ð10Þ

"transf ¼
1

2
ðFTF� IÞ ð11Þ

W ¼ r : """transf ð12Þ

max
i¼1;...n

r : """transf
i ¼ max

i¼1;...n
r̂r : """transf

i ð13Þ

m01;2;3i
¼ R̂RRUiR45Tc1;2;3; m01;2;3j

¼ R̂RUjR45Tc1;2;3 ð14Þ

F ¼ ðm01 m02 m03Þ ðm1 m2 m3Þ
�1

ð15Þ

U ¼ ðFTFÞ1=2; OM ¼ FU�1: ð16Þ
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Phys. 51, 1833–1834.

Miller, M. P. & Dawson, P. R. (2014). Curr. Opin. Solid State Mater.
Sci. 18, 286–299.

Miyazaki, S., Kimura, S., Otsuka, K. & Suzuki, Y. (1984). Scr. Metall.
18, 883–888.

Ni, X., Greer, J. R., Bhattacharya, K., James, R. D. & Chen, X. (2016).
Nano Lett. 16, 7621–7625.

Nishida, M., Okunishi, E., Nishiura, T., Kawano, H., Inamura, T., Ii, S.
& Hara, T. (2012). Philos. Mag. 92, 2234–2246.

Nishida, M., Wayman, C. M. & Chiba, A. (1988). Metallography, 21,
275–291.

Norfleet, D. M., Sarosi, P. M., Manchiraju, S., Wagner, M. F. X., Uchic,
M. D., Anderson, P. M. & Mills, M. J. (2009). Acta Mater. 57, 3549–
3561.

Nye, J. F. (1985). Physical Properties of Crystals: Their Representation
by Tensors and Matrices. New York: Oxford University Press.

Obstalecki, M., Wong, S. L., Dawson, P. R. & Miller, M. P. (2014). Acta
Mater. 75, 259–272.

Oddershede, J., Schmidt, S., Poulsen, H. F., Sørensen, H. O., Wright, J.
& Reimers, W. (2010). J. Appl. Cryst. 43, 539–549.

Onda, T., Bando, Y., Ohba, T. & Otsuka, K. (1992). Mater. Trans. JIM,
33, 354–359.

Otsuka, K. & Ren, X. (2005). Prog. Mater. Sci. 50, 511–678.
Otsuka, K., Sawamura, T. & Shimizu, K. (1971). Phys. Status Solidi A,

5, 457–470.
Otsuka, K. & Wayman, C. M. (1998). Shape Memory Materials.

Cambridge University Press.
Pagan, D. C. & Miller, M. P. (2014). J. Appl. Cryst. 47, 887–898.
Pagan, D. C. & Miller, M. P. (2016). Acta Mater. 116, 200–211.
Pagan, D. C., Shade, P. A., Barton, N. R., Park, J.-S., Kenesei, P.,

Menasche, D. B. & Bernier, J. V. (2017). Acta Mater. 128, 406–
417.

Paranjape, H. M., Manchiraju, S. & Anderson, P. M. (2016). Int. J.
Plast. 80, 1–18.

Paranjape, H. M., Paul, P. P., Amin-Ahmadi, B., Sharma, H., Dale, D.,
Ko, J. Y. P., Chumlyakov, Y. I., Brinson, L. C. & Stebner, A. P.
(2018). Acta Mater. 144, 748–757.

Paranjape, H. M., Paul, P. P., Sharma, H., Kenesei, P., Park, J.-S.,
Duerig, T. W., Brinson, L. C. & Stebner, A. P. (2017). J. Mech. Phys.
Solids, 102, 46–66.

Paul, P. P., Paranjape, H. M., Amin-Ahmadi, B., Stebner, A. P.,
Dunand, D. C. & Brinson, L. C. (2017). Mater. Sci. Eng. A, 706,
227–235.

Poulsen, H. F. (2004). Three-dimensional X-ray Diffraction Micro-
scopy: Mapping Polycrystals and Their Dynamics. Berlin: Springer.

Poulsen, H. F. (2012). J. Appl. Cryst. 45, 1084–1097.
Poulsen, H. F., Nielsen, S. F., Lauridsen, E. M., Schmidt, S., Suter,

R. M., Lienert, U., Margulies, L., Lorentzen, T. & Juul Jensen, D.
(2001). J. Appl. Cryst. 34, 751–756.

Schmidt, S. (2014). J. Appl. Cryst. 47, 276–284.
Schuren, J. & Miller, M. (2011). J. Strain Anal. Eng. Des. 46, 663–681.
Schuren, J. C., Shade, P. A., Bernier, J. V., Li, S. F., Blank, B., Lind, J.,

Kenesei, P., Lienert, U., Suter, R. M., Turner, T. J., Dimiduk, D. M.
& Almer, J. (2015). Curr. Opin. Solid State Mater. Sci. 19, 235–
244.

Sedmák, P., Pilch, J., Heller, L., Kopeček, J., Wright, J., Sedlák, P.,
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