ТЕЗИСЫ ДОКЛАДОВ

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ

«Физическая мезомеханика. Материалы с многоуровневой иерархически организованной структурой и интеллектуальные производственные технологии»,

посвященная 90-летию со дня рождения основателя и первого директора ИФПМ СО РАН академика Виктора Евгеньевича Панина

в рамках

Международного междисциплинарного симпозиума «Иерархические материалы: разработка и приложения для новых технологий и надежных конструкций»

5-9 октября 2020 года Томск, Россия

> Томск Издательство ТГУ 2020

Секция 4. Научные основы разработки материалов с многофазной иерархически организованной структурой, в том числе для экстремальных условий эксплуатации

DOI: 10.17223/9785946219242/145

ЭФФЕКТЫ ПАМЯТИ ФОРМЫ И СВЕРХЭЛАСТИЧНОСТИ В ВЫСОКОПРОЧНЫХ МОНОКРИСТАЛЛАХ FeNiCoAlX (X=Ti, Nb, Ta, Nb+Ti)

¹ <u>Чумляков Ю.И.</u>, ¹Киреева И.В., ¹Куксгаузен И.В., ¹Победенная З.В., ¹Поклонов В.В., ²P. Krooß, ²T. Niendorf, ²C. Lauhoff, ²M. Vollmer

¹Сибирский физико-технический институт НИ Томского государственного университета, Томск

²Institute für Werkstofftechnik, Universität Kassel, Kassel, Germany

Термоупругие обратимые мартенситные превращения (МП) из высокотемпературной Γ ЦК (γ) фазы (аустенит) в низкотемпературную ОЦТ (α') фазу (мартенсит) происходит при охлаждении и нагреве в свободном состоянии и под нагрузкой в новых высокопрочных неэквиатомных высокоэнтропийных сплавах Fe-28%Ni-17%Co-11.5%Al-2.5X (X=Ti, Nb, Ta, Ti+Nb) (ат. %), содержащих наноразмерные частицы γ' -фазы (атомноупорядоченная по типу L1 $_2$ структура на основе Γ ЦК решетки) и β -фазы (атомноупорядоченная по типу B2 – структура на основе ОЦК решетки).

Установлено, что в исследованных кристаллах величина деформации превращения $\epsilon_{\rm np}$, механический $\Delta \sigma$ и термический ΔT гистерезис зависят от структуры нанокомпозитов — размера и объемной доли частиц γ' -фазы, ориентации кристаллов и способа деформации растяжения/сжатия, величины тетрагональности α' -мартенсита c/a (c, a — параметры решетки мартенсита). Показано, что выделение наноразмерных частиц γ' -фазы размером d≤4 нм в [001]- кристаллах во всех исследованных сплавах Fe-28%Ni-17%Co-11.5%Al-2.5X (X=Ti, Nb, Ta, Ti+Nb) при растяжении приводят к аномально высоким значениям обратимой деформации $\epsilon_{\rm of}$ = 10–13.5% и высоким значениям $\Delta \sigma$ и ΔT . С ростом d до 10–15 нм обнаружено уменьшение $\epsilon_{\rm of}$ до 5.5–8.7%, $\Delta \sigma$ до 180–300 МПа и ΔT до 30–120К.

Установлено, что при одноступенчатом старении при 873К в течение 4, 6, 8 часов происходит выделение частиц γ' -фазы и температуры γ - α' МП увеличиваются с ростом времени старения. Разработаны режимы двухступенчатого старения, когда на первой ступени старение производится в печи с быстрой закалкой в воду, а на второй ступени старение проводится при нагреве за 40 минут до температуры 873К в свободном состоянии или под нагрузкой с последующей выдержкой в течение 2 или 4 часов и с охлаждением за 30 минут до 373К. Показано, что двухступенчатое старение приводит к росту температуры начала прямого МП при охлаждении M_s на 80-100К по сравнению с одноступенчатым старением. Электронно-микроскопические исследования показали, что при одноступенчатом старении выделяется только γ' -фаза, а при двухступенчатом старении происходит выделение частиц двух фаз γ' - и β -фазы. Показано, что двухступенчатое старение под нагрузкой приводит к появлению двойного эффекта памяти формы, который отсутствует при одноступенчатом старении. Сверхэластичность наблюдается в широком температурном интервале от M_s до A_f +(40–60)К (A_f – температура конца обратного МП при нагреве).

Предложены механизмы влияния частиц γ' - и β -фазы на температуры γ - α' МП, температурный интервал сверхэластичности, величину механического $\Delta \sigma$ и термического ΔT гистерезиса.

Работа выполнена при финансовой поддержке гранта РНФ № 19-49-04101 и гранта DFG № 405372848 (KR 5134/1-1).