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Abstract. Contrasting metamorphism in adjacent terranes is distinctive of large-scale tectonic 

events that include both collisional and rifting scenarios. When one of those terranes is 

characterized by the presence of high-pressure rocks, it is more likely to be related to 

collisional settings, and commonly in locations close to the suture. This contribution shows an 

example of the aforementioned situation in the Variscan orogenic belt of NW Iberia, where a 

tectonic slice with high-pressure metamorphism is above rocks that underwent Barrovian 

metamorphism. The two involved terranes are known as lower allochthon and parautochthon, 

respectively. The lower allochthon recorded the continental subduction (blueschist- and 

eclogite-facies conditions; [1,2]) of the most external part of the north Gondwana passive 

margin during the late Devonian (ca. 370-365 Ma; [1, 3]) at the beginning of the Variscan 

collision, followed by a buoyancy-driven exhumation triggered by the extensional collapse of 

the orogenic pile. Contrarily, the underlying parautochthon underwent crustal thickening, 

resulting in a medium-pressure Barrovian-type metamorphism that possibly was followed by a 

higher temperature/lower pressure Buchan-type metamorphism that may be related to tectonic 

exhumation and/or erosion [cf. 4]. 

1.  Introduction 

Investigating the metamorphic evolution of the most representative areas of an orogen, at a regional 

scale, includes the study of the processes involved in the subduction and exhumation of the terranes 

that form the suture realm. This is an essential task that aids deciphering the evolution of the whole 

orogenic edifice. 

Within this general context, the Riás Schists [5] represent a metasedimentary sequence that 

experienced intermediate pressure (MP) Barrovian metamorphism [cf. 5, 6]. This sequence is located 

structurally below a thick sheet of high-pressure rocks (HP; [1, 2, 7, 3, 8, 9]). Both units are separated 

by a tectonic contact interpreted as an east directed thrust [5] or as a top-to-the-west extensional 
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detachment [6]. However, the metamorphic gap between the MP and the HP metamorphic rocks has 

not yet been described in detail.  

This contribution aims to characterize the processes that led to this present-day geometry using 

multiequilibrium thermobarometry. The main objective of this study is to decipher the pressure–

temperature evolution (P–T) of the Riás Schists and describe the relationship between the two units 

with distinct metamorphism, within the framework of the collision, and subsequent evolution, of the 

Variscan orogen in the NW Iberian Massif. 

2.  Geological background   

The Riás Schists outcrop in NW Iberia, in the so-called Galicia – Trás-os-Montes Zone (Figure. 1A; 

GTOMZ; [10, 11]), in the westernmost sector of the European Variscan Belt. The GTOMZ constitutes 

a large allochthonous sheet superimposed over the Central Iberian Zone (CIZ; [12,13]) and comprises 

(i) the structurally lower Schistose Domain [10] and (ii) the upper, overimposed, Allochthonous 

Complexes [11]. 

The Schistose Domain includes a thick sequence (ca. 7-8 km) of siliciclastic metasediments and 

felsic metavolcanic rocks Ordovician-Devonian in age, interpreted as a section of the northernmost 

continental margin of Gondwana during the Paleozoic, tectonically transported to the innermost areas 

of the continent [14]. 

 

 

Figure 1. (A). Distribution of the different domains of the Iberian Massif (simplified by [12, 10, 15]). SD-

Schistose Domain; GTOMZ-Galicia – Trás-os-Montes Zone; CZI-Central Iberian Zone. (B) Simplified 

geological map of the study area (modified from [16]). PS; pseudomorph 

 

Although the Paleozoic sequence of the Schistose Domain and the CIZ show different 

characteristics, their stratigraphy and their similar variscan tectonothermal history, suggest a close 

paleogeographic relation [17, 10, 18, 19, 20, 21]. For this reason, the Schistose Domain cannot be 

considered an exotic terrain and therefore, would constitute the relative autochthon, or parautochthon 

[22], of the Allochthonous Complexes. In this contribution, the nomenclature proposed by Ribeiro et 

al. [22] will be used. 

The Allochthonous Complexes were thrusted over the Schistose Domain and consist on a 

succession of units with different affinities that have undergone large displacements becoming part of 

a huge nappe stack during the Variscan collision [23].  The succession of allochthonous units is 

interpreted as terranes formed in a different palaeogeographic setting, including continental margins 

(lower allochthon), consumed oceanic areas (middle allochthon) and magmatic arcs (upper 

allochthon). After experiencing a polyphasic Varican tectonothermal evolution, an intense thinning 

and a strong dismemberment of the original pile, the evolution of the Allochthonous Complexes 

culminated with the exhumation of their units [cf. 15, 24, 25]. Currently, they represent residual mega-
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klippen of the initial stacking preserved in late synforms exposed in the NW Iberian Massif of Spain 

(Cabo Ortegal, Órdenes and Malpica-Tui Complexes) and Portugal (Bragança and Morais 

Complexes), as well as in different massifs across central and western Europe. 

3.  The Riás Schists 

In the vicinity of the Malpica-Tui Complex (MTC;[26]) three cartographic units have been 

distinguished in the parautochthon [cf. 6]: (i) medium grade schists, whose most representative 

outcrop is located to the east of the MTC, from the Riás Beach to Chan de Razo Cape; (ii) the para-

derivated high-grade migmatites, which are best found in the area of the Mount Neme (SW of the Riás 

Beach); and (iii) the glandular orthogneisses that outcrop to the west of the MTC, in the San Adrián 

Cape, and in the coastal section of the southern margin of the Ría de Arousa.  

The study area includes the westernmost outcrops of the Riás Beach, located to the southeast of 

Malpica de Bergantiños (A Coruña, Galicia; Spain), on the popularly known Costa da Morte (Figure. 

1B). The most characteristic stratigraphic sequence of the parautochthon in the studied area, from the 

structurally lower levels to the upper ones, can be recognized from Chan de Razo Cape to the Riás 

Beach, respectively. This sequence includes fine-grained siliciclastic rocks metamorphosed into 

micaschists and interbedded metasandstones, black metasiliceous rocks (lidytes) and graphite-rich 

schists. In the highest part the sequence (which is the aim of this study), the Riás Schists depict a 

stretching lineation developed on the schistosity planes. The main foliation observed is a tectonic 

banding defined by alternating quartz ribbons (mm to cm thick) and mica-rich domains, which include 

syntectonic andalusite (sample MT26) and occasional garnet (sample MT7). Frequently, decimetric to 

metric quartzite levels with little lateral continuity and quartz veins are present. Subvertical to steep 

west-dipping folds, with associated crenulation cleavage, affect the main foliation and the stretching 

lineation. Isoclinal folds appear when appropriate markers with high competence contrast are present. 

Throughout all the metamorphic sequence, metric to decametric-scale boudins and bodies of 

leucogranite are frequent (cf. [5, 6]; Figure. 2). 

The Riás Schists show a chemical composition of typical pelites [e.g. 27] and a medium grained 

porphyro-lepidoblastic texture. Quartz and planar minerals constitute more than the 50% (up to 80% in 

MT7) of the modal proportion of the studied samples. In addition, andalusite (≈ 40%; MT26), 

plagioclase (≈ 20%), garnet (≈ 15%; MT7), staurolite (≈ 10%), ilmenite (<5%) and accessory 

magnetite, tourmaline, carbonates and apatite (<2 %) are observed.  

The studied samples represent the two most characteristic lithological types of the metasedimentary 

sequence (Figure. 2). Garnet-bearing micaschists (MT7) are the least abundant lithological type and 

outcrops a few meters from the basal shear zone that separates the parautochthon and the MTC.  This 

sample is an aluminous metapelite (26.34% Al2O3) rich in FeOT (8.75%). Andalusite-bearing 

micaschists (MT26) appear structurally below the garnet-bearing micaschists and are calcium-poor 

metapelites (CaO = 0.06%).  

This chemical/mineralogical variation may be due to compositional differences in their respective 

protoliths or because each lithology underwent a different metamorphic evolution owing their distinct 

location in the original pile. Nonetheless, currently both samples appear side by side and interbedded 

without apparent lithological change at the outcrop scale. Moreover, levels with garnet or andalusite 

are scarce and are concentrated near the shear zone in parallel layers that are centimeters apart from 

each other. In this outcrop no evidence has been found that suggests that both samples could be 

located at different structural levels. These hypotheses will be analyzed in the Discussion section.  

Both samples show a subparallel mineralogical banding formed by alternating phyllosilicates 

(muscovite, biotite and chlorite) and quartz, which gives the rock a planar-planolinear fabric and 

define the main foliation, which is interpreted to be a S2 schistosity. The first deformation event 

registered in this lithology is interpreted to be a relict S1, defined by inclusions of small sized minerals, 

out of the microprobe beam resolution, within the core of garnet porphyroblasts (quartz and rutile 

needles) and staurolite crystals (quartz and unrecognized phases).  
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Figure 2. Idealized lithostratigraphic column of the study area which includes the coastal section between Chan 

de Razo Cape and Falcoeira Cape (location of the outcrop: N43º17'35.88", W8º44'38.65"; (modified from [5, 3]). 

PS: pseudomorph 

 

The main fabric present in the matrix described as a S2 foliation includes the rim of the garnet 

porphyroblasts, staurolite, muscovite, biotite, rutile partially/or completely replaced into ilmenite, 

magnetite, chlorite and quartz, together with the development of syntectonic andalusite. Finally, the 

post-S2 foliation includes andalusite and plagioclase among secondary muscovite, biotite, chlorite, 

quartz and accessory tourmaline, Fe/Ti oxides, apatite and carbonate. Post-S2 foliation is associated 

with the aforementioned crenulations and is characterized by the presence of C’ shear bands affecting 

S2, symmetrical pressure tails and shadows, quartz ribbons and mica fish. Figure. 3 includes a 

comprehensive summary of the relation between the described metamorphic events, fabrics and 

parageneses as well as the blastesis-deformation relations recognized in the studied samples. 
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Figure 3. Schematic representation of blastesis-deformation relations in the Riás Schists. g, garnet 

4.  Thermobarometry 

Multiequilibrium termobarometry using P–T pseudosections, integrated within a comprehensive 

petrological study, suggests that M2 represents the metamorphic peak, the deepest burial depth, and it 

has been estimated at minimum pressures of ca. 6 Kbar and 580 ºC in garnet-micaschists (Sample 

MT7), which would be equivalent to ca. 20 km burial depth. The retrograde stage records 

decompression from the kyanite stability zone in the amphibolite facies, to the andalusite stability 

zone in the greenschist facies. Peak metamorphic conditions for M2 in andalusite-bearing micaschists 

suggest very similar values, minimum pressures of ca. 5 kbar and 570 ºC (Figure. 4). 

P–T pseudosections have been calculated in the chemical system MnNCKFMASHTO using 

Theriak-Domino (v. 04.02.2017; [28]) and the internally consistent thermodynamic dataset of Holland 

and Powell [29]. See [30] for further details. 

Calculated models also predict that the stability fields of garnet and andalusite for the effective 

compositions used do not coexist, as observed at outcrop and thin section scales. 

5.  Discussion and Conclusions 

5.1.  P˗T Conditions 

Regardless of the interpretation of a shared or separate metamorphic evolution of both lithological 

types, the results obtained from P–T pseudosections (Figure. 4) agree natural observations in the 

studied thin sections.  

If both lithological types experienced the same structural and metamorphic evolution, and therefore, 

the growth or absence of certain phases is determined by their bulk rock chemistry, based on textural 

observations, three correlatable foliations can been identified in the Riás Schists: S1, preserved in the 

core of garnet porphyroblasts and staurolite crystals; the matrix foliation S2, that includes the garnet 

porphyroblasts rim, staurolite, muscovite, biotite, rutile/ilmenite, magnetite, chlorite and quartz, 

together with the development of syntectonic andalusite; and post-S2 that comprises andalusite and 
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albitic plagioclase among secondary muscovite, biotite, chlorite, quartz and accessory tourmaline, 

Fe/Ti oxides, apatite and carbonate. The Riás Schists underwent crustal thickening, resulting in a 

medium-pressure Barrovian-type metamorphism that possibly was followed by a higher 

temperature/lower pressure Buchan-type metamorphism, which may be related to tectonic exhumation 

and/or erosion [cf. 4]. The complexity involved in subtracting zoned garnet, or andalusite 

porphyroblasts, from the bulk rock composition analyzed by X-ray fluorescence, to calculate different 

effective or reactive compositions for each metamorphic event, exceeded the objectives of the research 

carried out for this study. For this reason, the M1 event has not been quantified and the pressure and 

temperature values obtained for M2 and post-M2 may be underestimated. It is then necessary to deepen 

into these aspects in order to better understand this terrain evolution.  

 

 
 

Figure 4. Summary of the peak P–T conditions and P–T paths of the Ceán Schists [7, 3] and the Riás Schists 

[30]. Metamorphic facies and tectonic settings are shown in terms of pressure and temperature conditions inside 

the Earth. Modified after López-Carmona [16]. 

 

On the other hand, if each of the lithological types described reflects a different structural position 

in the original pile and therefore, recorded different metamorphic conditions, garnet and andalusite 

never coexisted in equilibrium in the same paragenesis. Thus, in the structurally upper sequence (to 

the W; sample MT7) garnet- and staurolite-Barrovian zones may be distinguished, whereas the 

structurally lower sequence (to the E; sample MT26) may be characterized by a high-temperature/low-

pressure Buchan-type metamorphism in the andalusite zone.  
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Given the disposition of these lithologies in the studied outcrop, and their proximity, this would 

imply justifying such an important condensation of the original pile and the presence of a major 

tectonic detachment, which is, to our knowledge, not the case. 

5.2.  Ceán Schists vs. Riás Schists: 

The Ceán Schists outcrop in the MTC, to the west of the study area. These schists represent the 

westernmost margin of Gondwana subducted during the Variscan orogeny (in Devonian times; [1, 3]). 

They experienced a metamorphic evolution in the blueschist-facies conditions, reaching ca. 70 km 

deep (Pmax ~ 22 kbar; Figure. 4; [7]). Estimations made in the Riás Schists, and the spatial relationship 

between both lithologies (Figure. 1B) suggest that they formed part of the same continental margin at 

the beginning of the Variscan orogeny but experienced very different tectonothermal evolutions due to 

their putative position in the passive margin and hence, in the orogenic wedge, despite their proximity 

in their nowadays current geographic location. 
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