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Abstract—We show that hyperexponential and hyper-Erlang 

distributions reproduce themselves by composition. We find new 
formulas for probability densities and distribution functions of 
Gamma statistics sums. 
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I. INTRODUCTION 

Gamma distribution [1-3] is one of the most common 
probabilistic distributions in the statistical radio physics and 
radio engineering [4, 5]. Particularly, by means of Gamma 
distribution, we can describe the effects at the outputs of the 
typical signal processing systems receiving the discrete 
Gaussian processes [5], multifrequency signals [6], radiation 
from complex radio sources [7], etc. The statistical properties 
of Gamma distribution can be described by means of the 
probability density 
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is the Heaviside function;    
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Gamma function [8]. Generally, both parameters of Gamma 
distribution are real. 

The special case (under 1A ) of Gamma distributions is 
the exponential distribution. The probability density of the 
exponential distribution has the form of [2] 
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As another special case, the Erlang distribution can be 
introduced with the probability density [3] 
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which is Gamma distribution under integer values of the 
second parameter. The sums of squared absolute values of 
independent complex Gaussian variables (statistics [1]) with 
zero mean values and identical dispersions obey the Erlang 
distribution. Thus, the Erlang distribution is also frequently 
found in the reliability theory [1, 2]. 

Generalization of the exponential distribution is the 
hyperexponential distribution [2] with the probability density 
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where M is an integer parameter of the hyperexponential 
distribution, while  M ,,, 21 


 and 

 Maaaa ,,, 21 
  are real parameters of the 

hyperexponential distribution. Similarly, the hyper Gamma and 
hyper-Erlang distributions can be introduced with the 
probability densities 
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correspondingly. Here  MAAAA ,,, 21 

  and 

 MKKKK ,,, 21 

 . 

It is well known that some statistical distributions (such as 
normal, chi-square, binomial, Poisson) reproduce themselves 
by composition. Gamma distribution has a reproducing 
property by the second parameter only [3]: if two independent 
Gamma statistics have identical first parameters, then their sum 
also has Gamma distribution. The aim of the present paper is to 
define the statistical properties of the sums of two independent 
Gamma statistics under arbitrary parameter values as well as 
some sums related to them. 
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II. EXPONENTIAL STATISTICS 

The probability density  baxwee ,;  of the sum of two 
independent exponential statistics with the parameters a and b 
can be found as the convolution of two probability densities of 
the form (2). As a result, we obtain 
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We then compare Eqs. (4) and (6) and see that the sum of 
the two independent exponential statistics has the 
hyperexponential distribution. It is simple to show also that the 
distribution function 
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corresponds to the probability density (6). 

III. HYPEREXPONENTIAL STATISTICS 

It is obvious that the probability density 
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Thus, it can be argued that the set of the hyperexponential 
probability densities is closed with respect to the convolution 
operation. That means that hyperexponential probability 
distribution replicates itself by composition. 

IV. ERLANG AND EXPONENTIAL STATISTICS 

By calculating the convolution of the probability densities 
(2) and (3), we find the expression for the probability density 
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exponential statistics that appear to have the form of 
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where a and K are the Erlang statistics parameters, b is the 
exponential statistics parameter. 

We compare Eqs. (5) and (8) and see that the sum of 
independent Erlang and exponential statistics obeys hyper-
Erlang distribution. The distribution function corresponding to 
the probability density (8) takes the form of 
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We can see that the formulas (6) and (7) can be obtained from 
Eqs. (8) and (9) as a special case while 1K . 

Based on Eqs. (8) and (9), it is easy to write the expressions 
for the probability density and the distribution function of the 
sum of hyper-Erlang and hyperexponential statistics. 

V. GAMMA AND EXPONENTIAL STATISTICS 

The probability density of the sum of independent Gamma 
statistics with the parameters a and A and exponential statistics 
with the parameter b can be found as the convolution of the 
probability densities (1) and (2) and it has the form of 
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Here      axAxAaxf ,P1,;   is the distribution function 

corresponding to the probability density (1), 
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Gamma function [8]. 

The distribution function corresponding to Eq. (10) can be 
presented in the form of 
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while the probability density and the distribution function of 
the sum of independent hyper Gamma statistics with 
parameters  AaM
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VI. ERLANG STATISTICS 

From [3], we know the expression for the characteristic 
function of the Erlang distribution 
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where 1i  is the imaginary unit. 

The characteristic function of the sum of two independent 
statistics with the parameters a, K and b, L is the product of two 
characteristic functions of the form (13), that is, 
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In a specific case, from Eq. (14), we get 
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which means that the Erlang distribution is reproducible by the 
second parameter. 

Generally, the right-hand member of Eq. (14) can be 
presented in the form of the sum of common fractions [9], 
namely, 

 

 
   

 
   

 
   

 
    .

1! 

! 1

 ! 1
1

1! 

! 1

 ! 1
1

,,,;

1

1

















































L

l

l

LK

KL
K

K

l

l

LK

KL
L

EE

bia

ba

lL

lLK

baK

ba

aib

ab

lK

lLK

abL

ba

LbKa

 

(16) 
We now transform Eq. (16) into 
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and      11  maaaa m   is the Pochhammer symbol 
[8]. 

By applying the linear property of the Fourier transform, 
from Eq. (17), we can easily obtain the general expression for 
the probability density of the sum of two independent Erlang 
statistics: 

   

        , ,; ,,,,; ,,,

,,,,,,;

11 

















L

l
El

K

l
El

EE

lbxwLbKaJlaxwLbKaI

LbKaCLbKaxw

 (18) 

We compare Eqs. (5) and (18) and see that the sum of two 
independent Erlang statistics obeys the hyper-Erlang 
distribution. From this it follows that the sum of two 
independent hyper-Erlang statistics also has the hyper-Erlang 
distribution, that is, the hyper-Erlang distribution reproduces 
itself by composition. 

From Eq. (18), it is easy to obtain the expression for the 
distribution function of the sums of two independent Erlang 
statistics: 
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is the Erlang distribution function corresponding to the 
probability density (3). If we take into account Eq. (19), the 
expression (18) can be transformed into 
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VII. GAMMA AND ERLANG STATISTICS 

Let there be two independent statistics, one of which 
described by Gamma distribution with the parameters a, A and 
the other – by Erlang distribution with the parameters b, B. 
Then the probability density of their sum is the convolution of 
the probability densities (1) and (3). After simple, but though 
cumbersome, transformations we obtain 
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hypergeometric function (Kummer's function) [8]. 

The distribution function corresponding to Eq. (20) can be 
presented in the form of the finite sum: 
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In the specified case, when 1L , we obtain the expression 
(10) from Eq. (20) as well as the expression (11) from Eq. (21). 
Thus, the expression for the distribution function of the sum of 
hyper Gamma and hyper-Erlang statistics generalizes the 
formula (12). 

VIII. GAMMA STATISTICS 

The probability density of the sum of two independent 
Gamma statistics is determined by the formula similar to Eq. 
(20), namely, 
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As   10,,11 F  irrespective of α and β, from Eq. (22) it 
follows that 
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Implication of Eq. (23) is analogous to the meaning of Eq. (15): 
under ba   (and only in this case) the sum of two independent 
Gamma statistics has Gamma distribution. 

For the distribution function of the sum of two independent 
Gamma statistics, we managed to get the integral expression 
only, in the form of 
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It should be noted that the limits of integration and the 
subintegral function in Eq. (24) are such that the numerical 
computation by this formula is not difficult. 

IX. CONCLUSION 

Thus, we have found the new expressions for the sums of 
two independent random variables which obey Gamma, 
exponential or Erlang distribution. We can show that the set of 
hyperexponential probability densities, as well as the set of 
hyper-Erlang probability densities, are closed with respect to 
the convolution operation, while the set of hyper Gamma 
probability densities does not possess this property. 
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