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HEAVY TRAFFIC ANALYSIS OF A QUEUE WITH BATCH MMAP

A single-server queue with work conserving FIFO discipline is considered. The input process is a multiple marked.
Markovian arrival process governed by a continuous-time finite state Markovian chain. The service time distributions
of customers may be different for different arrival streams. The virtual waiting time is considered under a heavy
traffic. The probability distributions of virtual waiting time and state of the random environment are asymptotically
independent. The virtual waiting time is asymptotically exponential with the mean depending on the characteristics
of the modulated process.
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In this paper we consider a single-server work conserving queue with FIFO discipline and the following
characteristics. The arrival process is a multiple batch arrival flows of customers governed by a continuous
time finite state Markov chain. The service time distributions of customers may be different for arrival flows.
This model was considered for the first time in [1]. The most popular Markovian arrival flows of custom-
ers is introduced in [2]. There are two extensions of arrival process. One is batch introduced in [3] that
allows batch arrivals and the other is marked introduced in [4] that explicitly represents possibly correlated
process considered in this paper and in paper [1] is a further extension of MAP introduced in [2-4]. We
assume that the service time distributions of customers from respective arrival streams are different from
one another.

In this paper we consider asymptotic behavior of a stationary distribution of the virtual waiting time
and the state of a random environment under a heavy traffic. The asymptotic distribution of a stationary dis-
tribution of a virtual waiting time is an exponential with the mean depending on the parameters of random
environment. In the present study we prove a heavy traffic limit theorem for steady state virtual waiting time
for a model considered in [1]. We used analytical approach introduced in [6] which allows for a rigorous
mathematical analysis of the stationary characteristics under a heavy traffic. The remainder of the paper is
organized as follows. In section [2] we describe the model introduced in [1]. In section 3 we consider some
preliminary results. Section 4 is devoted to main results. In section 4 we find the mean value of the virtual
waiting time in a steady state, and there we show that the distribution of the environment becomes independent
of the virtual waiting time in a steady state under heavy traffic conditions. The limit distribution of the virtual
waiting time under heavy traffic conditions is an exponential distribution.

1. Model description

In this paper we consider a single sever queue with the following characteristics. Arrivals to the sys-
tem are from K arrival streams. We call customers from the k-th (k =1,2,---,K) arrival stream class k cus-

tomers. Customer arrivals are governed by a continuous-time Markov chain Z(t) . We assume that Markov
chain Z(t) has finite state space S={0,1,2,---,M} and is irreducible. The underlying Markov chain stais in

state ieS for an exponential interval of time with a mean value u,”. When the sojourn time in state i has
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elapsed with probability o; ;(0) the Markov chain Z(t) changes its state i to state j without arrivals. The
chain Z(t) changes its state i to state j and n customers of class k arrive simultaneously with probability
csk'i,j(n),(k efl2,---,K}, n=12,--) for convenience, let o;;=0 for all ieS. Then for all ieS

j=M k=K o
Y (5:;(0)+> > o, ;(n)=1.We assume that service time of class k customers are i.i.d. according to a
j=0 k=1 n=1

distribution H, (x) with a mean value h,, and a second moment v,. We need some notations to describe the
arrival process. Let C denote an (M +1)x(M +1) matrix whose (i, j)-th element (i, j €{0,1,2,---,M}) is

given by ¢ ;=-n;, if i=j and ¢;=c;;(O);, otherwise. Further, for ke{l2--,K} we define

D, (n),(n=12,--) as an (M +1)x(M +1) matrix whose (i, j)—th element (i, je{0,12,---M}) of
D,,,;(n) is given by D,;;(n)=o,;;(nN)w. Thus the counting process of arrivals is characterized by the set
of matrices {C,D,(n,),D,(n,),---,D, (n)}. Customers arrive in the following way. When a state transition
driven by D, (n) occurs, n customers of class k arrive simultaneously. On the other hand, when a state transi-

tion driven by C occurs, no customers arrive. We define D, (ke{l2,---,K}) and D as D, =2Dk(n),
n=1

k=K
D= z D, , respectively. Note that the infinitesimal generator of the underlying Markov chain is given by
k=1

C +D and (C+D)e=0, where e denotes a column vector whose elements are all equal to one. We denote

by m, the stationary probability vector of the underlying Markov chain and therefore = satisfies the equation
n(C+D)=0 and me =1. Because of the finite state space and the irreducibility of the underlying Markov

chain, = is uniquely determined. Note that the arrival rate A, of class kis A, :ZnnDk (n)e. We assume that

n=1

at least one element of D, is positive, so that A, >0 for all ke{L2,---,K}. Let p, denote the utilization

K
factor of class k customers, p, =, h,. Furthermore, we denote the overall utilization factor by p =Zpk. If
k=1

the utilization factor p <1 then all customers arriving to the system are eventually served. The goal of this
paper is to derive the asymptotic distribution of virtual waiting time under a heavy traffic, i.e., when p<1
and p—1, or e=1—p — 0. The virtual waiting time is equivalent to the amount of work in a system. Let

V(t) denote a random variable representing the stationary amount of work in a system (the total amount of
unfinished services of all customers in the system). We define F(x) as a (1, M +1) vector whose j-th ele-

ment represents P{V (t) <x,Z(t) = j}. The Laplace-Stiljes transforms (LST) of H,(x) and F(x) are denot-
ed by h (s) and ¢(s) respectively. Applying the results in [5], we obtain the LST ¢(s) of a distribution
function F(x)
¢(s) = SF(0)(sl +C +D(s))™, )
o« K o
where D(s) :_fe‘SXdD(x) =>">"D,(nh{(s). We assume that p;=Ap; and we will introduce the matrices
0

k=1 n=1
C° D.(n), D}, D° Q,Q° by the equations C =AC°, D, (n) =AD?(n), D, =AD?, D =AD",

Q=C+D,Q=xQ°. Further we will also assume that all parameters except for A are fixed, and A increases

K o
in such a way that &€ —> 0, or A —A° =(p°)™*, where p” =) > nD/}(n)he.

k=1 n=1
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2.Some preliminary results

Consider the continuous Markov chain Z(t) introduced in Section 1. Markov chain is with a finite
space S ={0,1,2,---,M}, the infinitesimal matrix Q=C + D and a stationary distribution = =(=n,,x,,---,7,,).
The set of equations with respect to unknown a,,a,,---,a,,

Qa= (niinDk(n)hke)e—iinDk(n)hke 2

k=1 n=1 k=1 n=1
always has a solution, since the stationary distribution = is orthogonal to the right side of this equation. We
will define matrices A and R. The matrix A is defined by the rows and columns with numbers 1,2,...,.M of
the matrix Q. The first raw and the first column of matrix R are equal to zero vectors, and next K rows and
K columns are from matrix A™. Then a matrix QR looks as follows: the first raw is equal to
(0,—ﬂ,...,—n—M) and the first column is equal to zero vector, and next elements form the identity matrix.
T, T,
For any vector x=(X,,X,,-*+,X,,) We have

XQR =x—X, X 3
Ty
The next equation
(3,8, ay) = R[(nZZnD (nhe)e - ZZnD (Mhe] (4)
k=1 n=1 k=1 n=1
define the solution to equation (2) when a, =0. Dividing both side of (2) by A we get
K K o«
Q%a=(n)_ > nD/(nhe)e—> > nD(mhe. (5)
k=1 n=1 k=1 n=1
And the solution to equation (2) is also a solution to equation (5). From (4) follows
K o K o
(3,8 ) = R°[(mY_ > nD; (Mh,e)e— > > nD; (Mhie]. (6)
k=1 n=1 k=1 n=1

3. The main results

The next theorem gives the mean value of a virtual waiting time in a steady state.
Theorem 1. The mean virtual waiting time EV is given by the formula

(1-p)EV == ZZnD (n)vkne+n(ZZnD (mh, —a+F(0)a, (7)

k =1 n=1 k=1 n=1
where a is a solution to equation (4) and

F(0)e=1—p. (8)
Proof. Considera LST ¢(s) of a vector F(x) =(F,(x), F,(X),..., F, (X)) defined by the equation
o(s)(sl +C + D(s)) = sF(0). 9)
where Res >0. We denote by D(s) the next sum ii D, (n)h/ (s) and rewrite equation (9) to be
PSIQ=9(S)(XD D, (MO (S) ~51) + SF(0). (10)

Post-multiplying both sides of equation (10) by vector e we have

Fe=pE)(1 -3 3 D, (L) (S)

k=1 n=1

(11)
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Taking the limit s — +0 of both sides of (11) and taking into account that ¢(0) == we get equation (8). Dif-
ferentiating both sides of (11) with respectto s at s=0 yields
K o
(EV, EV,,e EV (=YD D (n)hy e _—ZZnD (N)V, ,& (12)
k=1 n=1 k =1 n=1
for the mean value of a virtual waiting time EV, = E(V (t); Z(t) = n). Post-multiplying both sides of the equa-
tion (10) by the vector a we obtain

¢(s)Qa = S(P(S)(ZZHD (nN—"—

k=1 n=1
After differentiating this equation with respect to s at the pomt s=0 we have

1- h() _a+sF(0)a

(EVy EV, ... EVy )Qa = (> > 0D, (h, ~ )+ F(0)a. (13)

k=1 n=1
Now, summing (13) with (12) we get equation (7). Thus the theorem is proved.
Theorem 2. Under heavy taffic assumption
a) the random variables £V (t) and Z(t) are asymptotically independent;

b) the random variable V (t) is asymptotically exponential with the mean

ZZnDO(n)vk ne+ (ZZnDO(n)h —p’ha. (14)

k=1 n=1 k=1 n=1
where a is a solution to equatlon (2).
Proof: We consider equation (10)

K o
¢(5)Q = 0(8)(D_ D D, (ML~ h{(s)) —s1) +sF(0) .
k=1 n=1
Post-multiplying both sides of this equation by the vector e=(1,1,...,1)", taking into account that Qe =0 and
from (8) we get
K o
@)D D, (N)@-h{(s)—sl)e+es=0. (15)
k=1 n=1
Now, post-multiplying equation (10) by the matrix R, which was introduced in section 3, from (3) follows
the next equation

(S)_%( Vo) 3Dy (M1 ()~ SHR + SF(O)R. (16)

o k=1 n=1
Replacing the vector ¢(s) in the right hand side of equation (16) with the help of (16) we have the next
equation

o(s) = ‘PO()n[H(ZZD(n)a h'(s)) -SR] +5Y(s) (17)
( ) 1R + FOR[IH(Y Y D, (n)(@-h!(5)) ~s1)R]. Substituting

(17) into (15) we can express ¢,(s) as
A(s)

Py () =m, B()+B.(5) (18)
Where A(s) =se+sY (s)(ii D, (n)(1-h](s))—sl)e, B,(s) = —n(zK:i D (n)(1-h}(s))—sl)e,
B,(s) = —n(ii D, (nN)(1-h/(s))—sl )R(ii D (n)(1-h/(s))—sl)e. Now, replace s by e in
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K o
A(s),B,(s), B,(s) and A increases in such away that ¢ >0, A —>1"=(x» > DJ(mhe)™ =(p°) ™. Further

k=1 n=1
_h" n _ v
more, we use the next limits IimHOM =nh,, lim_, n(e5) ljnh"gs =<1 Then
€S (ss) 2
Aes) = 25 + £2 szY(ss)(ZZD (A=) (SS) “l)e,
k=1 n=1
K o K o o
B,(es)=es—m)_ > nD,(Mhees+mY > D, (n)(h (es) + nhes —1)e =g’s+ nzz D, (n)(h{ (es) + nh,es —1),
k=1 n=1 k=1 n=1 k=1 n=1
K& 1-h! 1-h/
B, (e5) = —ne?s* (Y. 3 D, () =2 (85) I)R(ZZD( y— k(&) (SS) “ e
k=1 n=1 k=1 n=1
From (18) follows
A(es)
m (es) =m, lim £’s =T 1
£—0 (Po — %0 £—0 (Bl(SS)-i- BZ(SS% — %0 1+ NS ’
K o _ K o K o«
where N =2i0nZZDf(n)vk‘n +—:)I(ZZnDE(n)hk -p’HR® 3> nD}(n)he—p°e). Using (6) we can
P k=1na1 P k=tna k=1 n=1
transform the parameter N to the form
T K o
nzz Dy ()Y, , +— (> nD¢(mh, —p°ha.
k=1 n=1 k=1 n=1
Finally, from (16) and (17) we get that there exists
. . @, (€S) 1
lim €s) =lim = .
£—>0 (P( ) £—0 TCO n nl-‘r NS

Thus the theorem is proved.
4. Conclusion

We studied the virtual waiting time of a queueing model introduced in [1]. We used the analytical
approach introduced in [6] and derived that the scaled virtual waiting time converges to an exponentialy
distributed random variable in a heavy traffic. This limit random variable is independent of the state of the
environment.
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Jlivurpos M.II. ACUMIITOTUYECKMI AHAJIN3 OJHOJIMHEMHON CHUCTEMBI OBCJIYKMBAHHUSA C BXOISALLIMM
MAPKOBCKUM MAPKNPOBAHBIM I[TIOTOKOM. Becmuux Tomckozo eocydapcmeenHozo yHugepcumema. Ynpaeieuue, biuuc-
aumenvras mexuuxa u ungpopmamura. 2019. Ne 47. C. 24-29

B pabGote paccmaTpuBaeTcsi OJHONMHEIHAs CHCTEMa MacCOBOTO OONY)KMBAHUS C JTUCHUIUIMHOW OOCTY)KHBAaHHS B IOPSAKE I10-
CTYIUICHHS, HA BXOJ KOTOPOH MOCTYIAeT rPYMIIOBOil MapKOBCKUN MapKHPOBaHbIA MOTOK. BpemeHa oOcmyxuBaHus TpeOOBaHUH 3a-
BUCAT OT HOMepa IOCTynarolero noroxa. Mceienosan nAByMepHBI cioydaliHbIM mpolec, nepBasi KOMIOHEHTa KOTOPOro sBILIETCS
HOMEPOM COCTOSIHMSL COIIPOBOJSAINEH MapKOBCKOI 1ienu, BTopasi — BUPTyaJlbHOE BpeMs OxKuIaHus. [lJIg ero uccienoBaHus Mpeasio-
EH METOJ aCUMITOTHYECKOTO aHalM3a MPHU YCIOBUM BBICOKOX MHTEHCHBHOCTU BXOJIIEro MoToka. [lokasaHo, 4To pacmpeseneHue
COCTOSIHUSI MapKOBCKOI! LIenu U BUPTYaJIbHOT'O BPEMEHM OXHJAHUS HE3aBUCHMBI B CTALlMOHApHOM pexuMme. [lomydeHo acuMOTOTH-
YecKOoe pacrpeereHie BUPTYalbHOTO BpeMEHH 0XKUIAaHUS B CTAIIHOHAPHOM PEKHME B YCIOBHAX OOINBIIOI HArpy3Ku.

KiroueBsie cioBa: ogHonMHeWHas cuctema obciyxkuBanus; FIFO; MapKkoBCKHMI MapKHpPOBaHbIA BXOJSIIIMA MOTOK; BUPTYalbHOE
BpeMs OXKHJAHUS, BBICOKAsi HHTEHCUBHOCTb BXOJIAILETO IOTOKA.
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