
M.Tz. Dimitrov 

24 

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 

2019               Управление, вычислительная техника и информатика               № 47 
 

 
УДК 519.872 

DOI: 10.17223/19988605/47/3 

 

M.Tz. Dimitrov 

 

HEAVY TRAFFIC ANALYSIS OF A QUEUE WITH BATCH MMAP 

 
A single-server queue with work conserving FIFO discipline is considered. The input process is a multiple marked. 

Markovian arrival process governed by a continuous-time finite state Markovian chain. The service time distributions 

of customers may be different for different arrival streams. The virtual waiting time is considered under a heavy  

traffic. The probability distributions of virtual waiting time and state of the random environment are asymptotically 

independent. The virtual waiting time is asymptotically exponential with the mean depending on the characteristics  

of the modulated process. 

Keywords: single-server queue; FIFO; multiple batch Markovian arrival process; virtual waiting time; heavy traffic 

analysis. 

 

In this paper we consider a single-server work conserving queue with FIFO discipline and the following 

characteristics. The arrival process is a multiple batch arrival flows of customers governed by a continuous 

time finite state Markov chain. The service time distributions of customers may be different for arrival flows. 

This model was considered for the first time in [1]. The most popular Markovian arrival flows of custom-

ers is introduced in [2]. There are two extensions of arrival process. One is batch introduced in [3] that 

allows batch arrivals and the other is marked introduced in [4] that explicitly represents possibly correlated 

process considered in this paper and in paper [1] is a further extension of MAP introduced in [2–4]. We 

assume that the service time distributions of customers from respective arrival streams are different from 

one another.  

In this paper we consider asymptotic behavior of a stationary distribution of the virtual waiting time 

and the state of a random environment under a heavy traffic. The asymptotic distribution of a stationary dis-

tribution of a virtual waiting time is an exponential with the mean depending on the parameters of random 

environment. In the present study we prove a heavy traffic limit theorem for steady state virtual waiting time 

for a model considered in [1]. We used analytical approach introduced in [6] which allows for a rigorous 

mathematical analysis of the stationary characteristics under a heavy traffic. The remainder of the paper is 

organized as follows. In section [2] we describe the model introduced in [1]. In section 3 we consider some 

preliminary results. Section 4 is devoted to main results. In section 4 we find the mean value of the virtual 

waiting time in a steady state, and there we show that the distribution of the environment becomes independent 

of the virtual waiting time in a steady state under heavy traffic conditions. The limit distribution of the virtual 

waiting time under heavy traffic conditions is an exponential distribution. 

 

1. Model description 

 

In this paper we consider a single sever queue with the following characteristics. Arrivals to the sys-

tem are from K arrival streams. We call customers from the k-th ( 1,2, ,k K ) arrival stream class k cus-

tomers. Customer arrivals are governed by a continuous-time Markov chain ( )Z t . We assume that Markov 

chain ( )Z t  has finite state space {0,1,2, , }S M  and is irreducible. The underlying Markov chain  stais in 

state i S  for an exponential interval of time  with a mean value 
1

i

 . When the sojourn time in state i has 
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elapsed with probability , (0)i j  the Markov chain ( )Z t  changes its state i to state j without arrivals. The 

chain ( )Z t  changes its state i to state j and n customers of class k arrive simultaneously with probability 

, , ( )k i j n , ( {1,2, , },k K 1,2, )n   for convenience, let , 0i i   for all .i S  Then for all i S

, , ,

0 1 1

( (0) ( )) 1
j M k K

i j k i j

j k n

n
  

  

     .We assume that service time of class k customers are i.i.d. according to a 

distribution ( )kH x with a mean value 
kh , and a second moment .kv  We need some notations to describe the 

arrival process. Let C  denote an ( 1) ( 1)M M    matrix whose ( , )i j -th element ( , {0,1,2, , })i j M  is 

given by , μ ,i j ic    if i j  and , , (0)μ ,i j i j ic   otherwise. Further, for {1,2, , }k K  we define  

( ),( 1,2, )kD n n   as an ( 1) ( 1)M M    matrix whose ( , )i j  th element ( , {0,1,2, })i j M  of 

, , ( )k i jD n  is given by , , , ,( ) ( ) .k i j k i j iD n n   Thus the counting process of arrivals is characterized by the set 

of matrices 1 1 2 2{ , ( ), ( ), , ( )}.K KC D n D n D n  Customers arrive in the following way.  When a state transition 

driven by ( )kD n  occurs, n customers of class k arrive simultaneously. On the other hand, when a state transi-

tion driven by C occurs, no customers arrive. We define ( {1,2, , })kD k K  and D as 
1

( ),k k

n

D D n




  

1

k K

k

k

D D




 , respectively. Note that the infinitesimal generator of the underlying Markov chain is given by 

C D  and ( ) 0,C D e   where e denotes a column vector whose elements are all equal to one. We denote 

by π, the stationary probability vector of the underlying Markov chain and therefore π satisfies the equation 

π( ) 0C D   and 1.e   Because of the finite state space and the irreducibility of the underlying Markov 

chain, π is uniquely determined. Note that the arrival rate λk  of class k is 
1

λ π ( ) .k k

n

n D n e




  We assume that 

at least one element of kD  is positive, so that λ 0k   for all {1,2, , }k K . Let ρk  denote the utilization 

factor of class k customers, ρ λ .k k kh  Furthermore, we denote the overall utilization factor by 
1

ρ ρ .
K

k

k

  If 

the utilization factor ρ 1  then all customers arriving to the system are eventually served. The goal of this 

paper is to derive the asymptotic distribution of virtual waiting time under a heavy traffic, i.e., when ρ 1  

and ρ 1 , or ε 1 ρ  0.  The virtual waiting time is equivalent to the amount of work in a system. Let 

V(t) denote a random variable representing the stationary amount of work in a system (the total amount of 

unfinished services of all customers in the system). We define ( )F x  as a (1, 1)M   vector whose j-th ele-

ment represents { ( ) , ( ) }.P V t x Z t j   The Laplace-Stiljes transforms (LST) of ( )kH x  and ( )F x  are denot-

ed by ( )kh s  and ( )s  respectively. Applying the results in [5], we obtain the LST  ( )s  of a distribution 

function ( )F x  

 
1( ) (0)( ( )) ,s sF sI C D s      (1)  

where 
1 10

( ) ( ) ( ) ( ).
K

sx n

k k

k n

D s e dD x D n h s

 


 

   We assume that 
0μ = λμi i  and we will introduce the matrices

0 0 0 0, ( ), , , ,k kC D n D D Q Q  by the equations 
0 0 0 0λ , ( ) λ ( ), λ , λ ,k k k kC C D n D n D D D D     

0, λ .Q C D Q Q    Further we will also assume that all parameters except for λ  are fixed, and λ  increases 

in such a way that ε 0,  or 
0 0 1λ λ (ρ ) ,   where 

0 0

1 1

ρ π ( ) .
K

k k

k n

nD n h e


 

   
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2.Some preliminary results 

 

Consider  the continuous Markov chain ( )Z t  introduced in Section 1. Markov chain is with a finite 

space {0,1,2, , }S M , the infinitesimal matrix Q C D   and a stationary distribution 
0 1( , , , ).M      

The set of equations with respect to unknown 
0 1, , , Ma a a  

 
1 1 1 1

(π ( ) ) ( )
K K

k k k k

k n k n

Qa nD n h e e nD n h e
 

   

    (2) 

always has a solution, since the  stationary distribution π is orthogonal to the right side of this equation. We 

will define matrices A and R. The matrix A is defined by the  rows and columns with  numbers 1,2,...,M  of 

the matrix Q. The first raw and the first column of matrix R are equal to zero vectors, and next K rows and  

K columns are from matrix 
1A
. Then a matrix QR looks as follows: the first raw is equal to 

1

0 0

π π
(0, ,..., )

π π

M   and the first column  is equal to zero vector, and  next elements  form  the identity matrix. 

For any vector 0 1( , , , )Mx x x x  we have  

 0

0

π
.

π
xQR x x   (3) 

The next equation 

 
0 1

1 1 1 1

( , , , ) [(π ( ) ) ( ) ]
K K

M k k k k

k n k n

a a a R nD n h e e nD n h e
 

   

    (4) 

define the solution to equation (2) when 
0 0.a   Dividing both side of (2) by λ  we get 

 
0 0 0

1 1 1 1

(π ( ) ) ( ) .
K K

k k k k

k n k n

Q a nD n h e e nD n h e
 

   

    (5) 

And the solution to equation (2) is also a solution to equation (5). From (4) follows 

 
0 0 0

0 1

1 1 1 1

( , , , ) [(π ( ) ) ( ) ]
K K

M k k k k

k n k n

a a a R nD n h e e nD n h e
 

   

   . (6)     

 

3. The main results 

 

The next theorem gives the mean value of a virtual waiting time in a steady state. 

Theorem 1. The mean virtual waiting time EV is given by the formula 

 ,

1 1 1 1

(1 ρ) ( ) π( ( ) ) (0)
2

K K

k k n k k

k n k n

EV nD n v e nD n h I a F a
 

   


      , (7) 

where a is a solution to equation (4) and    

 (0) 1 ρ.F e    (8) 

Proof.  Consider a LST  ( )s  of a vector 0 1( ) ( ( ), ( ),..., ( ))MF x F x F x F x  defined by the equation 

 ( )( ( )) (0).s sI C D s sF     (9) 

where Re 0s  . We denote by ( )D s  the next sum 
1 1

( ) ( )
K

n

k k

k n

D n h s


 

  and rewrite equation (9) to be 

 
1 1

( ) ( )( ( )( )(1 ( )) ) (0).
K

n

k k

k n

s Q s D n s h s sI sF


 

       (10) 

Post-multiplying both sides of equation (10) by vector e we have  

 
1 1

1 ( )
(0) ( )( ( ) )

nK
k

k

k n

h s
F e s I D n e

s



 


   . (11) 
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Taking the limit 0s   of both sides of (11) and taking into account that (0) π   we get equation (8). Dif-

ferentiating  both sides of (11)  with respect to s  at 0s   yields 

 0 1 ,

1 1 1 1

( , ,..., )( ( ) ) ( )
2

K K

M k k k k n

k n k n

EV EV EV I nD n h e nD n v e
 

   

  


 (12) 

for the mean value of a virtual waiting time ( ( ); ( ) ).nEV E V t Z t n   Post-multiplying both sides of the equa-

tion (10) by the vector a  we obtain  

  
1 1

1 ( )
( ) ( )( ( ) ) (0) .

nK
k

k

k n

h s
s Qa s s nD n I a sF a

s



 


       

After differentiating this equation with respect to s at the point 0s   we have 

 0 1

1 1

( , ,..., ) ( ( ) ) (0) .
K

M K k

k n

EV EV EV Qa nD n h I a F a


 

      (13)  

Now, summing (13) with (12) we get equation (7). Thus the theorem is proved.       

Theorem 2. Under heavy taffic assumption                                      

a) the random variables ε ( )V t  and ( )Z t  are asymptotically independent; 

b) the random variable ( )V t  is asymptotically exponential with the mean 

 
0 0 0

,0 0
1 1 1 1

( ) ( ( ) )
2

K K

k k n k k

k n k n

nD n v e nD n h I a
 

   

 
 

 
  . (14) 

where a is a solution to equation (2). 

Proof: We consider equation (10) 

1 1

( ) ( )( ( )(1 ( )) ) (0)
K

n

k k

k n

s Q s D n h s sI sF


 

      . 

Post-multiplying both sides of this equation by the vector (1,1,...,1)e  , taking into account that 0Qe   and 

from (8) we get 

 
1 1

( )( ( )(1 ( )) ) ε 0
K

n

k k

k n

s D n h s sI e s


 

     . (15)  

Now, post-multiplying equation (10) by the matrix R, which was introduced in section 3, from (3) follows 

the next equation 

 0

1 10

( )
( ) π ( )( ( )(1 ( )) ) (0)

π

K
n

k k

k n

s
s s D n h s sI R sF R



 


       . (16) 

Replacing the vector ( )s  in the right hand side of equation (16) with the help of (16) we have the next 

equation 

 0

1 10

( )
( ) π[ ( ( )(1 ( )) ) ] ( )

π

K
n

k k

k n

s
s I D n h s sI R sY s



 


      , (17)   

where 
2

1 1

1 ( )
( ) ( )[( ( ) ) ] (0)

nK
k

k

k n

h s
Y s s s D n I R F R

s



 


    [I+(

1 1

( )((1 ( )) ) ]
K

n

k k

k n

D n h s sI R


 

  . Substituting 

(17) into (15) we can express 0 ( )s  as  

 0 0

1 2

( )
( ) π ,

( ) ( )

A s
s

B s B s
 


 (18) 

Where 
1 1

( ) ε ( )( ( )(1 ( )) ) ,
K

n

k k

k n

A s s sY s D n h s sI e


 

     1

1 1

( ) π( ( )(1 ( )) )
K

n

k k

k n

B s D n h s sI e


 

    , 

2

1 1 1 1

( ) π( ( )(1 ( )) ) ( ( )(1 ( )) )
K K

n n

k k k k

k n k n

B s D n h s sI R D n h s sI e
 

   

       . Now, replace s by εs  in 
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1 2( ), ( ), ( )A s B s B s  and λ  increases in such a way  that ε 0,  
0 0 1 0 1

1 1

λ λ (π ( ) ) (ρ ) .
K

k k

k n

D n h e


 

 

    Further 

more, we use the next limits 
ε 0

1 (ε )
lim ,

ε

n

k
k

h s
nh

s



  

,

ε 0 2

(ε ) 1 ε
lim .

(ε ) 2

n
k nk k

vh s nh s

s


 
  Then 

2 2 2

1 1

1 (ε )
(ε ) ε ε (ε )( ( ) ) ,

ε

nK
k

k

k n

h s
A s s s Y s D n I e

s



 


  

2

1

1 1 1 1 1 1

( ) ( ) ( )( ( ) 1) ( )( ( ) 1),
K K K

n n

k k k k k k k k

k n k n k n

B s s nD n h e s D n h s nh s e s D n h s nh s
  

     

                     

2 (ε )B s 
2 2

1 1 1 1

1 (ε ) 1 (ε )
πε ( ( ) ) ( ( ) )

ε ε

n nK K
k k

k k

k n k n

h s h s
s D n I R D n I e

s s

 

   

 
    . 

From (18) follows 

2

ε 0 0 0 ε 0 0
1 2

2

(ε )
1εlim (ε ) π lim π

( (ε ) (ε )) 1
ε

A s
ss

B s B s Ns
s

   
 

, 

where 
0 0 0 0

,0 0
1 1 1 1

1 π
π ( ) ( ( ) ρ )

2ρ ρ

K K

k k n k k

k n k n

N D n v nD n h I R
 

   


   

0 0

1 1

( ( ) ρ )
K

k k

k n

nD n h e e


 

 . Using (6) we can 

transform the parameter N to the form  

0 0 0

,0 0
1 1 1 1

1 π
π ( ) ( ( ) ρ ) .

2ρ ρ

K K

k k n k k

k n k n

N D n v nD n h I a
 

   

     

Finally, from (16) and (17) we get that there exists 

0
ε 0 ε 0

0

(ε ) 1
lim (ε ) lim π π .

π 1

s
s

Ns
 


  


 

Thus the theorem is proved. 

 

4. Conclusion 

 

We studied the virtual waiting time of a queueing model introduced in [1]. We used the analytical  

approach introduced in [6] and derived that the scaled virtual waiting time converges to an exponentialy  

distributed random variable in a heavy traffic. This limit random variable is independent of the state of the 

environment. 
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В работе рассматривается однолинейная система массового облуживания с дисциплиной обслуживания в порядке по-

ступления, на вход которой поступает групповой марковский маркированый поток. Времена обслуживания требований за-

висят от номера поступающего потока. Исследован двумерный случайный процес, первая компонента которого является 

номером состояния сопроводящей марковской цепи, вторая – виртуальное время ожидания. Для его исследования предло-

жен метод асимптотического анализа при условии высокой интенсивности входящего потока. Показано, что распределение 

состояния марковской цепи и виртуального времени ожидания независимы в стационарном режиме. Получено асимптоти-

ческое распределение виртуального времени ожидания в стационарном режиме в условиях большой нагрузки.  

 

Ключевые слова: однолинейная система обслуживания; FIFO; марковский маркированый входящий поток; виртуальное 

время ожидания; высокая интенсивность входящего потока.  
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