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Abstract

A model of Poissonian observations having a jump (change-
point) in the intensity function is considered in the case when
the size of the jump converges to zero. The limiting likelihood
ratio in this case is quite different from the one corresponding
to the case of a fixed jump-size. More precisely, we show that
the limiting likelihood ratio is a log-Wiener process, and so, this
model is asymptotically equivalent to the well known model of a
signal in white Gaussian noise. Further, we deduce the proper-
ties of the maximum likelihood and Bayesian estimators, as well
as those of the general likelihood ratio, Wald’s and two Bayesian
tests. We illustrate the results by numerical simulations.

Keywords: Poisson process, non-regularity, change-point,
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We observe 𝑛 independent realizations 𝑋(𝑛)
𝑗 =

{︀
𝑋

(𝑛)
𝑗 (𝑡), 𝑡 ∈ [0, 𝜏 ]

}︀
,

𝑗 = 1, . . . , 𝑛, of an inhomogeneous Poisson process on the interval [0, 𝜏 ]
(the constant 𝜏 > 0 is supposed to be known) with intensity func-
tion 𝜆

(𝑛)
𝜗 , where 𝜗 ∈ Θ = (𝛼, 𝛽), 0 ≤ 𝛼 < 𝛽 ≤ 𝜏 , is some unknown

parameter. The observation will be denoted 𝑋(𝑛) =
{︀
𝑋

(𝑛)
1 , . . . , 𝑋

(𝑛)
𝑛

}︀
,

while the corresponding probability distribution and expectation will
be denoted P

(𝑛)
𝜗 and E

(𝑛)
𝜗 respectively.

The parameter 𝜗 corresponds to the location of a jump in the (else-
where continuous) intensity function 𝜆

(𝑛)
𝜗 . The size of the jump (de-

pending on 𝑛) will be denoted 𝑟𝑛 and will be supposed converging to
some 𝑟 ∈ R. As we will see below, the behavior of our model depends
on either one has 𝑟 ̸= 0 or 𝑟 = 0 and is quite different in these two
cases.

More precisely, we assume that the following conditions are satisfied.
*The work was partly supported by the RSF, the project No 14-49-00079.
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(C1) 𝜆(𝑛)𝜗 (𝑡) = 𝜓𝑛(𝑡) + 𝑟𝑛1{𝑡>𝜗}, where the function 𝜓𝑛 is continuous
on [0, 𝜏 ].

(C2) For all 𝑡 ∈ [0, 𝜏 ], there exist the lim
𝑛→+∞

𝜓𝑛(𝑡) = 𝜓(𝑡) > 0 and,
moreover, this convergence is uniform with respect to 𝑡.

(C3) As 𝑛 → +∞, the jump size 𝑟𝑛 converges to some 𝑟 ∈ R, that
is, 𝑟𝑛 → 𝑟. In the case 𝑟 = 0, we also suppose that this convergence
(𝑟𝑛 → 0) is slower than 𝑛−1/2, that is, 𝑛 𝑟2𝑛 → +∞.

(C4) The family of functions
{︀
𝜆
(𝑛)
𝜗

}︀
𝑛∈N,𝜗∈Θ

is uniformly strictly posi-
tive and uniformly bounded, that is, there exist some constants ℓ, 𝐿 > 0
such that

ℓ ≤ 𝜆
(𝑛)
𝜗 (𝑡) ≤ 𝐿

for all 𝑛 ∈ N, 𝜗 ∈ Θ and 𝑡 ∈ [0, 𝜏 ].

Likelihood ratio. The likelihood of our model (with respect to a
standard Poisson process of intensity 1) is given by

(︀
see, for exam-

ple, [5]
)︀

𝐿𝑛
(︀
𝜗,𝑋(𝑛)

)︀
=exp

{︂ 𝑛∑︁
𝑗=1

∫︁
[0,𝜏 ]

ln𝜆
(𝑛)
𝜗 (𝑡) 𝑋

(𝑛)
𝑗 (d𝑡)−𝑛

∫︁ 𝜏

0

[︀
𝜆
(𝑛)
𝜗 (𝑡)−1

]︀
d𝑡

}︂
.

We put 𝜙𝑛 = 1
|𝑟|𝑛 in the case 𝑟 ̸= 0 and 𝜙𝑛 = 𝜓(𝜗)

𝑛 𝑟2𝑛
in the case 𝑟 = 0,

and we introduce the normalized likelihood ratio

𝑍𝑛,𝜗(𝑣) =
𝐿𝑛
(︀
𝜗+ 𝑣𝜙𝑛, 𝑋

(𝑛)
)︀

𝐿𝑛
(︀
𝜗,𝑋(𝑛)

)︀ ,

where 𝑣 ∈ 𝑉𝑛 =
(︀
𝜙−1
𝑛 (𝛼− 𝜗), 𝜙−1

𝑛 (𝛽 − 𝜗)
)︀
.

Note that in both cases we have (by the condition C3 in the case
𝑟 = 0) 𝜙𝑛 → 0.

Note also that the trajectories of the process 𝑍𝑛,𝜗 are càdlàg func-
tions. Moreover, correctly extending these trajectories to the whole real
line, one can consider that they belong to the Skorohod space 𝒟0(R).
This space is defined as the space of functions 𝑓 on R which do not have
discontinuities of the second kind and which are vanishing at infinity,
that is, such that lim

𝑢→±∞
𝑓(𝑢) = 0. We assume that all the functions

𝑓 ∈ 𝒟0(R) are continuous from the right (are càdlàg).
The asymptotic behavior of the normalized likelihood ratio 𝑍𝑛,𝜗(︀

in the sense of the weak convergence in the space 𝒟0(R) as 𝑛 → ∞
)︀

depends on either one has 𝑟 ̸= 0 or 𝑟 = 0 and is quite different in these
two cases. So, the limit process must be introduced specifically in each
case.
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Case 𝑟 ̸= 0 limit process. In the case 𝑟 ̸= 0, the limit process is a
log-Poisson type process and is introduced by

𝑍*
𝜌(𝑣) =

{︃
exp
{︀
𝜌𝑌 +(𝑣) − 𝑣

}︀
, if 𝑣 ≥ 0,

exp
{︀
−𝜌𝑌 −(︀(−𝑣)−

)︀
− 𝑣
}︀
, if 𝑣 < 0,

where 𝜌 =
⃒⃒
ln 𝜓(𝜗)

𝜓(𝜗)+𝑟

⃒⃒
, and 𝑌 + and 𝑌 − are independent Poisson pro-

cesses on R+ of constant intensities 1
𝑒𝜌−1 and 1

1−𝑒−𝜌 respectively.
Note that the process 𝑍*

𝜌 was studied in [1] and that its trajectories
almost surely belong to the space 𝒟0(R).

Case 𝑟 = 0 limit process. In the case 𝑟 = 0, the limit process is a
log-Wiener type process and is introduced by

𝑍*(𝑣) = exp

{︂
𝑊 (𝑣) − |𝑣|

2

}︂
, 𝑣 ∈ R,

where 𝑊 is a double-sided Brownian motion (Wiener process).
Note that the trajectories of the processes 𝑍* almost surely belong

to the space 𝒞0(R) of continuous functions on R vanishing at infinity,
and that 𝒞0(R) ⊂ 𝒟0(R).

Asymptotic behavior of the likelihood ratio. Now we can state
the following theorem about the asymptotic behavior of the normalized
likelihood ratio. The proof of this theorem (as well as those of the other
results presented below) can be found in [4].

Theorem 1. Let the conditions C1 – C4 be fulfilled. Then, the process
𝑍𝑛,𝜗 converges weakly in the space 𝒟0(R) to
∙ the process 𝑍*

𝜌 , in the case 𝑟 < 0,
∙ the process 𝑍⋆𝜌 defined by 𝑍⋆𝜌(𝑣) = 𝑍*

𝜌

(︀
(−𝑣)−

)︀
, in the case 𝑟 > 0,

∙ the process 𝑍*, in the case 𝑟 = 0.

Let us note that in the case 𝑟 ̸= 0, the limiting likelihood ratio
is the same as in the fixed jump-size case, and so the properties of
the estimators and of the tests are also the same

(︀
see [5, 6] for the

properties of the estimators and [3] for the properties of the tests
)︀
. So,

in the sequel, we consider the case 𝑟 = 0 only.

Parameter estimation. Recall that, as function of 𝜗, the likelihood
of our model is discontinuous (has jumps). So, the maximum likelihood
estimator ̂︀𝜗𝑛 of 𝜗 is introduced through the equation

max
{︁
𝐿𝑛
(︀ ̂︀𝜗𝑛+, 𝑋(𝑛)

)︀
, 𝐿𝑛

(︀ ̂︀𝜗𝑛−, 𝑋(𝑛)
)︀}︁

= sup
𝜗∈Θ

𝐿𝑛
(︀
𝜗,𝑋(𝑛)

)︀
.
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The Bayesian estimator ̃︀𝜗𝑛 of 𝜗 for a given prior density 𝑝 and for
square loss is defined bỹ︀𝜗𝑛 =

∫︀ 𝛽
𝛼
𝜗 𝑝(𝜗)𝐿𝑛

(︀
𝜗,𝑋(𝑛)

)︀
d𝜗∫︀ 𝛽

𝛼
𝑝(𝜗)𝐿𝑛

(︀
𝜗,𝑋(𝑛)

)︀
d𝜗

.

We introduce the random variables 𝜉* and 𝜁* by the equations
𝑍*(𝜉*) = sup

𝑣∈R
𝑍*(𝑣),

and

𝜁* =

∫︀ +∞
−∞ 𝑣 𝑍*(𝑣) d𝑣∫︀ +∞
−∞ 𝑍*(𝑣) d𝑣

.

Now we can state the following theorem giving an asymptotic lower
bound on the risk of all the estimators of 𝜗.

Theorem 2. Let the conditions C1 – C4 be fulfilled with 𝑟 = 0. Then,
for any 𝜗0 ∈ Θ, we have

lim
𝛿→0

lim
𝑛→+∞

inf
𝜗𝑛

sup
|𝜗−𝜗0|<𝛿

𝜙−2
𝑛 E

(𝑛)
𝜗 (𝜗𝑛 − 𝜗)2 ≥ E(𝜁*)2,

where the inf is taken over all possible estimators 𝜗𝑛 of the parame-
ter 𝜗.

This theorem allows us to introduce the following definition.

Definition 3. Let the conditions C1 – C4 be fulfilled with 𝑟 = 0. We
say that an estimator 𝜗*𝑛 is asymptotically efficient if

lim
𝛿→0

lim
𝑛→+∞

sup
|𝜗−𝜗0|<𝛿

𝜙−2
𝑛 E

(𝑛)
𝜗 (𝜗*𝑛 − 𝜗)2 = E(𝜁*)2

for all 𝜗0 ∈ Θ.

Now, we can state the following two theorems giving the asymptotic
properties of the maximum likelihood and Bayesian estimators.

Theorem 4. Let the conditions C1 – C4 be fulfilled with 𝑟 = 0. Then
the maximum likelihood estimator ̂︀𝜗𝑛 satisfies the relations

P
(𝑛)
𝜗 − lim

𝑛→+∞
̂︀𝜗𝑛 = 𝜗,

ℒ(𝑛)
𝜗

{︀
𝜙−1
𝑛 (̂︀𝜗𝑛 − 𝜗)

}︀
⇒ ℒ(𝜉*)

and
lim

𝑛→+∞
E

(𝑛)
𝜗 𝜙−𝑝

𝑛

⃒⃒̂︀𝜗𝑛 − 𝜗
⃒⃒𝑝

= E |𝜉*|𝑝 for any 𝑝 > 0.

In particular, the relative asymptotic efficiency of ̂︀𝜗𝑛 is E(𝜁*)2/E(𝜉*)2.

Theorem 5. Let the conditions C1 – C4 be fulfilled with 𝑟 = 0. Then,
for any continuous strictly positive density, the Bayesian estimator ̃︀𝜗𝑛
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satisfies the relations
P

(𝑛)
𝜗 − lim

𝑛→+∞
̃︀𝜗𝑛 = 𝜗,

ℒ(𝑛)
𝜗

{︀
𝜙−1
𝑛 (̃︀𝜗𝑛 − 𝜗)

}︀
⇒ ℒ(𝜁*)

and
lim

𝑛→+∞
E

(𝑛)
𝜗 𝜙−𝑝

𝑛

⃒⃒̃︀𝜗𝑛 − 𝜗
⃒⃒𝑝

= E |𝜁*|𝑝 for any 𝑝 > 0.

In particular, ̃︀𝜗𝑛 is asymptotically efficient.

Hypothesis testing. We consider the same model of observation as
above, with the only difference that now we suppose that the parameter
𝜃 ∈ Θ = [𝜗0, 𝛽), 0 < 𝜗0 < 𝛽 ≤ 𝜏 . We assume that the conditions
(C1)–(C4) are fulfilled with 𝑟 = 0 and we want to test the following
two hypotheses:

ℋ0 : 𝜗 = 𝜗0,

ℋ1 : 𝜗 > 𝜗0.

We define a (randomized) test 𝜑𝑛 = 𝜑𝑛
(︀
𝑋(𝑛)

)︀
as the probability to

accept the hypothesis ℋ1. The size of the test is E
(𝑛)
𝜗0
𝜑𝑛
(︀
𝑋(𝑛)

)︀
, and

its power function is 𝛽(𝜑𝑛, 𝜗) = E
(𝑛)
𝜗 𝜑𝑛

(︀
𝑋(𝑛)

)︀
, 𝜗 > 𝜗0. As usually, we

denote 𝒦𝜀 the class of the tests of asymptotic size 𝜀 ∈ [0, 1], that is,
𝒦𝜀 =

{︁
𝜑𝑛 : lim

𝑛→+∞
E

(𝑛)
𝜗0
𝜑𝑛
(︀
𝑋(𝑛)

)︀
= 𝜀
}︁
.

The comparison of tests is done by comparison of their power func-
tions. However, it is known that for any reasonable test and for any
fixed alternative the power function tends to 1. To avoid this difficulty,
we use Pitman’s approach and consider contiguous (or close) alterna-
tives. More precisely, changing the variable 𝜗 = 𝜗𝑢 = 𝜗0 + 𝑢𝜙𝑛, the
initial problem of hypothesis testing is replaced by the following one:

ℋ0 : 𝑢 = 0,

ℋ1 : 𝑢 > 0,

and the power function is now 𝛽(𝜑𝑛, 𝑢) = E
(𝑛)
𝜗𝑛
𝜑𝑛
(︀
𝑋(𝑛)

)︀
, 𝑢 > 0.

The study is essentially based on the properties of the normalized
likelihood ratio established above. Note that the limit of the normal-
ized likelihood ratio at the point 𝜗 = 𝜗0 (under hypothesis ℋ0) is the
following:

𝑍𝑛,𝜗0(𝑣) ⇒ 𝑍*(𝑣), 𝑣 ≥ 0.
Under the alternative 𝜗𝑢 (with some fixed 𝑢 > 0), we obtain

𝑍𝑛,𝜗0
(𝑣) ⇒ 𝑍*

𝑢(𝑣) = exp

{︂
𝑊 (𝑣) − |𝑣 − 𝑢|

2
+
𝑢

2

}︂
, 𝑣 ≥ 0.
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The score-function test — which is locally asymptotically uniformly
most powerful (LAUMP) in the regular case

(︀
see [2]

)︀
— does not exist

in this non-regular situation. So, we construct and study the general
likelihood ratio test (GLRT), Wald’s test (WT) and two Bayesian tests
(BT1 and BT2).

The GLRT is defined bŷ︀𝜑𝑛(︀𝑋(𝑛)
)︀

= 1{︀
𝑄(𝑋(𝑛))> 1

𝜀

}︀,
where

𝑄
(︀
𝑋(𝑛)

)︀
= sup
𝜗>𝜗0

𝐿𝑛
(︀
𝜗,𝑋(𝑛)

)︀
𝐿𝑛
(︀
𝜗0, 𝑋(𝑛)

)︀ .
It belongs to 𝒦𝜀 and its power function has the following limit:

𝛽
(︀̂︀𝜑𝑛, 𝑢)︀ = P

(𝑛)
𝜗𝑢

{︂
sup
𝑣>0

𝑍𝑛,𝜗0 (𝑣) > 1/𝜀

}︂
→ P

{︂
sup
𝑣>0

𝑍*
𝑢 (𝑣) > 1/𝜀

}︂
.

The WT is defined bŷ︀𝜑⋆𝑛(︀𝑋(𝑛)
)︀

= 1{︁
𝜙−1

𝑛

(︀̂︀𝜗𝑛−𝜗0

)︀
>𝑚𝜀

}︁,
where 𝑚𝜀 is the solution of the following equation (here Φ is the dis-
tribution function of the standard Gaussian low):∫︁ +∞

𝑚𝜀

(︂
1√
2𝜋𝑡

exp

{︂
− 𝑡

8

}︂
− 1

2
Φ

(︂
−
√
𝑡

2

)︂)︂
d𝑡 = 𝜀.

It belongs to 𝒦𝜀 and its power function has the following limit:
𝛽
(︀̂︀𝜑⋆𝑛, 𝑢)︀ = P

(𝑛)
𝜗𝑢

{︁
𝜙−1
𝑛

(︀̂︀𝜗𝑛 − 𝜗0
)︀
> 𝑚𝜀

}︁
→ P

{︀
𝜉*𝑢,+ > 𝑚𝜀

}︀
,

where 𝜉*𝑢,+ is the solution of the equation
𝑍
(︀
𝜉*𝑢,+

)︀
= sup

𝑣>0
𝑍*
𝑢 (𝑣) .

Suppose now that the parameter 𝜗 is a random variable with a
given prior density 𝑝(𝜃), 𝜗0 ≤ 𝜃 < 𝛽. This density is supposed to
be continuous and positive. We consider two Bayesian tests: BT1
and BT2.

The BT1 is defined bỹ︀𝜑𝑛(︀𝑋(𝑛)
)︀

= 1{𝜙−1
𝑛 (̃︀𝜗𝑛−𝜗0)>𝑘𝜀},

where 𝑘𝜀 is the solution of the equation
P
{︀
𝜁*+ > 𝑘𝜀

}︀
= 𝜀

with

𝜁*+ =

∫︀ +∞
0

𝑣 𝑍* (𝑣) d𝑣∫︀ +∞
0

𝑍* (𝑣) d𝑣
.

It belongs to 𝒦𝜀 and its power function has the following limit:
𝛽
(︀̃︀𝜑𝑛, 𝑢)︀ = P

(𝑛)
𝜗𝑢

{︁
𝜙−1
𝑛

(︀̃︀𝜗𝑛 − 𝜗0
)︀
> 𝑘𝜀

}︁
→ P

{︀
𝜁*𝑢,+ > 𝑘𝜀

}︀
,
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where

𝜁*𝑢,+ =

∫︀ +∞
0

𝑣 𝑍*
𝑢 (𝑣) d𝑣∫︀ +∞

0
𝑍*
𝑢 (𝑣) d𝑣

.

The BT2 is defined bỹ︀𝜑⋆𝑛(︀𝑋(𝑛)
)︀

= 1{︀
𝑅(𝑋(𝑛))>𝑔𝜀

}︀,
where

𝑅
(︀
𝑋(𝑛)

)︀
=

𝜙−1
𝑛

𝑝 (𝜗0)

∫︁ 𝛽

𝜗0

𝐿𝑛
(︀
𝜃,𝑋(𝑛)

)︀
𝐿𝑛
(︀
𝜗0, 𝑋(𝑛)

)︀ 𝑝(𝜃) d𝜃

and 𝑔𝜀 is the solution of the equation

P

{︂∫︁ +∞

0

𝑍*(𝑣) d𝑣 > 𝑔𝜀

}︂
= 𝜀.

It belongs to 𝒦𝜀 and its power function has the following limit:

𝛽
(︀̃︀𝜑⋆𝑛, 𝑢)︀ = P

(𝑛)
𝜗𝑢

{︂∫︁ +∞

0

𝑍𝑛,𝜗0
(𝑣) d𝑣 > 𝑔𝜀

}︂
→ P

{︂∫︁ +∞

0

𝑍*
𝑢(𝑣) d𝑣 > 𝑔𝜀

}︂
.
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Figure 1. Comparison of limiting power functions for 𝜀 = 0.01 and 𝜀 = 0.05

The limiting power functions of the GLRT, of the WT and of the
BT1 are obtained by means of numerical simulations and are presented
in Figure 1 together with the limiting Neyman-Pearson envelope 𝛽(𝑢),
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𝑢 > 0, given by
𝛽(𝑢) = 1 − Φ

(︀
𝑧𝜀 −

√
𝑢
)︀
,

where Φ, as before, is the distribution function of the standard Gaussian
low, and 𝑧𝜀 is its quantile of order 1 − 𝜀.

We can observe that the limiting power function of the GLRT is
the closest to the limiting Neyman-Pearson envelope for small values
of 𝑢, while the limiting power function of the BT1 is the one that tends
to 1 (as 𝑢 becomes large) the most quickly. We can also see that for
𝜀 = 0.05, the limiting power functions of the WT and of the BT1 are
close (especially when 𝑢 is small). Finally, we need to say that all these
limiting power functions are perceptibly below the limiting Neyman-
Pearson envelope, and that the choice of the asymptotically optimal
test remains an open question.
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Аннотация. Рассматривается модель пуассоновских наблюде-
ний, имеющих скачок (точка изменения) в функции интенсивности
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в случае, когда размер скачка стремится к нулю. Отношение пре-
дельного правдоподобия в этом случае сильно отличается от отно-
шения, соответствующего случаю фиксированного размера скачка.
Показывается, что отношение предельного правдоподобия является
лог-винеровским процессом, и поэтому эта модель асимптотически
эквивалентна известной модели сигнала в белом гауссовском шуме.
Далее, устанавливаются свойства максимального правдоподобия и
байесовских оценок, а также коэффициенты общего правдоподо-
бия, тесты Вальда и два байесовских теста. Приводятся результаты
численного моделирования.

Ключевые слова: процесс Пуассона, нерегулярность, точка
изменения, малый скачок, статистическое оценивание, проверка ги-
потез.
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