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Abstract. Lung cancer (both small cell and non-small cell) is the second most common cancer in both men and 
women. The article represents results of evaluating of the plasma metabolic profiles of 100 lung cancer patients and 
100 controls to investigate significant metabolites using 400 MHz 1H NMR spectrometer. The results of multivariate 
statistical analysis show that a medium-field NMR spectrometer can obtain the data which are already sufficient for 
clinical metabolomics.  

INTRODUCTION 

Lung cancer was the most commonly diagnosed cancer as well as the leading cause of cancer death in males 
in 2008 globally. This type of cancer accounts for 13% (1.6 million) of the total cases and 18% (1.4 million) of 
the deaths in 2008 [1]. The known risk factors for lung cancer include exposure to carcinogens from air 
pollution, tobacco smoke, exposure to asbestos and deep-fried food [2, 3, 4]. Therefore, an investigation of lung 
cancer is an important part of cancer research. Metabolomics is suitable to study lung cancer because a 
metabolomic profile accumulates knowledge on genome, transcriptome and proteome [5]. The nuclear magnetic 
resonance spectroscopy (NMR) and mass spectrometry (MS) are two main techniques used in the metabolomics.  
The latter is often combined with gas chromatography (GC) or high-performance liquid chromatography 
(HPLC). The advantages of using NMR for metabolomic studies are fastness, robustness and non-
destructiveness. NMR is a suitable method for analysis of biofluids such as urine, serum or blood plasma, saliva, 
etc. For instance, X. Zhang et al. investigated the ability of 1H NMR-based metabolomic approach to identify 
metabolomic changes at stage I of lung cancer [6]. Increased levels of lactate, ketone bodies and several amino 
acids (including glutamate, glutamine, histidine, and tyrosine) were detected. Decreased levels of glucose (α- 
and β-glucose), lipids, unsaturated lipids, phospholipids intermediates (choline, phosphocholine, and 
glycerophosphocholine), trimethylamine N-oxide (TMAO), and betaine were observed in lung cancer patients 
compared to healthy controls. Another study [7] is demonstrated lower levels of lipoproteins, glutamine, 
threonine and histidine; higher serum levels of leucine/isoleucine, N-acetyl-cysteine, glutamate, and creatine. 
However, despite all advantages 1H NMR-based metabolomic studies of lung cancer are still rare [8, 9, 10]. In 
our opinion, one of the limiting factors for spreading of 1H NMR-based metabolomic studies is high cost and 
housing of 600 MHz NMR spectrometer, which is commonly used for those type of research, while 400 MHz 
instruments are more spread and common. Therefore, in the present study, we focused on the demonstration of 
the ability of applying 400 MHz 1H NMR spectrometer for plasma metabolic profiling of metabolic biomarkers 
associated with lung cancer. 
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EXPERIMENTAL PART 

Chemicals and materials 

K2HPO4, NaN3 and TSP-2,2,3,3-d4 were purchased from Sigma-Aldrich. 2H2O was purchased from 
Cortecnet. NMR tubes were purchased from Bruker Biospin Ltd. (Germany). 

Sample collection 

The procedures followed in this study were performed in accordance with the Helsinki Declaration (1964, 
amended in 1975 and 1983). This study was approved by the institutional review board of Tomsk Cancer 
Research Institute, Tomsk, Russia (#13b, 2014 September, 27) and all patients signed an informed consent for 
voluntary participation. Venous blood samples were collected into EDTA spray-coated tubes and fractionated 
into plasma and blood cells within 4 hours after sampling. Blood was centrifuged for 20 min at 400 × g, then 
transferred into a new tube and centrifuged for the second time for 20 min at 1.200 × g. Supernatants were 
stored frozen in aliquots at −80 °C. 

Plasma sample preparation and NMR data acquisition 

Plasma sample preparation and NMR data acquisition were produced according to the protocol of A. 
Verhoeven with some minor modifications [11]. Prior to measurements, plasma samples were thawed at 4 °C, 
then 350 μL of plasma from each sample were mixed with 350 μL buffer solution in 2H2O (pH = 7.4) containing 
0.142 M of disodium phosphate buffer, 2 mM of NaN3 and 4 mM of TSP-2,2,3,3-d4 as an internal standard and 
chemical shift reference (0.4 mM final concentration in each sample). Finally, 600 μL of each plasma-buffer 
mixture were transferred to 5 mm NMR tubes and placed in refrigerated racks (6 °C) of a SampleJet system 
prior to the NMR measurements.  

The NMR data were recorded using a Bruker 14.1T AVANCE II spectrometer for 1H 400 MHz. Each sample 
was allowed to be situated in the probe for 5 min to adopt a stable temperature at 27 °C before starting the 
calibration routines and data acquisition. The probe was then automatically tuned and matched, followed by 
shimming and proton pulse calibration. For each sample, three 1H NMR spectra were acquired with water peak 
suppression: a standard nuclear Overhauser effect spectroscopy pulse sequence (noesygppr1d in Topspin 3.0 
library); a Carr–Purcell–Meiboom–Gill (cpmgpr1d.comp in Topspin 3.0 library) spin-echo sequence to suppress 
signals arising from molecules with a high molecular weight; and a diffusion edited sequence 
(ledbpgppr2s1d.comp in Topspin 3.0 library) with a diffusion time of 120 ms. The spectra were automatically 
phased and baseline corrected and referenced to the internal standard chemical shift (TSP; δ 0.0 ppm). An 
evaluation of spectra quality was performed after processing. Peaks’ line-width was evaluated with the TSP 
singlet and methyl protons doublet of alanine. In addition, the efficiency of water suppression and the quality of 
the baseline were also checked. The spectra that failed to fulfil the quality criteria were discarded from further 
analysis. Two-dimensional J-resolved spectra (2D Jres) were also collected for each sample using the same 
water suppression scheme as described above during the relaxation delay of 2 s. The FIDs (Free induction 
decays) were automatically processed with Fourier transformation, and spectra were referenced to the TSP 
signal at 0.0 ppm in the F2 dimension and at 0.0 Hz in the F1 dimension. 

For the purpose of assignment, 2D NMR spectra were also acquired for a sample made as amixture of all 
plasma samples. The set of 2D experiments included 1H-1H correlation spectroscopy (COSY);1H-1H total 
correlation spectroscopy (TOCSY);1H-13C heteronuclear single quantum correlation (HSQC); and 1H-13C 
heteronuclear multiple bond correlation spectroscopy (HMBC) using the standard parameters implemented in 
Topspin 3.0 library (Bruker Biospin Ltd.). 

Data processing and statistical analysis 

The NOESY spectra were used for statistical analysis. Preprocessing of NMR data to be suitable for 
statistical analysis was performed with in-house routines written in Matlab 2014a (The Mathworks, Inc., USA) 
and Python 2.7 (Python Software Foundation, www.python.org). All 1D NMR 1H spectra were re-evaluated for 
incorrect baselines and corrected using a polynomial fit of degree 5. The spectral region from 0.5 to 9.5 ppm 
was binned using an in-house algorithm for adaptive intelligent binning [12]. The initial bin width was set to 
0.02 ppm and final variable bin sizes were calculated based on the peaks’ edges in the spectra by using a lowest 
standard deviation criterion. The spectral region including the residual water was excluded from the data.  

The final data consisted of 393 bins of variable size, which were normalized by the Probabilistic Quotients 
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Normalization method (PQN) [13] to correct for dilution differences from sample to sample. Finally, the 
normalized data was scaled to unit variance for the statistical analysis. 

Analysis of the final data was performed with principal component analysis (PCA) projection to latent 
structure discriminant analysis (PLS-DA) by using SIMCA 14 software package (Umetrics, Sweden) [14]. IBM 
SPSS Statistics 23 (IBM corp., USA) was employed for independent samples T-test (Confidence interval = 
95%).  

RESULTS AND DISCUSSION 

Characteristics of the study participants 

The study group consisted of patients with lung cancer in the age range of 39-70, and the age range of the 
control group was from 40 to 70. Both groups had an identical percentage of men and women, where men were 
the vast majority. More than 50% of cancer patients had a III or IV stage of lung cancer and 72% had non-small-
cell lung cancer (NSCLC); 14% had small-cell lung cancer (SCLC). All participants were smokers except one 
patient in the controls and one patient in the case group, which led to complexity of recruiting healthy patients, 
thereby, in the study patients, whom had bronchitis and another lung diseases were included. Characteristics of 
patients are presented in Table 1. 

TABLE 1. Characteristics of the study participants. 
Parameter Cancer Control 

            N   
                         total 100 100 
                         male 88 73 
                         female 12 27 
           Age, year   
                         mean 60.4 51.2 
                         range 39-79 40-70 
Smoking, years   
                         mean 36.7 25.5 
                         range 0-60 0-53 
Earlier diseases   
                         Bronchitis 31 39 
                         Pneumonia 12 8 
           Stage   
                         I-II 24 - 
                         III-IV 57 - 
Unknown 19 - 
           Histological type   
                         NSCLC 72 - 
                         SCLC 14 - 
Unknown 14 - 

1H NMR Spectroscopy of blood plasma 

An example of 1H NMR spectra of a blood plasma sample obtained from a control healthy patient is shown 
in Fig.1. Identification of metabolites was performed by exhaustive search of the total 1D and 2D Jres data 
using the proprietary Bbiorefcode (Bruker Biospin Ltd.) database. The IDs of the annotated resonances were 
further verified by the collected 2D NMR data. The spectra were dominated by a number of metabolites, 
including lipid fractions (e.g., fatty acids, triacylglycerides and lipoproteins), valine, lactate, alanine, citrate, 
creatinine, glucose, amino acids and tyrosine. 
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FIGURE 1. Typical 400 MHz 1H NMR NOESY spectra of blood plasma obtained from a control conditionally healthy 

patient. Keys to Fig.: 1, lipid CH3; 2, valine; 3, lipid CH2; 4, lactate; 5, alanine; 6, lipid =CH-CH2-; 7, citrate; 8, lipid =CH-
CH2-CH=; 9, creatinine; 10, glucose; 11, amino acids CH; 12, lipid =CH-; 13, tyrosine. 

PCA and PLS-DA of 1H NMR data 

PCA was carried out on the normalized scaled binned the NOESY spectra dataset. The plot of the PCA 
scores from plasma of control and study groups of patients is shown in Fig. 2a. Twenty components were 
calculated and the model corresponding to the first three PCs explained 80.7% (PC1 = 51.4%; PC2 = 14.2%) of 
the total variance. Separation between the study group and the controls was achieved predominately in the 
second PC. 

 

(a) (b) 

FIGURE 2. PCA (a) and PLS-DA (b) scores from NOESY spectra of plasma from patients with lung cancer (blue) and 
control group of patients (green) 

 
Having demonstrated the clustering related to the status of a patient by using PCA, nevertheless, we 

subsequently investigated the data by using PLS-DA to maximize the separation between the groups of objects 
(Fig. 2b). Judged from the cumulative values of R2X (0.62), R2Y (0.41), Q2 (0.35), and p-value of CV-ANOVA 
(6.1*10-8) we can consider that the model is statistically significant and can be valid for selecting variables.  
Based on the variable importance in the projection (VIP) value, the variables were chosen, annotated and 
presented in Table 2. 

The changes in metabolites are presented in Fig. 3. Box-plots were created from data of the most significant 
resonances based on VIP value for each metabolite represented in Table 2. 
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TABLE 2.The dominant metabolites observed in plasma obtained from patients with lung cancer compared with healthy 
patients. 

Metabolite Chemical 
shift δ, ppm 

Variable importance 
(VIP) 

D-glucose 3.88 
3.85 
3.74 
3.7 

2.7 
2.65 
2.07 
1.7 

Alanine 3.78 
1.5 

2.51 
2.1 

Glycerol 3.54 
3.82 

2.42 
2.27 

Glycoproteins 2.04 1.62 
Lipids (mainly LDL) 0.83 

1.31 
1.29 

1.45 
1.36 
1.22 

Lipids (mainly LVDL) 0.88 1.36 

The dominant metabolites are connected with energy, amino acid and lipid metabolism, which is conformed 
with other studies [6, 7, 15, 16]. According to the PLS-DA model, the most dominant metabolite is glucose, 
which is noted at a higher level in plasma of patients with lung cancer as compared to controls. The same effect 
was observed in other studies [16, 17], an observation that might be explained by an increase of gluconeogenesis 
in cancer cells, where an excess of glucose is utilized in the blood stream [18, 19, 20]. The level of alanine 
significantly decreased in plasma of cancer patients as relative to healthy controls, which comports with other 
plasma metabolomic study of lung cancer [21]. Other metabolites are a part of lipid metabolism: The levels of 
low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL) in plasma of patients with tumors are 
lower in comparison with controls; glycoproteins and glycerol are higher in the plasma of the case group versus 
the one in the control group. This finding agrees with the hypothesis about the changes in membrane synthesis 
in cancer cells [22, 23, 24]. 

 
FIGURE 3. Box-plots of the dominant metabolites observed in plasma obtained from patients with lung cancer 

compared with healthy patients 

p-value = 0.004 p-value = 0.001 p-value = >0.001 

p-value = >0.001 p-value = >0.001 p-value = >0.001 
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CONCLUSIONS 

In conclusion, it can be said that a medium-field (400 MHz) NMR spectrometers can be sufficient for 
metabolomic case-control studies of lung cancer. The present research shows that the significant metabolites are 
connected with energy, amino acid and lipid metabolism, which is conformed with previous studies which were 
provided by using more strongly field-magnet spectrometers (600 MHz). 
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