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Abstract Most general third-order 3d linear gauge vec-
tor field theory is considered. The field equations involve,
besides the mass, two dimensionless constant parameters.
The theory admits two-parameter series of conserved ten-
sors with the canonical energy-momentum being a partic-
ular representative of the series. For a certain range of the
model parameters, the series of conserved tensors include
bounded quantities. This makes the dynamics classically
stable, though the canonical energy is unbounded in all
the instances. The free third-order equations are shown
to admit constrained multi-Hamiltonian form with the 00-
components of conserved tensors playing the roles of corre-
sponding Hamiltonians. The series of Hamiltonians includes
the canonical Ostrogradski’s one, which is unbounded. The
Hamiltonian formulations with different Hamiltonians are
not connected by canonical transformations. This means, the
theory admits inequivalent quantizations at the free level.
Covariant interactions are included with spinor fields such
that the higher-derivative dynamics remains stable at inter-
acting level if the bounded conserved quantity exists in the
free theory. In the first-order formalism, the interacting the-
ory remains Hamiltonian and therefore it admits quantiza-
tion, though the vertices are not necessarily Lagrangian in
the third-order field equations.

1 Introduction

Classical dynamics and quantization of various higher-
derivative models are discussed once and again for decades.
Among most frequently studied specific models we can men-
tion Pais-Uhlenbeck (PU) oscillator [1], Podolsky and Lee–
Wick electrodynamics [2–4], higher-derivative extensions of
the Chern–Simons model [5], higher-derivative Yang–Mills
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models [6], conformal gravity [7], various higher-derivative
higher-spin fields theories [8–10], modified theories of grav-
ity [11], including critical gravity [12]. The higher-derivative
models often reveal remarkable various properties comparing
to the counterparts without higher derivatives. In particular,
the inclusion of higher derivatives improves the convergency
in the field theory both at classical and quantum level in many
models. Also the conformal symmetry often requires inclu-
sion of higher derivatives in the field equations.

The higher-derivative dynamics are also notorious for the
classical and quantum instability. The key point, where the
problem can be immediately seen is that the canonical energy
is unbounded for general higher-derivative Lagrangian sys-
tems. Several exceptions are known [13–18] of the higher-
derivative models such that have bounded canonical energy.
In all these cases, the energy is on-shell bounded because of
strong constraints among the field equations. At the quantum
level, the instability reveals itself by the ghost poles in the
propagator and it is related to the problem of unbounded spec-
trum of energy. In its turn, the unbounded energy spectrum
results from the fact that the canonical Hamiltonian, being
the phase space equivalent of canonical Noether’s energy, is
unbounded due to the higher derivatives.

In the work [19], it was noticed that the broad class of
higher-derivative models are stable at classical level because
they admit conserved tensors with bounded 00-component.
The bounded conserved quantity turns out different from
the canonical energy which can be unbounded for the same
dynamics. Furthermore, these models admit non-canonical
Lagrange anchors.1 The class of higher-derivative systems
considered in Ref. [19] covers a variety of well-known

1 The concept of Lagrange anchor was introduced in Ref. [20] to
covariantly quantize not necessarily Lagrangian field theories. Later,
it was established that the Lagrange anchor maps global symmetries
to conserved currents [21]. The canonical Lagrange anchor, being an
identity map, is always admitted by the Lagrangian equations, and it
identifies a symmetry with the characteristics of conserved quantity.
This can be understood as the Noether theorem in a different wording.
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higher-derivative models, including PU oscillator and Podol-
sky electrodynamics. In Ref. [22], this class is further gener-
alized, and it covers also extended Maxwell–Chern–Simons
models. In all the examples of higher-derivative models con-
sidered in [19,22], the conserved tensor with bounded 00-
component turns out connected with the space-time trans-
lations by a non-canonical Lagrange anchor. In this sense,
the bounded conserved tensor can be interpreted as a non-
canonical energy-momentum. The conservation law makes
the theory stable at classical level irrespectively to interpre-
tation of the conserved quantity. Also notice that all the con-
sidered examples [19,22] of stable higher-derivative models
admit the interactions such that do not spoil classical stability.
Further examples of stable interactions can be found in [23–
25] for various higher-derivative models. In all these models,
the canonical energy is unbounded at free level, while the sta-
bility is due to another bounded conserved quantity.

The Hamiltonian formalism for non-singular higher-
derivative theories was introduced by Ostrogradski [26]. Its
generalization for singular Lagrangians was first worked
out in the paper [27]. The general constrained Hamiltonian
formalism of higher-derivative systems was further devel-
oped since that in various directions. In particular it was
adapted for higher-derivative gravity in a series of works
starting from [28], for recent developments and further ref-
erences see [29,30]. Notice that all these reformulations
are connected by canonical transformations, so they cannot
replace the unbounded Hamiltonian with any bounded quan-
tity. The canonical Hamiltonian, being a canonical energy
expressed in terms of phase space variables, is always
unbounded for non-degenerate higher-derivative systems.
Once the higher-derivative Lagrangian is degenerate, the
phase space variables are subject to constraints. On the con-
straint surface, the canonical Hamiltonian can be bounded
if the constraints are strong enough. The examples of this
phenomenon are the same as previously mentioned cases of
on-shell bounded canonical energy. The paper [31] demon-
strates that once a Lagrange anchor is admitted by the
equations of motion, the first-order formalism of the the-
ory admits a constrained Hamiltonian formulation. If the
model admits multiple Lagrange anchors, the first-order for-
malism will be multi-Hamiltonian. Furthermore, it is the
conserved quantity connected to the time-shift symmetry
by the Lagrange anchor which serves as Hamilton func-
tion. With this regard, the higher-derivative field theories
of this class are expected to admit multi-Hamiltonian for-

Footnote 1 continued
The non-canonical Lagrange anchor also connects symmetries with
characteristics of conserved currents, though it is not an identity map.
Every Lagrange anchor connects any conserved current to a certain
symmetry. Once the dynamical system, be it Lagrangian or not, admits
different Lagrange anchors, the same symmetry can be connected with
different conserved quantities.

malism where some of Hamiltonians are bounded. Once
the classical Hamiltonian is bounded, the theory, being
canonically quantized with respect to corresponding Pois-
son bracket, has a good chance to remain stable at quantum
level.

The paper [19] provides a list of examples of higher-
derivative systems admitting multiple Lagrange anchors,
including the PU oscillator. By the above mentioned rea-
sons, every model on this list has to be a multi-Hamiltonian
system. It has been earlier noticed that the free PU oscil-
lator admits alternative Hamiltonian formulations [32,33].
It has been observed that the series of canonically inequiv-
alent Hamiltonians includes the bounded ones, while the
canonical Ostrogradski Hamiltonian is unbounded. Later,
the multi-Hamiltonian formulations of PU oscillator have
been re-derived and re-interpreted from various viewpoints
in [23,34–38]. All these observations can be summarized in
the statement that the PU oscillator of order 2n admits the
n-parameter series of alternative Hamiltonians and associ-
ated Poisson brackets. Once the equations of motion admit a
Hamiltonian formulation with bounded Hamilton functions,
the dynamics is stable classically and quantum-mechanically.
It is also worth to notice that the PU oscillator equation
of motion admits the interaction vertices such that do not
spoil the classical stability [19,39]. These vertices are non-
Lagrangian, while the interacting higher-derivative equa-
tions, being brought to the first-order formalism, still remain
Hamiltonian with positive Hamilton function [23,24]. In this
way, the PU oscillator equation admits inclusion of interac-
tions such that leave the dynamics stable beyond the free level
and admit Hamiltonian formulation. Notice that the stability
of PU oscillator with the Lagrangian interaction vertices is
studied once and again for decades. In some cases, the model
admits isles of stability, see e.g. [40–44] for the most recent
results and review, while it is unstable in general, unlike the
case of above mentioned non-Lagrangian interactions.

If the equations of motion admit a Lagrange anchor, the
dynamics have to admit a constrained Hamiltonian formu-
lation [31]. With multiple Lagrange anchors, the dynamics
should be multi-Hamiltonian. In general, the construction
of Hamiltonian formulation for a given Lagrange anchor is
implicit [31]. A direct relation between the Lagrange anchor
and corresponding Hamiltonian formalism has been estab-
lished for the PU oscillator in [23]. In [19,39], the inter-
actions are introduced, being compatible with the Lagrange
anchor. The stable interactions are found by means of the fac-
torization method [19] and proper deformation method [39].
These two methods are equivalent [25] in principle, though
they apply different techniques. Recently, more examples
has become known of stable interaction vertices in various
higher-derivative models with unbounded canonical energy
at free level. The examples include PU theory [19,23,37,38],
Podolsky electrodynamics [19], and higher-derivative exten-
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sions of the Chern–Simons theory [22]. The stable interac-
tion vertices are explicitly covariant in all the field theo-
retical examples, though they do not follow from the least
action principle. The existence of a Lagrange anchor, how-
ever, implies that these models have to admit the Hamiltonian
description at interacting level.

To the best of our knowledge, no explicit example has been
known yet of higher-derivative field theory admitting multi-
Hamiltonian formulation. In this work, we construct the
multi-Hamiltonian formulation for higher-derivative exten-
sions of Chern–Simons theory. The canonical unbounded
Hamiltonian is included into the two-parametric series of
admissible Hamilton functions. The series can also include
bounded Hamiltonians in some cases. The existence of a
bounded Hamiltonian depends on the parameters in the third-
order equations. We also demonstrate that the covariant inter-
actions exist such that the higher-derivative theory still admits
bounded Hamiltonian, and therefore it remains stable at inter-
acting level if the free model was stable.

We consider the class of theories of the vector field
A = Aμdxμ in 3d Minkowski space with the free action
functional

S[A] = 1

2

∫
∗A ∧ (α0m

2A + α1m ∗ d A + a2 ∗ d ∗ d A

+α3m
−1 ∗ d ∗ d ∗ d A + · · · ). (1)

Here, d is the de-Rham differential, ∗ is the Hodge star oper-
ator, m is a dimensional constant, α0, α1, α2, α3, . . . are the
dimensionless constant real parameters. Depending on the
values of the parameters, the action (1) can reproduce var-
ious 3d field theories, including the Chern–Simons–Proca
theory [45,46], topologically massive gauge theory [47,48],
Maxwell–Chern–Simons–Proca model [49,50], Lee–Wick
electrodynamics [3,4] and extended Chern–Simons [5]. The
classical stability of the model (1) is considered in the works
[22,51]. In Ref. [51], it has been found that the model admits
multiple conserved tensors being connected with the time
translation by the Lagrange anchors. The anchors are poly-
nomials in the Chern–Simons operator ∗d. The set of con-
served quantities can include bounded ones. This depends on
the roots of the characteristic equation

α0 + α1z + α2z
2 + α3z

3 + · · · = 0, (2)

Here, z is considered as a formal complex-valued variable,
and αk are the parameters of the model (1). As is established
in [51], the model (1) admits a bounded conserved tensor and,
hence, it is stable iff all the non-zero simple roots of Eq. (2)
are real, while zero root may have the maximal multiplicity
2, and no roots occur with a higher multiplicity.

In this paper, we focus at the model (1) with at maximum
third-order derivatives, i.e. the action reads

S[A] = 1

2

∫
∗A∧(α1m∗d A+α2∗d∗d A+m−1∗d∗d∗d A),

(3)

with α1, α2 being two independent dimensionless param-
eters. This model has been proposed in [5] as the third-
order extension of Chern–Simons theory. The model is obvi-
ously gauge-invariant. We construct the constrained multi-
Hamiltonian formalism for this model. For similar reasons,
the more general case (1) has to be a multi-Hamiltonian sys-
tem, with a broader class of admissible Hamiltonians depend-
ing on the structure of roots in (2). As the construction of
multi-Hamiltonian formalism becomes more cumbersome
with growth of the order of derivatives, we do not go beyond
the third-order models in this paper.2

Let us explain what do we understand by constrained
multi-Hamiltonian formalism. At first, notice the obvious
fact that the higher-derivative field equations can be always
reduced to the first-order derivatives in time by introduc-
ing extra fields absorbing the higher time derivatives. We
denote the original and extra fields by ϕa(�x). The first-order
equations are said to be multi-Hamiltonian if there exists k-
parametric series of Hamiltonians H(β, ϕ,∇ϕ,∇2ϕ,

∇3ϕ, . . .) and Poisson brackets {ϕa(�x), ϕb(�y)}β , with
β1, . . . , βk being constant parameters and ∇ denoting deriva-
tives by space �x , such that the equations constitute con-
strained Hamiltonian system with any β, i.e.

ϕ̇a = {ϕa, HT (β)}β , (4)

HT (β) = H(β, ϕ,∇ϕ,∇2ϕ,∇3ϕ, . . .)

+ λATA(ϕ,∇ϕ,∇2ϕ,∇3ϕ, . . .) ;
TA(ϕ,∇ϕ,∇2ϕ,∇3ϕ, . . .) = 0. (5)

The rhs of Eq. (4) does not depend on the parameters β, while
both the total Hamiltonian HT (β) and the Poisson bracket
do. In the other wording, changing values of parameters β,
we simultaneously change Hamiltonian HT (β) and Poisson
brackets {·, ·}β in such a way that the equations of motion (4)
remain intact.

Any higher-derivative Lagrangian field theory always
admits at least one Hamiltonian formulation which can be
constructed by the Ostrogradski method in the unconstrained
case, and by various generalizations [27–30] developed for
the constrained systems. In this paper, we develop the Hamil-
tonian formalism of higher-derivative field theory in several
respects by the example of the model (3). At first, the third-
order extension of the Chern–Simons model (3) is shown
to admit a two-parameter series of constrained Hamilto-
nian formulations. The Hamiltonians from this series can be
bounded from below in some cases, depending upon param-

2 The multi-Hamiltonian formulation for the gauge-invariant extension
of the Chern–Simons model of the fourth order have been constructed
in [52].
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eters α1, α2, even though Ostrogradski’s Hamiltonian of the
model is unbounded in all the instances. The second is that the
free higher-derivative equations of this model admit inclusion
of covariant interactions which do not break the stability if
the theory have bounded conserved quantity at free level. Fur-
thermore, the stable theory admits constrained Hamiltonian
formulation at interacting level with a bounded Hamilton
function.

Let us also remark that the multi-Hamiltonian formulation
helps to resolve the discrepancy between classical stability of
higher-derivative dynamics and quantum instability which is
connected to the unboundedness of canonical Hamiltonian.
As it is noticed in [22], the stable higher-derivative exten-
sions of the Chern–Simons model realize the reducible rep-
resentations which are decomposed into the unitary irreps
in some cases. In the other cases, the representations are
non-unitary or non-decomposable. If the model admits only
unbounded conserved tensors, it corresponds to a non-unitary
representation, while the models with unitary representations
admit non-Ostrogradski’s bounded Hamiltonians. If the the-
ory is quantized with the bounded Hamiltonian, and the com-
mutation relations are imposed in accordance with the cor-
responding Poisson brackets, the theory will be quantum-
mechanically stable, as it is at the classical level.

Let us make some comments on the interactions which
do not break the stability of the higher-derivative theory.
An example of stable couplings in the model (1) has been

noticed in [22] in the case involving massive Proca term,
so it is the theory without gauge symmetry. In the present
paper, we consider the gauge model (3) and introduce gauge-
invariant interaction with spinors. This class of interactions
can be viewed as a generalization to the non-minimal stable
couplings of d = 4 Podolsky electrodynamics to the spinor
matter proposed in Ref. [19].

The article is organized as follows. In Sect. 2, we describe
conserved tensors of the third-order model (3). We also relate
the existence of bounded conserved tensors with the struc-
ture of the corresponding Poincaré group representation. In
doing that, we mostly follow the general prescriptions of [22]
and [51]. The section is self-contained, however. In Sect. 3,
the multi-Hamiltonian formulation is constructed with the
Hamiltonians defined by the conserved tensors of Sect. 2. In
Sect. 4, we introduce the interactions with spin 1/2 such that

do not break the stability of higher-derivative theory if the
theory is stable at free level. After that, we demonstrate that
the higher-derivative interacting theory still admits Hamilto-
nian formulation in all the instances, even if the vertices are
not Lagrangian.

2 Conserved tensors

For the action (3), the Lagrange equations read

δS

δA
≡

(
α1m ∗ d + α2 ∗ d ∗ d + 1

m
∗ d ∗ d ∗ d

)
A = 0.

(6)

The third-order time derivatives are involved in these equa-
tions. That is why, the conserved quantities can involve the
second-order time derivatives.

The equations (6) correspond to a reducible representation
of the Poincaré group. Specifics of the representation depends
on the constants α1, α2. Different cases are distinguished by
the structure of roots in the characteristic equation

z3 + α2z
2 + α1z = 0 (7)

associated to the field Eq. (6). Here, z is a formal unknown
variable, and α1, α2 are the parameters of the model. There
are the following different cases distinguished by the struc-
ture of roots for the variable z:

(A) α1 �= 0, α2
2 − 4α1 > 0, two simple real nonzero roots, and one simple zero root;

(B) α1 = 0, α2 �= 0, one simple real nonzero root, and one zero root of multiplicity two;
(C) α1 �= 0, α2

2 − 4α1 = 0, one real nonzero root of multiplicity two, and one simple zero root;
(D) α1 = 0, α2 = 0, one zero root of multiplicity three;
(E) α1 �= 0, α2

2 − 4α1 < 0, two simple complex conjugate roots, and one simple zero root.

(8)

In cases A and B, the representation is unitary and reducible.
In case A, the representation is decomposed into two irre-
ducible sub-representations. Each one corresponds to a self-
dual massive spin 1, while the masses can be different. In
case B, the set of sub-representations includes a massless
spin 1 and a massive spin 1 subject to a self-duality condition.
Cases C and D correspond to reducible indecomposable non-
unitary representations. These two options are distinguished
by different multiplicity of the multiple real root in Eq. (7).
In case E, the representation is irreducible and non-unitary.
So, one can see that the field Eq. (6) can describe either uni-
tary or non-unitary representations of the 3d Poincaré group
depending on the relations between the parameters α1, α2.

The third-order field Eq. (6) admits two-parameter series
of on-shell conserved second-rank tensors

Tμν(β1, β2) = β1(T1)μν + β2(T2)μν, (9)
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where β1, β2 are the real constant parameters, and (Ta)μν,

a = 1, 2 read

(T1)μν = 1

m

{
(GμFν + GνFμ − ημνGρF

ρ)

+α2m(FμFν − 1

2
ημνFρF

ρ)
}
,

(T2)μν = 1

m2

{
(GμGν − 1

2
ημνGρG

ρ)

−α1m
2(FμFν − 1

2
ημνFρF

ρ)
}
. (10)

Here we use the notation3

Fμ ≡ εμρν∂
ρ Aν = (∗d A)μ, Gμ ≡ ∂μ∂ν Aν − �Aμ

= (∗d ∗ d A)μ, ε012 = 1. (11)

Tensor T1 is the canonical energy-momentum for the action
(3), while T2 is another independent conserved quantity. As
F andG are gauge invariant quantities, the tensor (9) is gauge
invariant with any β. Also notice that Fi ,Gi , i = 1, 2 define
independent unconstrained Cauchy data for the field Eq. (6).
Once T1 is linear in G, it is unbounded anyway. The general
entry of the series (9) is bilinear in both G and F . So, T (β)

can be bounded, in principle, if β2 �= 0.
The conserved tensors of the series (9) are connected to

the invariance of the model with respect to the space-time
translations if the parameters meet the condition

β2
1 − α2β1β2 + α1β

2
2 �= 0. (12)

This connection can be traced by the Lagrange anchor
method along the same lines as in the paper [51]. From this
perspective, any representative of the series (9) satisfying
condition (12) can be viewed as energy-momentum.

The 00-component of the conserved tensor T (β1, β2)

from the series (9) can be bounded or unbounded from below
depending on the parameters α involved in the Eq. (6) and
on specific values of β. Once the representation is unitary
[that corresponds to the cases A,B in classification (8)], the
bounded representatives exist with certain β’s, as we shall see
in the next section. For non-unitary representations (the cases
C,D,E), the 00-component of the conserved tensor T (β) is
unbounded in all the instances. As the existence of bounded
conservation law provides the classical stability of the model,
the theory is stable if the parameters of the model meet the
conditions (8.A) or (8.B), and it is unstable in all the other
cases. The canonical energy (T1)00 is always unbounded.

The conserved tensors are defined modulo on-shell van-
ishing terms. So, we have equivalence classes of conserved
quantities which coincide on-shell, being off-shell different.
The choice of specific representative of the equivalence class
is a natural ambiguity in the definition of conserved quantity.

3 The Minkowski metric is taken with mostly negative signature.

We mention this ambiguity because it has a natural coun-
terpart in the Hamiltonian formalism considered in the next
section. As far as the linear Eq. (3) admit bilinear gauge
invariant conserved tensors (9), it is natural to consider the
series up to quadratic on-shell vanishing terms. The most
general gauge-invariant bilinear and symmetric representa-
tive in the equivalence class of Tμν(β1, β2) (9) reads

Tμν(β1, β2, β3, β4) = Tμν(β1, β2) + β3

2m

(
Fμ

δS

δAν
+ Fν

δS

δAμ

)

+ β4

2m2

(
Gμ

δS

δAν
+ Gν

δS

δAμ

)
. (13)

Two real parameters β3, β4 label different representatives of
the same equivalence class of conserved tensors, while β1, β2

determine the equivalence class of conserved tensor as such.
Only one of two constants β3, β4 is independent. The other
one can be absorbed by the multiplication of the equations
of motion by the constant overall factor.

In the next section, we construct a multi-Hamiltonian
formulation where 00-components of the conserved tensors
Tμν(β1, β2, β3, β4) (13) serve as Hamiltonians, and all the
values of the parameters β1 and β2, being subject to con-
dition (12), are admissible. For reasons of convenience, we
consider all the cases in a uniform way, be the Hamiltonian
bounded or not.

3 Multi-Hamiltonian formulation

The multi-Hamiltonian formalism is constructed for the Eq.
(6) in three steps. First, the higher-derivative equations are
reduced to the first-order in time by introducing extra vari-
ables to absorb the time derivatives of the original field A.
The first-order equations are split in two subsets. The first
one includes the evolutionary type equations, while the other
equations are the constraints. The latter ones do not involve
the time derivatives of the fields. Second, the 00-component
of the most general conserved tensor of the series (9) is
taken as the Hamiltonian of the model. As far as the con-
sidered model is constrained, the Hamiltonian involves a lin-
ear combination of constraints. Third, the series of Poisson
bracket is found for the series of Hamiltonians such that the
evolutionary-type equations of motion take the constrained
multi-Hamiltonian form (4).

Let us reduce the third-order field Eq. (6) to the first order
in time x0. Introduce new fields absorbing the first- and
second-order time derivatives of original field Ai , i = 1, 2,
while the time derivatives of A0 eventually drop out from the
equations. We chose the gauge-invariant quantities Fi , Gi ,
i = 1, 2 (11) as new variables absorbing the time derivatives
of A,

Fi = εi j ( Ȧ j − ∂ j A0),

Gi = − Äi + ∂i Ȧ0 + ∂ j (∂ j Ai − ∂i A j ), i, j = 1, 2, (14)
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with εi j = ε0i j being the 2d Levi-Civita symbol. Substituting
these variables into (6), we arrive at the following first-order
equations in terms of the fields Aμ, Fi ,Gi :

Ȧi = ∂i A0 − εi j Fj ,

Ḟi = εi j
[
∂k(∂k A j − ∂ j Ak) − G j

]
,

Ġi = εi j
[
∂k(∂k Fj − ∂ j Fk) + m(α2G j + α1mFj )

]
, (15)

� ≡ εi j∂i

(
1

m
G j + α2Fj + α1mA j

)
= 0. (16)

In terms of fields A, F,G, the evolutionary equations (15)
represent the first-order form of the space components of the
Lagrange Eq. (6). The zero component of the original field
Eq. (6) is a constraint (16), which does not involve the time
derivatives. Since the constraint � conserves with account
for the evolutionary equations, no secondary constraints are
imposed on the fields. The first-order equations (15), (16) are
obviously equivalent to the original third-order ones (6).

In the first-order formalism, the equations are invariant
under the gauge transformation

δξ A0 = ∂0ξ(x), δξ Ai = ∂iξ(x), δξ Fi = δξGi = 0 ,

(17)

where ξ is the gauge transformation parameter, being arbi-
trary function of x . In what follows, it is natural to consider
the field A0 as the Lagrange multiplier associated to the con-
straint (16). This interpretation is consistent with the gauge
transformation (17) which includes the time derivative of the
gauge parameter, as it should be for Lagrange multiplier in
the constrained Hamiltonian formalism.

In the first-order formalism, the 00-component of the con-
served tensor (9) reads

T00(β1, β2) = 1

2m2

{
β2

[
∂i Fj (∂i Fj − ∂ j Fi ) + (Gi )

2]

+ 2mβ1
[
∂i Fj (∂i A j − ∂ j Ai ) + Gi Fi )

]
+m2(β1α2 − β2α1)

[
∂i A j (∂i A j − ∂ j Ai )

+ (Fi )
2]}. (18)

We treat this quantity as the series of on-shell Hamiltonians
parameterized by constants α, β. Off-shell, the Hamiltonian
can be a sum of (18) and constraints. We chose the following
ansatz for the total Hamiltonian:

HT (β1, β2, γ ) ≡ T00(β1, β2) +
[
β2

1 − α2β1β2 + α1β
2
2

β1 − α2β2 − α1γ
A0

+ 1

m

β1β2 + α1β2γ − α2β1γ

β1 − α2β2 − α1γ
εi j∂i A j

+ 1

m2

β2
2 + β1γ

β1 − α2β2 − α1γ
εi j∂i Fj

]
�,

(19)

where β1, β2, γ are constant parameters. On account of the
constraint (16), the quantities (18) and (19) coincide on shell.
The parameter γ is introduced to control the inclusion of the
constraint term into the Hamiltonian. The admissible values
of the parameters β and γ subject to conditions

β2
1 − α2β1β2 + α1β

2
2 �= 0, β1 − α2β2 − α1γ �= 0. (20)

Here, the first condition implies that the conserved quantity
(18) is connected to the invariance of the model (6) with
respect to the time translations, see Eq. (12). Both the con-
ditions (20) ensure that the numerical factor at the Lagrange
multiplier A0 in the Hamiltonian (19) is nonzero and nonsin-
gular. Once these two requirements are met, any conserved
quantity (18) can serve as the Hamiltonian with appropriate
Poisson bracket.

Now, let us seek for the Poisson brackets among the fields
Ai , Fi ,Gi , i = 1, 2 such that the Eqs. (15), (16) take the
constrained multi-Hamiltonian form (4), (5) with the Hamil-
tonian defined by relations (18), (19) and the constraint (16).
Given the series of Hamiltonians (18), (19) and the r.h.s.
of the equations (15), we arrive at the system of linear
algebraic equations defining the series of Poisson brackets
{·, ·}β,γ :

{Ai , HT (β, γ )}β,γ = ∂i A0 − εi j Fj ,

{Fi , HT (β, γ )}β,γ = εi j
[
∂k(∂k A j − ∂ j Ak) − G j

]
,

{Gi , HT (β, γ )}β,γ = εi j
[
∂k(∂k Fj − ∂ j Fk)

+m(α2G j + α1mFj )
]
. (21)

The Poisson bracket, being defined by these equations,
involves five independent parameters α1, α2, β1, β2, γ . The
bracket eventually reads

{Gi (�x),G j (�y)}β,γ =m3 (α1−α2
2)β1+α1α2β2

β2
1 − α2β1β2 + α1β

2
2

εi jδ(�x − �y),

{Fi (�x),G j (�y)}β,γ = m2 α2β1 − α1β2

β2
1 − α2β1β2 + α1β

2
2

εi jδ(�x − �y),
{Fi (�x), Fj (�y)}β,γ = {Ai (�x),G j (�y)}β,γ

= m
−β1

β2
1 − α2β1β2 + α1β

2
2

εi jδ(�x − �y),

{Ai (�x), Fj (�y)}β,γ = β2

β2
1 − α2β1β2 + α1β

2
2

εi jδ(�x − �y),

{Ai (�x), A j (�y)}β,γ = 1

m

γ

β2
1 − α2β1β2 + α1β

2
2

εi jδ(�x − �y).
(22)

The accessory parameter γ controls the constraint terms in
the total Hamiltonian (19). As is seen, the same param-
eter defines the Poisson bracket between the components
Ai of gauge potential. This parameter does not contribute
to the Poisson brackets between the physical observables,
being the functions of the gauge-invariant quantities Fi ,Gi ,
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and the strength εi j∂i A j . That is why, γ can be con-
sidered as an accessory parameter. Inclusion of γ -terms
into total Hamiltonian and brackets allows us to literally
reproduce in Hamiltonian form the first-order dynamical
Eq. (15) for all the quantities, be they gauge-invariant or
not.

Let us make one more comment on the meaning of the
accessory parameter γ which defines the bracket between Ai

and does not affect on the brackets of gauge-invariant quanti-
ties. Notice that the Poisson brackets in gauge theory have the
inherent ambiguities. The general study of these ambiguities
can be found in Ref. [53]. In context of the bracket (22), one of
these ambiguities turns out relevant. It is related to the option
of redefining the Poisson bracket by adding the bi-vector,
being the wedge product of gauge symmetry generator to
another vector. This redefinition does not affect the brack-
ets between gauge-invariant observables, while it can alter
the brackets of non-gauge-invariant quantities. The bracket
(22) involves the ambiguous terms of this type, and it is the
ambiguity which is controlled by the accessory parameter γ .

The problem of identification of ambiguous terms in the
Poisson bracket is a subtle issue. The Poisson bracket (22)
is ultralocal between components of Ai with no derivatives
involved, while the generator of the gauge symmetry for Ai

(17) involves a derivative. Thus, the ambiguous terms in the
Poisson bracket cannot be absorbed by adding the wedge
product of the gauge symmetry generator, being a derivative,
to another vector, being a polynomial in the partial derivatives
∂i . The problem is solved by including the inverse Laplace
operator �−1 = (∂i∂i )

−1 into the coefficient at the gauge
generator. The space non-locality of this type is usually con-
sidered as admissible for the constrained Hamiltonian for-
malism in the field theory.4 To represent the bracket (22)
between the components of Ai in terms of gauge genera-
tors, we use the following identical representation for the 2d
Levi-Civita tensor εi j :

εi j = 1

2�
(εim∂m∂ j − ε jm∂m∂i ). (23)

Substituting εi j from this relation into rhs of the Poisson
bracket for the potential components, we rewrite the bracket
in the form

{Ai (�x), A j (�y)}β,γ = 1

2
(Vi (γ )∂ j − Vj (γ )∂i )δ(�x − �y),

Vi (γ ) = γ

m(β2
1 − α2β1β2 + α1β

2
2 )

εim∂m

�
.

(24)

Here, all the partial derivatives act on argument �x in the delta-
function. Once the operator ∂i is a gauge generator for the

4 For example, the inverse Laplacian contributes to the Dirac brackets
of vector potential to electric strength in the Maxwell electrodynamics
in the Coulomb gauge.

field Ai , the vector Vj (γ ) parametrizes the ambiguity in the
Poisson bracket. Thus, we treat the parameter γ as inherent
ambiguity of the Poisson bracket in the gauge theory outlined
in Ref. [53].

Let us summarize all the aspects related to the ambigu-
ity in parametrization of the multi-Hamiltonian formulation
of Eq. (6). The Hamiltonian and brackets (19), (22) involve
five parameters. Two of them, α1 and α2, define the orig-
inal Eq. (6). The constants β1, β2 parameterize the series
of conserved tensors tensors (9). These tensors admit gauge-
invariant re-definitions by on-shell vanishing terms (13), with
one more parameter in control of corresponding ambiguity.
The 00-components of the conserved tensors are chosen as
Hamiltonians for the first-order formulation (15), (16) of the
original third-order Eq. (6). In this way, the ambiguity in the
off-shell definition of the conserved tensors is converted into
the ambiguity in the constraint terms of the Hamiltonian. The
later ambiguity does not contribute to the equations of motion
for the gauge-invariant quantities Fi ,Gi , εi j∂i A j , while the
equations of motion for the potential components Ai can
alter. We seek for a series of the Hamiltonians and Poisson
brackets such that the Hamiltonian equations literally repro-
duce the first-order form (15) of the original third-order Eq.
(3) for all the variables, including the original vector field.
In this case, one and the same parameter has to control the
ambiguity in the Hamiltonian and Poisson bracket. It is the
parameter γ . In the free theory, γ can be set to an arbitrary
value. This corresponds to the choice of the representative
in the equivalence class in the series of Hamiltonian formu-
lations with the Hamiltonian (18), (19) and Poisson bracket
(22). Thus, γ is an accessory parameter in the series of Hamil-
tonian formulations unless the interaction is introduced. We
keep γ in the Hamiltonian formulation throughout this sec-
tion to have the contact with Sect. 4, where the couplings
are introduced with spinors. As we will see, this parameter
becomes essential for inclusion of consistent interactions in
the non-linear model.

The Hamiltonians in the series (19) can be bounded from
below provided for the parameters are subject to certain con-
ditions. Let us elaborate on the issue of the boundedness. As
is seen from Eq. (19), the Hamiltonian is the sum of the 00-
component of the conserved tensor (18) and a constrained
term. We ignore the constrained term as the boundedness
matters only on-shell. The 00-component of the conserved
tensor is defined by relation (18). In the notation (11), we
rewrite the rhs of (18) in the form

T00(β1, β2) = 1

2m2

{
β2GμGμ + 2mβ1GμFμ

+m2(β1α2 − β2α1)FμFμ

}
, (25)
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where summation over repeated at one level index μ =
0, 1, 2 is implied.5 Once β2 = 0, this expression determines
the 00-component of the canonical energy-momentum ten-
sor (T1)00, and it is unbounded for all the values of param-
eters α1, α2. This happens just because the 00-component
of canonical energy-momentum is linear in Gi , while Gi

are independent Cauchy data for Eq. (15). Once β2 �= 0,
we rewrite (25) as the linear combination of two Euclidean
squares

T00(β1, β2) = 1

2m2

{
β2XμXμ + −β2

1 + α2β1β2 − α1β
2
2

β2
m2FμFμ

}
,

Xμ = Gμ + m
β1

β2
Fμ. (26)

This expression is the quadratic form in the variablesGμ, Fμ.
The variables Xμ, Fμ diagonalize the quadratic form (26).
Once the quadratic form is brought to the diagonal form, it is
positive if all the coefficients are nonnegative at the squares
of the variables. The last fact implies the following conditions
on the parameters α1, α2, β2, β2:

β2 > 0, −β2
1 + α2β1β2 − α1β

2
2 ≥ 0. (27)

The equality sign in the second inequality should be
excluded, because the conservation law is unrelated to the
time translations in this case, and it does not lead to any
Hamiltonian (19) [see conditions (20)]. Finally, we con-
clude that the Hamiltonian (19) is bounded from below if
the parameters of the model α1, α2, β1, β2 are subject to the
conditions

β2 > 0, −β2
1 + α2β1β2 − α1β

2
2 > 0. (28)

Relations (28) imply certain restrictions on possible values
of parameters of model α1, α2. In cases A,B in classification
(8), these conditions can be satisfied by appropriate values
of the parameters β1, β2. In cases C, D, E of classification
(8), conditions (28) are inconsistent. As we see, the bounded
Hamiltonians are included in the series (19) once the Eq.
(6) transform under unitary representations of the Poincaré
group. For non-unitary representations, every Hamiltonian is
unbounded in the series. We finally notice that condition (28)
is more restrictive than (12). Thus, any bounded conserved
quantity serves as a Hamiltonian. The Ostrogradski Hamilto-
nian, being included in the series (19) with β1 = 1, β2 = 0,
is always unbounded.

For every β, γ , the Poisson bracket (22) is a non-
degenerate tensor, so it has an inverse, being a symplectic
two-form. The latter defines the series of Hamiltonian action
functionals

5 No Minkowski metric is involved in this summation, it is just
Euclidean product.

S(β, γ ) =
∫ {

β2
1 − α2β1β2 + α2β

2
2

β1 − α2β2 − α1γ

(
α1mAi + 2α2Fi + 2

m
Gi

)

εi j Ȧ j + 1

m

β2
1 + ((α2

2 − α1)β1 − α1α2β2)γ

β1 − α2β2 − α1γ

εi j Fi Ḟj + 2

m2

β1β2 + (α2β1 − α1β2)γ

β1 − α2β2 − α1γ
εi j Gi Ḟj

+ 1

m3

β2
2 + β1γ

β1 − α2β2 − α1γ
εi j Gi Ġ j − HT (β, γ )

}
d3x, (29)

where HT (β, γ ) denotes the total Hamiltonian (19).
For β1 = 1, β2 = γ = 0, we get Ostrogradski’s action

for the variational model (3):

SCanonical =
∫ {

(α1mAi + 2α2Fi + 2

m
Gi )εi j Ȧ j

− 1

m
εi j Fi Ḟj − A0� − (T1)00

}
d3x, (30)

where (T1)00 is the 00-component of the canonical energy-
momentum tensor. The formula (30) follows from (29) for
all the values of parameters α1, α2 of the model (6).

For β2 �= 0, we get the non-canonical Hamiltonian actions
that still result to the same original Eq. (6). Different actions
in the series (29) are not connected by a canonical trans-
formation. This is obvious because the Hamiltonian in the
series (19) can be bounded from below, while the canonical
Hamiltonian (30) is always unbounded.

The Poincaré invariance can be questioned of the non-
canonical Hamiltonian actions (29), and hence the covariance
of the corresponding quantum theory may seem in question.
We do not elaborate on this issue here, while we claim that the
quantum theory associated to any model in the series (29) is
Poincaré-invariant. The argument is that the original higher-
derivative theory admits the series of covariant Lagrange
anchors [22]. It is the series of anchors which underlies the
multi-Hamiltonian formulation (29). One more reason is pro-
vided by the fact that every Hamiltonian in the series (18) is
00-component of the second rank tensor (13). All the entries
of the series transform in the same way, including Ostrograd-
ski’s Hamiltonian.

4 Stable interactions with spinor field

As we have seen above, the higher-derivative extensions of
the Chern–Simons theory admit multi-Hamiltonian formula-
tions. In some cases, the Hamiltonians are bounded. In this
section, we provide an example of couplings to spinors such
that the theory still has bounded Hamiltonian and therefore
it remains stable at interacting level.

In [19], the stable interaction is included for the higher-
derivative Podolsky’s electrodynamics in the dimension d =
4. The stable interaction is non-Lagrangian in d = 4, while
the Hamiltonian formalism is not considered there. So, the
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possibility could be questioned of the canonical quantization
of the interacting model even without gauge invariance. The
three-dimensional model admits more options than its four-
dimensional counterpart, because (due to the presence of the
Chern–Simons term) it can describe a variety of reducible
representations of the 3d Poincaré group. Below we intro-
duce the interaction mostly following the lines of [24] with
regard to the d = 3 specifics, and then we construct the
Hamiltonian formalism for the interacting theory.

Let us introduce coupling of the vector field A and 2-
component spinor fieldψa, a = 1, 2 (ψa stands for conjugate
spinor) by imposing the following non-linear field equations

δS

δAμ
− Jμ(ψ,ψ) ≡ εμρν∂

ρ
( 1

m
Gν + α2F

ν + mα1A
ν
)

−eψγμψ = 0,

(iγ μDμ − m)ψ = 0, ψ(iγ μ←−
D μ + m) = 0. (31)

Here, Jμ = eψγμψ is the current of the spinor field, γ ’s are
the 3d gamma matrices, and D is the covariant derivative,

Dμ = ∂μ − ieAμ,
←−
D μ = ←−

∂ μ + ieAμ,

Aμ = g3
1

m2 Gμ + g2
1

m
Fμ + g1Aμ. (32)

The spinors ψ,ψ are Grassmann odd fields. The spinor field
ψ and its conjugate ψ are considered as independent vari-
ables. The real constants g1, g2, g3 are dimensionless param-
eters of interaction. The parameter e is a coupling constant.

In general, the interaction vertices are non-Lagrangian
in the Eq. (31). The Lagrangian case corresponds to g1 �=
0, g2 = g3 = 0 in (32). The Lagrangian model is unsta-
ble, while the stability can be retained by admitting non-
Lagrangian higher-derivative contributions to the interaction,
i.e. by g2 �= 0, g3 �= 0. As we shall demonstrate in this sec-
tion, with non-Lagrangian stable interactions, the Eqs. (31),
(32) still admit constrained Hamiltonian formulation with
on-shell bounded Hamiltonian.

The consistency of interaction implies that the gauge
transformation (17) is complimented by the standard U (1)-
transformation for the spinor field

δξψ = −ieg1ψξ(x), δξψ = ieg1ψξ(x). (33)

The non-linear theory describes propagation of the gauge
field A coupled to the spinor ψ in the gauge-invariant way.

The Eq. (31) admits the second-rank conserved tensor

Tμν(g) = Tμν(β1, β2) + i

4
ψ[γμDν + γνDμ − γμ

←−
D ν − γν

←−
D μ]ψ

−1

2
ημνψ[(iγ ρDρ − m) − (iγ ρ←−

D ρ + m)]ψ, (34)

where Tμν(β1, β2) stands for the conserved tensor (9) of the
free theory with the parameters β fixed by the interaction
constants in the following way

β1 = g1 − α1g3, β2 = g2 − α2g3. (35)

We chose the conserved tensor in the form (34) because
its 00-component does not involve time derivatives of the
spinor field. Once the time derivatives of the spinor filed
are not involved in T00(g), the conserved tensor still admits
by redefinition of on-shell vanishing terms that involve the
derivatives of the vector field. The structure of this term is
analogous to (13), so we do not write these contributions
explicitly.

Upon inclusion of interaction, the deformation is still con-
served of a single representative from the series of conserved
tensors (9) admitted at free level. The parameters β1, β2 in
this conserved tensor are fixed by the interaction constants
by the formula (35).

The procedure of construction of the conserved tensor (34)
is analogous to that from [19], Sect. 4.2, where the cou-
plings of Podolsky’s electrodynamics with the spinor mat-
ter are considered. This procedure preserves the relationship
between the conserved tensor and space-time translations. In
particular, (34) is related to the invariance of model w.r.t. the
space-time translations if this is true in the linear approxima-
tion. The necessary and sufficient condition to connect the
conserved tensor (34) to the invariance of model w.r.t. the
space-time translations follows form (12) and (35). Substi-
tuting (35) into (12), we get

g2
1+α1g

2
2+α2

1g
2
3−α1g1g2+(α2

2−2α1)g1g3−α1α2g2g3 �= 0.

(36)

In what follows, we consider the interactions (31), whose
parameters satisfy this condition. By this reason, we consider
(34) as the energy-momentum tensor of the non-linear theory
(31).

The 00-component of the tensor (34) reads

T00(g) = T00(g1 − α1g3, g2 − α2g3)

+1

2
ψ[i(γi∂i − γi

←−
∂ i ) + 2eγiAi − 2m]ψ. (37)

Depending on the values of the parameters g, this quantity
can be bounded or unbounded from below.6 The necessary
and sufficient condition for that follows from (28). It reads

g2 − α2g3 > 0, g2
1 + α1g

2
2 + α2

1g
2
3 − α1g1g2

+(α2
2 − 2α1)g1g3 − α1α2g2g3 > 0. (38)

6 With the cubic interaction contribution, the conserved tensor (37) is
no longer bounded in the strict sense. By saying ’bounded’ we mean
that the quadratic contribution in the conserved quantity is bounded. The
latter property is interpreted as stability of the theory with respect to
small fluctuations of initial data, and it is not considered as obstruction
to the stability of the model. For example, the energy-momentum of
spinor electrodynamics includes cubic term.
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In case of minimal interaction g1 = 1, g2 = g3 = 0,
the equations of motion (31) are Lagrangian. However, the
Lagrangian non-linear theory is unstable because the canon-
ical energy of the model is unbounded. Once the condition
(38) is satisfied, the model is stable, while the field Eqs. (31)
and (32) are non-Lagrangian.

Let us bring the theory (31) to the form of constrained
Hamiltonian dynamics. The first-order formulation for the
model (31) is constructed in the same way as in the linear
case. The variables Ai , Fi ,Gi are introduced by the recipe
(14) to absorb the time derivatives of A. For these fields, we
get three equations of evolutionary type

Ȧi = ∂i A0 − εi j Fj ,

Ḟi = εi j
[
∂k(∂k A j − ∂ j Ak) − G j

]
,

Ġi = εi j
[
∂k(∂k Fj − ∂ j Fk) + m(α2G j + α1mFj ) − J j

]
.

(39)

Obviously, the first pair of equations in this system have the
same form as in (15) because they just define the new fields
introduced to absorb the time derivatives of the original field
A. The third equation represents the first-order form of the
original field equations, so it involves the interaction. With
account of the interaction, the constraint reads

� ≡ εi j∂i

(
1

m
G j + α2Fj + α1mA j

)
−J0 = 0. (40)

Equations (39), (40) are complimented by the equations for
the spinors from (31):

ψ̇ = γ0{γ j∂ j + ieγiAi − ieγ0A0 − im}ψ,

ψ̇ = ψ{γ j
←−
∂ j − ieγiAi + ieγ0A0 + im}γ0. (41)

These equations are of the first order from the outset. In this
way, we have the first-order formulation for the model (31)
which includes Eqs. (39), (40) and (41).

We chose the following ansatz for the total Hamiltonian:

HT (g) = T00(g) + A0�, (42)

where g1, g2, g3 are the parameters. On account of (37), the
Hamiltonian describes the same conserved quantity as the 00-
component of the tensor (34). Substituting (42) into (4), (5),
we arrive at the system of linear algebraic equations defining
the series of Poisson brackets:

{Ai , HT (g)}g = ∂i A0 − εi j Fj ,

{Fi , HT (g)}g = εi j
[
∂k(∂k A j − ∂ j Ak) − G j

]
,

{Gi , HT (g)}g = εi j
[
∂k(∂k Fj − ∂ j Fk)

+m(α2G j + α1mFj ) − J j
]
,

{ψ, HT (g)}g = γ0{γ j∂ j + ieγiAi − ieγ0A0 − im}ψ,

{ψ, HT (g)}g = ψ{γ j
←−
∂ j − ieγiAi + ieγ0A0 + im}γ0.

(43)

These relations should take into account the Grassmann par-
ity of the fields, so it is an even Z2-graded Poisson bracket.
In particular, the brackets are symmetric of the spinor fields
ψ,ψ .

Equation (43) are consistent if the interaction parameters
satisfy condition (36). The structure of the Poisson bracket,
however, depends on the relations between the interaction
parameters g1, g2, g3. Below, we focus on the case g1 �= 0,
while the other cases can be treated in a similar way. The
Poisson bracket, being defined by Eq. (43), reads

{Gi (�x),G j (�y)}g = m3 (α1 − α2
2)g1 + α1α2g2 − α2

1g3

g2
1 + α1g2

2 + α2
1g

2
3 − α1g1g2 + (α2

2 − 2α1)g1g3 − α1α2g2g3
εi jδ(�x − �y),

{Fi (�x),G j (�y)}g = m2 α2g1 − α1g2

g2
1 + α1g2

2 + α2
1g

2
3 − α1g1g2 + (α2

2 − 2α1)g1g3 − α1α2g2g3
εi jδ(�x − �y),

{Fi (�x), Fj (�y)}g = {Ai (�x),G j (�y)}g = m
(α1g3 − g1)

g2
1 + α1g2

2 + α2
1g

2
3 − α1g1g2 + (α2

2 − 2α1)g1g3 − α1α2g2g3
εi jδ(�x − �y),

{Ai (�x), Fj (�y)}g = g2 − α2g3

g2
1 + α1g2

2 + α2
1g

2
3 − α1g1g2 + (α2

2 − 2α1)g1g3 − α1α2g2g3
εi jδ(�x − �y),

{Ai (�x), A j (�y)}g = 1

m

−α1g2
3 + α2g2g3 + g1g3 − g2

2

g1(g2
1 + α1g2

2 + α2
1g

2
3 − α1g1g2 + (α2

2 − 2α1)g1g3 − α1α2g2g3)
εi jδ(�x − �y). (44)

The spinor field ψ and its Dirac conjugate ψ† = ψγ0 are
conjugate w.r.t. to the graded canonical bracket,

{ψ†
a (�x), ψb(�y)}g = iηabδ(�x − �y),

{ψa(�x), ψb(�y)}g = {ψ†
a (�x), ψ†

b (�y)}g = 0. (45)

As is seen from these relations, the Poisson bracket is unique
in the non-linear theory (31). No free parameters are involved
in the Poisson bracket (44), (45) besides the coupling con-
stants g.

With no arbitrary parameters involved in the Hamilto-
nian formulation, the non-linear theory (31) is not multi-
Hamiltonian anymore, while the free limit admits the two-
parameter series of Hamiltonian formulations (19), (22). This
means, the interaction preserves one of possible Hamilto-
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nian formulations admitted by the free theory. This fact can
be explained in various ways. The most simple explanation
is that upon inclusion of interaction, the deformation of the
unique entry still conserves of the series of tensors (9). The
parameters of series (34) are fixed by the interaction constants
in the non-linear theory. It is the sole conserved tensor which
defines the unique Hamiltonian at interacting level, while the
corresponding Poisson bracket is fixed by the Hamiltonian.

For every g the Poisson bracket (44) is a non-degenerate
tensor, so it has an inverse, being a symplectic two-form. The
latter defines the Hamiltonian action functional

S(g) =
∫ {

g1

(
α1mAi + α2Fi + 1

m
Gi

)
εi j Ȧ j

+ 1

m
(g1 − α2g2 − α1g3)εi j Fi Ḟj + g2

m2 εi j Gi Ḟj

+ g3

m3 εi j Gi Ġ j + ψ†ψ̇ − HT (g)

}
d3x, (46)

where HT (g) denotes the total Hamiltonian (42). For the min-
imal interaction g1 = 1, g2 = g3 = 0, we get the standard
Ostrogradski action

S(g) =
∫ {

(α1mAi + α2Fi + 1

m
Gi )εi j Ȧ j

+ 1

m
εi j Fi Ḟj + ψ†ψ̇ − A0� − T00(g)

∣∣∣
g1=1,g2=g3=0

}
d3x .

(47)

For non-minimal interactions, we have the Hamiltonian
action functional (46). This action is not canonically equiv-
alent to (47). The non-minimal interactions are consistent
with the bounded Hamiltonian (42), while the Ostrogradski
Hamiltonian, which is associated with the minimal interac-
tion, is unbounded in all the instances.

In this way, we see that the higher-derivative field equa-
tions (6) are compatible with inclusion of non-minimal
explicitly covariant interactions (31) such that the theory still
admits the Hamiltonian formalism with bounded Hamilto-
nian if the model has a bounded conserved quantity at the
free level.

5 Concluding remarks

Let us summarize and discuss the results. First, we have seen
that the third-order extension of the Chern–Simons admits
a two-parameter series of conserved tensors. If the Eq. (6)
describes unitary representations [cases (A),(B) in classifi-
cation (8)], the bounded conserved quantities are included
in the series. If the representations are non-unitary and/or
indecomposable [cases (C), (D), (E) in classification (8)],
all the conserved quantities are unbounded in the series.
The series includes the canonical energy-momentum which

is unbounded in all the cases. Second, we construct the
constrained multi-Hamiltonian formalism for the higher-
derivative Eq. (6). The 00-components of conserved tensors
serve as Hamiltonians in this formalism. The formulations
with different Hamiltonians and Poisson brackets result in
the same equations, while the formulations are not connected
by canonical transformations. For the cases with unitary rep-
resentations, there are bounded Hamiltonians in the series.
The Ostrogradski Hamiltonian, being included in the series,
is unbounded. Third, we introduce explicitly the Poincaré-
covariant and gauge-invariant stable interactions in higher-
derivative dynamics. If the free theory has a bounded con-
served quantity, it is still conserved at interacting level. After
that, we demonstrate that the covariant and stable higher-
derivative interacting theory admits the Hamiltonian formu-
lation with the bounded Hamiltonian.
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