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Abstract

In this article we consider the nonparametric robust estima-
tion problem for regression models in continuous time with semi-
Markov noises observed in discrete time moments. An adaptive
model selection procedure is proposed. A sharp non-asymptotic
oracle inequality for the robust risks is obtained. We obtain suf-
ficient conditions on the frequency observations under which the
robust efficiency is shown. It turns out that for the semi-Markov
models the robust minimax convergence rate may be faster or
slower than the classical one.
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In this paper we consider the semi-Markov regression model in con-
tinuous time introduced in [1], i.e.

𝑑 𝑦𝑡 = 𝑆(𝑡)𝑑 𝑡 + 𝑑 𝜉𝑡 , 0 ≤ 𝑡 ≤ 𝑛 , (1)
where 𝑆(·) is an unknown 1-periodic function defined on R with values
on R, (𝜉𝑡)𝑡≥0 is the unobserved noise process defined through a certain
semi-Markov process in [1].

Our problem in the present paper is to estimate the unknown func-
tion 𝑆 in the model (1) on the basis of observations

(𝑦𝑡𝑗 )0≤𝑗≤𝑛𝑝, 𝑡𝑗 = 𝑗∆, ∆ =
1

𝑝
, (2)

where the integer 𝑝 ≥ 1 is the observation frequency. Firstly, this prob-
lem was considered in the framework “signal+white noise” (see, for ex-
ample, [3] or [11]). Later, to introduce a dependence in the continuous
time regression model in [10], [6], [4], [5] [7], the Ornstein-Uhlenbeck
processes has been used to model the “color noise”. Moreover, in order
to introduce the dependence and the jumps in the regression model
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(1), the papers [8] and [9] use the non Gaussian Ornstein-Uhlenbeck
processes defined in [2]. The problem in all these papers is that the
introduced Ornstein-Uhlenbeck type of dependence decreases with a
geometric rate. So, asymptotically when the duration of observations
goes to infinity, we obtain the same “signal+white noise” model very
quick. To keep the dependence for sufficiently large duration of ob-
servations, in [1] it was proposed the model (1) with a semi-Markov
component in the jumps of the noise process (𝜉𝑡)𝑡≥0.

The main goal of this paper is to develop adaptive robust method
from [1], that was based on continuous observations, to the estimation
problem based on discrete observations given in (2). In this paper we
use quadratic risk defined as

ℛ𝑄(𝑆𝑛, 𝑆) = E𝑄,𝑆 ‖𝑆𝑛 − 𝑆‖2 , (3)
where 𝑆𝑛(·) is some estimate (i.e. any periodical function measurable
with respect to the observations 𝜎{𝑦𝑡0 , . . . 𝑦𝑡𝑝𝑛}), ‖𝑓‖2 =

∫︀ 1

0
𝑓2(𝑠)𝑑𝑠

and E𝑄,𝑆 is the expectation with respect to the distribution P𝑄,𝑆 of
the process (1) corresponding to the unknown noise distribution 𝑄 in
the Skorokhod space 𝒟[0, 𝑛]. We assume that this distribution belongs
to some distribution family 𝒬𝑛 specified in [1].

To study the properties of the estimators uniformly over the noise
distribution (what is really needed in practice), we use the robust risk
defined as

ℛ*
𝑛(𝑆𝑛, 𝑆) = sup

𝑄∈𝒬𝑛

ℛ𝑄(𝑆𝑛, 𝑆) . (4)

Thus the goal of this paper is to develop a robust efficient model
selection method based on the observations (2) for the model (1) with
the semi-Markov components in the jumps of the noise (𝜉𝑡)𝑡≥0. We
use the approach proposed by Konev and Pergamenshchikov in [9] for
continuous-time regression models observed in the discrete time mo-
ments. Unfortunately, we cannot use directly this method for semi-
Markov regression models, since their tool essentially uses the fact that
the Ornstein-Uhlenbeck dependence decreases with geometrical rate
and obtain sufficiently quickly the “white noise” case. In the present
paper, in order to obtain the sharp non-asymptotic oracle inequalities,
we use the renewal methods from [1] developed for the model (1). As a
consequence, we can obtain the constructive sufficient conditions that
provide the robust efficiency for proposed model selection procedures.

In this paper we construct some special family of the weight least
square estimators (𝑆𝜆)𝜆∈Λ, where Λ is some finite set from [0, 1]𝑛. In
the sequel we assume that the number of the vector of the 𝜈 = cardΛ
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is a function of 𝑛, i.e. 𝜈 = 𝜈𝑛, such that for any 𝛾 > 0

lim
𝑛→∞

𝜈

𝑛𝛾
= 0 . (5)

The model select procedure for this family is defined as
𝑆* = 𝑆𝜆̂ and 𝜆̂ = argmin𝜆∈Λ𝐽𝑛,𝛿(𝜆) , (6)

where 𝐽𝑛,𝛿(𝜆) is the cost function defined for any in [1] and 0 < 𝛿 < 1
is the penalty parameter.

We assume that the renewal distribution in the semi-markov com-
ponent of the noise process in (1) has a density 𝑔 that satisfies the
following conditions.

H1) Assume that, for any 𝑥 ∈ R, there exist the finite limits
𝑔(𝑥−) = lim

𝑧→𝑥−
𝑔(𝑧) and 𝑔(𝑥+) = lim

𝑧→𝑥+
𝑔(𝑧)

and, for any 𝐾 > 0, there exists 𝛿 = 𝛿(𝐾) > 0 for which

sup
|𝑥|≤𝐾

∫︁ 𝛿

0

|𝑔(𝑥 + 𝑡) + 𝑔(𝑥− 𝑡) − 𝑔(𝑥+) − 𝑔(𝑥−)|
𝑡

𝑑𝑡 < ∞. (7)

H2) For any 𝛾 > 0,
sup
𝑧≥0

𝑧𝛾 |2𝑔(𝑧) − 𝑔(𝑧−) − 𝑔(𝑧+)| < ∞ .

H3) There exists 𝛽 > 0 such that
∫︀
R

𝑒𝛽𝑥 𝑔(𝑥) 𝑑𝑥 < ∞.

H4) There exists 𝑡* > 0 such that the function 𝑔(𝜃 − 𝑖𝑡) belongs to
L1(R) for any 0 ≤ 𝑡 ≤ 𝑡*, where

𝑔(𝜃) =
1

2𝜋

∫︁
R

𝑒𝑖𝜃𝑥 𝑔(𝑥) 𝑑𝑥 .

Theorem 1. Assume that the function 𝑆 is continuously differentiable
and that Conditions H1)–H4) hold true. Then there exists some con-
stant 𝑙* > 0 such that for any noise distribution 𝑄, the weight vec-
tors set Λ, for any periodic function 𝑆 for any 𝑛 ≥ 1, 𝑝 ≥ 3 and
0 < 𝛿 ≤ 1/6, the procedure (6) satisfies the following oracle inequality

ℛ𝑄(𝑆*, 𝑆) ≤ 1 + 3𝛿

1 − 3𝛿
min
𝜆∈Λ

ℛ𝑄(𝑆𝜆, 𝑆) + 𝑙*
𝜈

𝛿𝑛
(8)

and
ℛ*(𝑆*, 𝑆) ≤ 1 + 3𝛿

1 − 3𝛿
min
𝜆∈Λ

ℛ*(𝑆𝜆, 𝑆) +
𝑈*
𝑛

𝛿𝑛
, (9)

where the the rest term 𝑈*
𝑛 is such that for any 𝛾 > 0

lim
𝑛→∞

𝑈*
𝑛

𝑛𝛾
= 0 .
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Remark 1. The oracle inequalities (8) and (9) are called sharp or-
acle inequalities, since the coefficients in the main terms in the right
side closed to one. As we will see below this property allows to show
asymptotic efficiency in the adaptive setting.

In order to obtain the efficiency property, we specify the weight
coefficients (𝜆(𝑗))1≤𝑗≤𝑛 in the procedure (6). Consider, for some fixed
0 < 𝜀 < 1, a numerical grid of the form

𝒜 = {1, . . . , 𝑘*} × {𝜀, . . . ,𝑚𝜀}, (10)
where 𝑚 = [1/𝜀2]. We assume that both parameters 𝑘* ≥ 1 and 𝜀 are
functions of 𝑛, i.e. 𝑘* = 𝑘*(𝑛) and 𝜀 = 𝜀(𝑛), such that⎧⎪⎪⎨⎪⎪⎩

lim𝑛→∞ 𝑘*(𝑛) = +∞ , lim𝑛→∞
𝑘*(𝑛)

ln𝑛
= 0 ,

lim𝑛→∞ 𝜀(𝑛) = 0 and lim𝑛→∞ 𝑛𝛾𝜀(𝑛) = +∞

(11)

for any 𝛾 > 0. One can take, for example, for 𝑛 ≥ 2

𝜀(𝑛) =
1

ln𝑛
and 𝑘*(𝑛) = 𝑘*0 +

√
ln𝑛 , (12)

where 𝑘*0 ≥ 0 is some fixed constant. For each 𝛼 = (𝛽, 𝜏) ∈ 𝒜, we
introduce the weight sequence

𝜆𝛼 = (𝜆𝛼(𝑗))1≤𝑗≤𝑝

with the elements
𝜆𝛼(𝑗) = 1{1≤𝑗<𝑗*} +

(︀
1 − (𝑗/𝜔𝛼)𝛽

)︀
1{𝑗*≤𝑗≤𝜔𝛼}, (13)

where 𝑗* = 1 + [ln 𝜐𝑛], 𝜔𝛼 = (d𝛽 𝜏𝜐𝑛)1/(2𝛽+1),

d𝛽 =
(𝛽 + 1)(2𝛽 + 1)

𝜋2𝛽𝛽
and 𝜐𝑛 = 𝑛/𝜍* .

Threshold 𝜍* is a function of 𝑛, i.e. 𝜍* = 𝜍*(𝑛) such that for any 𝛾 > 0
lim inf
𝑛→∞

𝑛𝛾 𝜍*(𝑛) = +∞ and lim sup
𝑛→∞

𝑛−𝛾 𝜍*(𝑛) = 0 . (14)

Now we define the set Λ as
Λ = {𝜆𝛼 , 𝛼 ∈ 𝒜} . (15)

These weight coefficients are used in [8, 9] for continuous time re-
gression models to show the asymptotic efficiency. Note also that in
this case the cardinal of the set Λ is 𝜈 = 𝑘*𝑚. Therefore, the condi-
tions in (11) yield the property (5). Moreover, to obtain the efficiency
for the model selection procedure we assume the following condition on
the frequency of the observations.

H5) Assume that for any 𝑛 ≥ 3 the observation frequence 𝑝 ≥ 𝑛5/6.
To this end, we assume that the unknown function 𝑆 in the model
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(1) belongs to the Sobolev ball

𝑊 𝑘
𝑟 = {𝑓 ∈ 𝒞𝑘

𝑝𝑒𝑟[0, 1] ,

𝑘∑︁
𝑗=0

‖𝑓 (𝑗)‖2 ≤ 𝑟} , (16)

where 𝑟 > 0 , 𝑘 ≥ 1 are some parameters, 𝒞𝑘
𝑝𝑒𝑟[0, 1] is the set of 𝑘

times continuously differentiable functions 𝑓 : [0, 1] → R such that
𝑓 (𝑖)(0) = 𝑓 (𝑖)(1) for all 0 ≤ 𝑖 ≤ 𝑘. The function class 𝑊 𝑘

𝑟 can be
written as an ellipsoid in 𝑙2, i.e.

𝑊 𝑘
𝑟 = {𝑓 ∈ 𝒞𝑘

𝑝𝑒𝑟[0, 1] :

∞∑︁
𝑗=1

𝑎𝑗 𝜃
2
𝑗 ≤ 𝑟} (17)

where 𝑎𝑗 =
∑︀𝑘

𝑖=0 (2𝜋[𝑗/2])
2𝑖.

Similarly to [8,9] we will show here that the asymptotic sharp lower
bound for the robust risk (4) is given by

𝑟*𝑘 = 𝑙 ((2𝑘 + 1)𝑟)
1/(2𝑘+1)

(︂
𝑘

(𝑘 + 1)𝜋

)︂2𝑘/(2𝑘+1)

. (18)

Note that this is the well-known Pinsker constant obtained for the
nonadaptive filtration problem in “signal + small white noise” model
(see, for example, [11]).

Let Π𝑛 be the set of all estimators 𝑆𝑛 measurable with respect to
the sigma-algebra 𝜎{𝑦𝑡 , 0 ≤ 𝑡 ≤ 𝑛} generated by the process (1).

Theorem 2. Under Conditions (14)
lim inf
𝑛→∞

𝜐2𝑘/(2𝑘+1)
𝑛 inf

𝑆𝑛∈Π𝑛

sup
𝑆∈𝑊𝑘

𝑟

ℛ*
𝑛(𝑆𝑛, 𝑆) ≥ 𝑟*𝑘 , (19)

where 𝜐𝑛 = 𝑛/𝜍*.

Note that, if the parameters 𝑟 and 𝑘 are known, i.e. for the non-
adaptive estimation case, in order to obtain the efficient estimation for
the “signal+white noise” model, Pinsker proposed in [11] to use the
estimate 𝑆𝜆0

with the weights (13) in which
𝜆0 = 𝜆𝛼0

and 𝛼0 = (𝑘, 𝜏0) , (20)
where 𝜏0 = [𝑟/𝜀]𝜀. For the semi-markov regression model (1) we show
the same result.

Proposition 3. The estimator 𝑆𝜆0
satisfies the following asymptotic

upper bound
lim
𝑛→∞

𝜐2𝑘/(2𝑘+1)
𝑛 sup

𝑆∈𝑊𝑘
𝑟

ℛ*
𝑛(𝑆𝜆0

, 𝑆) ≤ 𝑟*𝑘 .

For the adaptive estimation we user the model selection procedure
(6) with the parameter 𝛿 defined as a function of 𝑛 satisfying

lim
𝑛−→∞

𝛿𝑛 = 0 and lim
𝑛−→∞

𝑛𝛾 𝛿𝑛 = 0 (21)
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for any 𝛾 > 0. For example, we can take 𝛿𝑛 = (6 + ln𝑛)−1. Now the
oracle inequality (9) for the family (15) and Proposition 3 imply the
following upper bound.

Theorem 4. Assume that Conditions H1)–H5) hold true. Then the
robust risk defined in (4) for the procedure (6) with the coefficients (13)
and the parameter 𝛿 = 𝛿𝑛 satisfying (21) has the following asymptotic
upper bound

lim sup
𝑛→∞

𝜐2𝑘/(2𝑘+1)
𝑛 sup

𝑆∈𝑊𝑘
𝑟

ℛ*
𝑛(𝑆*, 𝑆) ≤ 𝑟*𝑘 . (22)

Theorem 2 and Theorem 4 imply the following result.

Corollary 5. Under the conditions of Theorem 4, the model selection
procedure 𝑆* is efficient, i.e.

lim
𝑛→∞

inf𝑆𝑛∈Π𝑛
sup𝑆∈𝑊𝑘

𝑟
ℛ*

𝑛(𝑆𝑛, 𝑆)

sup𝑆∈𝑊𝑘
𝑟
ℛ*

𝑛(𝑆*, 𝑆)
= 1 . (23)

Remark 2. It is well known that the optimal (minimax) risk conver-
gence rate for the Sobolev ball 𝑊 𝑘

𝑟 is 𝑛2𝑘/(2𝑘+1) (see, for example, [11]).
We see here that the efficient robust rate is 𝜐

2𝑘/(2𝑘+1)
𝑛 , i.e. if the dis-

tribution upper bound 𝜍* → 0 as 𝑛 → ∞ we obtain a faster rate with
respect to 𝑛2𝑘/(2𝑘+1), and if 𝜍* → ∞ as 𝑛 → ∞ we obtain a slower
rate. In the case when 𝜍* is constant the robuste rate is the same as
the classical non robuste convergence rate.

Conclusion. In the conclusion we would like to emphasize that in
this paper :
∙ we construct a selection model procedure based on the weight least

square estimators;
∙ we find conditions for which we obtained an sharp non asymptotic

oracle inequalities for the simple quadratic risks and for the robust
risks as well;

∙ using the Pinsker method we obtain a lower bound for the robust
quadratic risks, then, through the obtained sharp oracle inequal-
ities we show that the risk upper bound for the constructed pro-
cedure matters this lower bound, i.e. the procedure is efficient in
the adaptative setting.
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