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In an analogy to the odd-dimensional case we define the parity anomaly as the part of the one-loop
effective action for fermions associated with spectral asymmetry of the Dirac operator. This quantity is
computed directly on four-dimensional manifolds with a boundary and related to the Chern-Simons current
on the boundary. Despite a quite unusual Chern-Simons level obtained, the action is gauge invariant and
passes all consistency checks.
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I. INTRODUCTION

The anomalous parity symmetry breaking in quantum
theories of fermions in odd-dimensional spaces (the parity
anomaly) was discovered in the mid 1980s [1–3]. In three
dimensions, in particular, the Chern-Simons action with the
level � 1

2
is induced by this mechanism by one generation

of Dirac fermions. As a good source on Chern-Simons
theories the reader may consult Ref. [4].
This topic received a renewed interest recently in a

relation to topological insulators and other topological
materials (see, [5], for example). In this context, the
Chern-Simons action describes Hall conductivity of the
surface modes. Physical implications of the parity anomaly
for topological insulators have been discussed in a number
of papers [6–8]. To understand this situation it is important
to perform quantum field theory computations directly on a
four-dimensional manifold with boundaries. It is somewhat
surprising that no one has done this before.
The purpose of this paper is to compute the parity

anomaly on a Euclidean manifold for Dirac fermions
interacting with a Uð1Þ gauge field. We impose the local
bag boundary conditions on the spinors that ensure that the
current through the boundary vanishes, so that the fermions
are confined in the bulk. The parity anomaly is understood
as the part of the effective action related to the spectral
asymmetry of the Dirac operator. We use the spectral
methods and heat kernel expansion [9–11] that proved their
efficiency in three dimensions.
This paper is organized as follows. In the next section we

introduce the main conventions and define the boundary
conditions. In Sec. III we use the ζ function regularization
to compute the variation of the parity odd part of the
effective action with respect to the external electromagnetic
field. This variation has the form of a boundary Chern-
Simons current. If the electromagnetic field belongs to a
trivial Uð1Þ bundle, the variation can be integrated to a

boundary Chern-Simons action with an unusual level
k ¼ � 1

4
. The computation of the parity odd effective action

for topologically nontrivial stationary configurations are
contained in Sec. IV. The subsequent section is dedicated to
various consistency checks, which include the Laughlin
argument and relations to the surface mode counting.
The results are briefly discussed in Sec. VI. Useful formulas
on the heat kernel expansion are collected in the Appendix.

II. THE SETUP

We consider the Dirac operator

D ¼ iγμð∇μ þ iAμÞ ð1Þ

with an Abelian gauge field Aμ on a four-dimensional
Euclidean manifold M with a boundary ∂M ¼ ⋃α∂Mα

consisting of several connected components ∂Mα num-
bered by the index α. The gamma matrices satisfy the
relation

fγμ; γνg ¼ gμν14; ð2Þ

where 14 is a unit matrix in the spinor indices, gμν is the
Riemannian metric, and ∇ is a covariant derivative with the
spin connection compatible with g.
We assume that the manifold M is flat, though the

boundaries may be curved. Near the boundaries the natural
coordinate system implies a nonconstant metric and a spin
connection term in the Dirac operator.
The chirality matrix γ5 is defined through the Levi-Civita

tensor as

γ5 ¼ 1

4!
ϵμνρσγμγνγργσ: ð3Þ

Since there are boundaries, we have to impose some
boundary conditions on the spinor field ψ . Let n be the
inward pointing unit normal to the boundary. Define the
projector
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Π− ≔
1

2
ð1 − iεαγ5γnÞ: ð4Þ

The sign factor εα ¼ �1 may vary from one component of
the boundary to another being constant on each of the
components. We take the boundary conditions in the form

Π−ψ j∂M ¼ 0; ð5Þ

which is nothing else than the (Euclidean version of) bag
boundary conditions proposed first in Ref. [12] and then
rediscovered in the mathematical context in Ref. [13]. Later
on, to compute the heat trace asymptotics of D2, we shall
also need boundary conditions for the second half of the
spinor components. These conditions follow from the
consistency of (5) and read

Π−Dψ j∂M ¼ 0: ð6Þ

By commuting Π− through the Dirac operator and using
again the Dirichlet condition (5) we may rewrite (6) in the
form of a Robin condition

ð∇n þ iAn þ SÞΠþψ j∂M ¼ 0; ð7Þ

where

Πþ ¼ 1

2
ð1þ iεαγ5γnÞ; S ¼ −

1

2
ΠþK ð8Þ

with K being the trace of extrinsic curvature of the
boundary.
These boundary conditions yield a vanishing current

through the boundary, jnj∂M ¼ ψ̄γnψ j∂M ¼ 0. Besides,
with these boundary conditions D is symmetric and the
boundary value problem is strongly elliptic.

III. PARITY ANOMALY

Let us consider the one-loop effective action for the
fermion in the presence of an external electromagnetic
vector potential. At the beginning, when the treatment is
independent of the dimension and of the presence or
absence of boundaries, we shall follow the monograph
[14] (which in turn used [3,15]). Only the main steps will be
repeated. The zeta function ofD is defined as usual through
summation over the eigenvalues λ,

ζðs;DÞ ¼
X
λ>0

λ−s þ e−iπs
X
λ<0

ð−λÞ−s: ð9Þ

Here s is a complex parameter. The sums above are
convergent for ℜs large enough. ζðs;DÞ may be continued
as a meromorphic function to the whole complex plane.
We can separate in two parts that are even and odd with

respect to the reflection D → −D, respectively:

ζðs;DÞ ¼ ζðs;DÞeven þ ζðs;DÞodd;

ζðs;DÞeven ¼
1

2
ðζðs;DÞ þ ζðs;−DÞÞ; ð10Þ

ζðs;DÞodd ¼
1

2
ðζðs;DÞ − ζðs;−DÞÞ: ð11Þ

The even part will not be discussed in this paper. The odd
term can be rewritten through the eta function

ζðs;DÞodd ¼
1

2
ð1 − e−iπsÞηðs;DÞ; ð12Þ

which is, by definition,

ηðs;DÞ ≔
X
λ>0

λ−s −
X
λ<0

ð−λÞ−s: ð13Þ

Let us recall the definition of zeta-regularized determi-
nant ofD and the zeta regularized one-loop effective action:

Ws ¼ − ln detðDÞs ¼ μsΓðsÞζðs;DÞ: ð14Þ

μ is a parameter of the dimension of the mass which makes
the whole expression above dimensionless. This effective
action can be separated in even and odd parts, Weven

s and
Wodd

s , corresponding to the even and odd parts of the zeta
function. In the limit s → 0, which corresponds to removal
of the regularization, the partWodd

s remains finite as the root
of the prefactor in (12) cancels the pole in the Γ function.
We have therefore

Wodd ≡Wodd
s¼0 ¼

iπ
2
ηð0; DÞ: ð15Þ

Let us make use of the following integral representation
for the eta function

ηðs;DÞ ¼ 2

Γðsþ1
2
Þ
Z

∞

0

dττsTrðDe−τ
2D2Þ ð16Þ

through the trace of the heat operator e−τ
2D2

. Under small
variations Aμ → Aμ þ δAμ the eta function varies as

δηðs;DÞ ¼ 2

Γðsþ1
2
Þ
Z

∞

0

dττs
d
dτ

TrððδDÞτe−τ2D2Þ:

In this formula, one may set s ¼ 0. Since the heat trace
weighted with a zeroth order operator δD ¼ −γμδAμ

vanishes sufficiently fast at τ → ∞, we may write

δηð0; DÞ ¼ −
2

π1=2
lim
t→þ0

TrððδDÞt1=2e−tD2Þ ð17Þ

(here t ¼ τ2).
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For any smooth matrix-valued function Q (more scien-
tifically, for an endomorphism of the spin bundle) there is a
full asymptotic expansion at t → þ0

TrðQe−tD
2Þ≃X∞

k¼0

t
k−4
2 akðQ;D2Þ: ð18Þ

Clearly, only the coefficients akðQ;D2Þ with k ≤ 3 may
contribute to (17). Generic expressions for these coeffi-
cients are given in the Appendix. By substituting in these
expressions the particular values of the invariants corre-
sponding to our problem and computing the traces, one
obtains that for k < 3 all coefficients ak vanish, so that (17)
remains finite in the limit t → 0. In a3, see (A4), just two
terms, 48Eχ þ 48χE, contribute, so that

a3ðQ;D2Þ ¼ 1

8π3=2

Z
∂M

d3x
ffiffiffi
h

p
εαϵ

nabcðδAaÞ∂bAc: ð19Þ

We recall that Q ¼ δD ¼ −γμδAμ, the index n corresponds
to the inward pointing unit normal, and a, b, c denote
directions tangential to the boundary. Other notations are
explained in the Appendix.
Next, we substitute (19) in (17) and (15) to obtain

δWodd ¼ −
i
8π

Z
∂M

d3x
ffiffiffi
h

p
εαϵ

nabcðδAaÞ∂bAc: ð20Þ

This is the main result of this section.
Before proceeding further, let us stress that the spectral

methods used here are applicable whenever the variation δA
and the field strength Fμν of Aμ are smooth everywhere on
M. The field Aμ itself has to be smooth up to a gauge
transformation. This excludes, for example, monopoles in
M. However, the configurations corresponding to monop-
oles outsideM are allowed. If, e.g.,M is a finite thickness
spherical shell times the Euclidean time direction compac-
tified on S1, one can place a magnetic charge in the center
of the shell.
Since smooth localized variations are always allowed,

one can derive the boundary current corresponding toWodd

jaodd ¼ −
i
8π

εαϵ
nabc∂bAc: ð21Þ

This current corresponds to an antisymmetric, Hall type,
conductivity tensor.
Consider next the case when the gauge potential Aμ itself

is smooth [a trivial Uð1Þ bundle]. Then, this configuration
can be connected by a smooth homotopy to the one
with Aμ ¼ 0. One can impose the natural condition
WoddðA ¼ 0Þ ¼ 0 and resolve the variational equation (20)
to obtain

WoddðAÞ ¼ −
i

16π

Z
∂M

d3x
ffiffiffi
h

p
εαϵ

nabcAa∂bAc: ð22Þ

Thus, each boundary component ∂Mα carries the Chern-
Simons action1 with a quite unusual level k ¼ 1

4
εα.

We like to stress that the expression (22) is not valid for
topologically nontrivial configurations of the gauge field in
general. The technical reason is that one cannot integrate by
parts in the Chern-Simons action if the gauge potential is
not continuous. See the next section for a discussion of
topologically nontrivial configurations.
Note that by definition the zero modes of the Dirac

operator do not contribute to the spectral functions (9) and
(13). Thus zero modes also have to be excluded from the
heat kernel. This, however, does not affect our result (22)
since the exclusion of any finite number of modes does not
change the coefficients ak, k ≤ 3, corresponding to neg-
ative powers of the proper time t in the expansion (18).
We conclude this section with a short discussion of what

kind of classical symmetry corresponds to the parity
anomaly in four dimensions. The transformation ψ →
γ5ψ together with the inversion εα → −εα on all compo-
nents of the boundary maps solutions of the classical
equation Dψ ¼ 0 to other solutions. However, this trans-
formation inverts the nonzero spectrum of the Dirac
operator. Thus, this classical symmetry cannot be carried
on to the quantum theory.

IV. STATIONARY CONFIGURATIONS

Here we compute exactly the parity anomaly for static
gauge fields on a kind of finite-temperature manifolds (the
ones having an S1 as a factor). There is a large amount of
literature with similar calculations in three dimensions; see,
e.g., Refs. [15–17]. Our inspiration was obtained from [18].
Let us consider M ¼ ~M × S1 with all gauge fields

being constant with respect to the Euclidean time coor-
dinate x4 along S1 which changes from 0 to 2π. We assume
that S1 has the unit radius and that a ≔ A4 does not depend
on the coordinates of ~M.
Let us split the Dirac operator as

D ¼ iγ4ð∂4 þ iaÞ þ ~D ð23Þ

and denote by ψðμÞ the eigenmodes of ~D,

~DψðμÞ ¼ μψðμÞ: ð24Þ

The matrix γ4 commutes with the boundary projectors,
½γ4;Π�� ¼ 0, and anticommutes with ~D, γ4 ~D ¼ − ~Dγ4.
Therefore, all eigenmodes with μ ≠ 0 may be combined

1Since ϵnabc is the Levi-Civita tensor rather than the Levi-
Civita symbol, the action (22) does not depend on the metric.
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in pairs ψðμÞ;ψð−μÞ such that γ4ψðμÞ ¼ ψð−μÞ. When
acting on such a pair, the operator D has the form

D ¼
�

μ −ðωþ aÞ
−ðωþ aÞ −μ

�
; ð25Þ

where ω denotes the eigenfrequencies in the x4 direction,
∂4ψð�μÞ ¼ iωψð�μÞ. The eigenvalues of D read

λ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðωþ aÞ2

q
: ð26Þ

We see that the eigenvalues always appear in pairs of
opposite signs. Therefore, there is no contribution to the η
function (13) and to Wodd from ψðμÞ with μ ≠ 0.
The situation is different with the zero modes of ~D. The

matrix γ4 maps the zero eigenspace onto itself. Therefore,
all eigenmodes of ~D can be separated into positive
and negative modes of γ4, ψð0Þþ and ψð0Þ−, so that
γ4ψð0Þ� ¼ �ψð0Þ�,

Dψð0Þ� ¼ ∓ðωþ aÞψð0Þ�: ð27Þ

The numbers of ψð0Þþ and ψð0Þ− modes (nþ and n−,
respectively) are, in general, different. The difference is
given by the γ4 index of ~D,

nþ − n− ¼ Indð ~DÞ ð28Þ

that may be written as

Indð ~DÞ ¼ lim
t→0

Trðγ4e−t ~D2Þ: ð29Þ

Note, that in these formulas the operator ~D has to be
considered as an operator on ~M rather than on M. The
index can be computed with the help of the heat kernel
expansion, see the Appendix,

Indð ~DÞ ¼ a3ðγ4; ~D2Þ; ð30Þ

where

a3ðγ4; ~D2Þ ¼ −
1

4π

Z
∂ ~M

d2x
ffiffiffi
~h

p
εαϵ

n4bc∂bAc: ð31Þ

Let us impose the periodic condition on ψ , ψ jx4 ¼
ψ jx4þ2π . Then the frequencies ω are integers. The effective
actions depends on the noninteger part of a, ā ¼ a − ⌊a⌋.
Thus the contribution of ψð0Þ− modes to the η function (13)
reads

η−ðsÞ ¼
X
ω∈N0

ðωþ āÞ−s −
X
ω∈−N

ð−ω − āÞ−s

¼ ζRðs; āÞ − ζRðs; 1 − āÞ: ð32Þ

Here ζRðs; āÞ is the generalized Riemann (Hurwitz) zeta
function. At s ¼ 0

ζRð0; āÞ ¼
1

2
− ā ð33Þ

The contribution of ψð0Þþ to the η function is just
opposite to that of ψð0Þ−, ηð0Þþ ¼ −ηð0Þ−. Thus the whole
ηð0Þ reads

ηð0Þ ¼ −Indð ~DÞηð0Þ− ¼ ð2ā − 1ÞIndð ~DÞ: ð34Þ

Collecting everything together, we arrive at the following
expression for the effective action:

Wodd ¼ ið1 − 2āÞ
8

Z
∂ ~M

d2x
ffiffiffi
~h

p
εαϵ

n4bc∂bAc: ð35Þ

Since S1 has a nontrivial fundamental group π1, there are
large gauge transformations ψ → e−ix

4lψ , a → aþ l with
l ∈ Z. These transformations leave ā invariant and thus do
not change the action (35).
The index of ~D may be expressed as

Indð ~DÞ ¼
X
α

εαMα½A�; ð36Þ

where Mα½A� is the magnetic flux though the boundary
component ~Mα. Magnetic charges are not allowed inside
M. Therefore, if all εα are equal, the total magnetic flux is
zero, and Indð ~DÞ ¼ 0 as well. If one flips the sign of one of
the εα, the index changes by twice the flux through a
corresponding component of the boundary, i.e., by an even
number. We conclude that always

Indð ~DÞ ¼ 2N; N ∈ Z: ð37Þ

Let us replace āwith āþ 1 in (35). Due to (37) the effective
action is shifted as

Wodd → Wodd þ 2πNi: ð38Þ

Thus, the partition function remains unchanged under this
transformation, and one can simply remove the bar over a
in Eq. (35).
An important consistency check is that the variation of

(35) with respect to a coincides with the variational
equation (20).
Note that naive substitution of the gauge field configu-

ration considered in this section into the action (22) (that
has been derived to topologically trivial configurations)
would give just one half of the correct result (35). At the
same time, (35) vanishes on topologically trivial gauge
configurations. Thus, one may in principle write an
interpolating formula for the effective action valid for both
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trivial and stationary nontrivial Uð1Þ bundles. Such a
formula would be, however, of limited use since one cannot
guarantee its validity for gauge configurations that are
nonstationary and topologically nontrivial at the same
time.
It is interesting to consider the case of antiperiodic

conditions for ψ on S1 corresponding to finite temperature
fermions. In this case,ω ∈ Nþ 1

2
. As one can easily see, the

formulas in this section, including the action (35), remain
valid after the replacement ā → āþ 1

2
.

V. SMOOTH GAUGE POTENTIALS

A. Gauge invariance and Laughlin argument

In this work we have used the ζ function regularization
that manifestly preserves the gauge symmetries. However,
we find it instructive to see how the celebrated Laughlin
argument works in our setup. This argument uses insertion
of a magnetic flux in a geometry containing a matter
sample and restricts possible values of the Hall conduc-
tivity. Originally, this procedure was formulated for a
circular ribbon [19] and for an annular film [20], both
being purely two-dimensional samples. Since we need a
three-dimensional bulk with a two-dimensional surface,
we shall use the version suggested in [8] (see also [21]).
The geometry consists of a squashed doughnut, see Fig. 1,
with a time-dependent magnetic flux piercing the hole. The
consistency of this picture requires [8] the sum of the Hall
conductivities corresponding to the currents (21) on the top
and on the bottom of the doughnut to be an integer
multiplier of e2=h. [According to our conventions, the
elementary charge e ¼ 1 and ℏ ¼ h=ð2πÞ ¼ 1.] This
requirement is trivially satisfied in our case. Indeed, we
have a single boundary component and a single value of ε
everywhere. The normal vectors are opposite on the top
and on the bottom, so that the sum of the conductivities
is zero.
To avoid confusion, we stress that to ensure validity,

Eq. (22), the gauge potential, needs to be smooth

just on M, but may have discontinuities in the ambient
space.

B. Relations to surface states

We have obtained, see Eq. (22), the Chern-Simons action
with the level k, jkj ¼ 1

4
, on each of the components of the

boundary if the gauge field belongs to a trivialUð1Þ bundle.
This value of jkjmay seem too small as the 3D calculations
give jkj ¼ 1

2
, or too large since there are no surface modes of

massless bulk fermions for some of the geometries (like the
half-space, e.g.). Here we show that our result is indeed
consistent with a kind of the Kaluza-Klein 3D limit of the
4D manifolds.
To simplify the analysis, we stretch a bit our results to the

noncompact setting. We consider the geometry of a slab
with infinite parallel boundaries at x4 ¼ 0 and x4 ¼ l.
A Kaluza-Klein type limit l → 0 will be considered.
The spectrum of a free Dirac operator in this space can be

easily found. For the boundary conditions with opposite
values of ε on two boundaries

λ2ðka; pÞ ¼ k2a þ
π2p2

l2
ð39Þ

where p is an integer, and ka is the 3-momentum along the
boundaries. From the 3D point of view, this spectrum
corresponds to a tower of states with the masses
m2

p ¼ π2p2=l2. In the limit l → 0 the state with p ¼ 0

remains, which corresponds to a massless fermion in 3D.
Such a field in 3D has to generate a Chern-Simons term
with jkj ¼ 1

2
, which is precisely what the action (22) gives

in the limit l → 0 for opposite values of ε. (Note that the
normal vectors on two components of the boundary are also
opposite.)
For equal values of ε at x4 ¼ 0 and x4 ¼ l, the spectrum

reads

λ2ðka; pÞ ¼ k2a þ
π2ðpþ 1

2
Þ2

l2
: ð40Þ

We see that in the limit l → 0 all states become infinitely
massive. This is consistent with the fact that the Chern-
Simons actions in (22) on two components of the boundary
cancel against each other in this limit.
Let us comment briefly on the case of the half-space. It is

true that the massless Dirac operator with our boundary
conditions does not have eigenmodes that decay exponen-
tially away from the boundary (i.e., the edge states).
However, this does not yet mean that the effective action
does not have any boundary contributions. At any rate, it
would be interesting to perform direct computations of
the parity anomaly on the half-space, which is the simplest
noncompact manifold with a boundary.
Nonuniqueness of the induced Chern-Simons action in

the Kaluza-Klein limit (that appears to depend on the

FIG. 1. The geometry for testing the Laughlin argument. B is
the magnetic field piercing the whole of the torus. −n is the
outward pointing normal to the surface torus at different points.
We remind the reader that n is the inward pointing normal vector
in our notations.
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boundary conditions) may have something to do with the
ambiguity in the parity anomaly for lattice fermions
discovered in [22].

VI. CONCLUSIONS

Let us briefly summarize the main findings of this paper.
We considered one generation of massless Dirac fermions
on a Euclidean manifold with boundaries subject to bag
boundary conditions. We studied the parity anomaly for
these fermions, which is the part of the effective action
associated with the spectral asymmetry of the Dirac
operator. For a generic Abelian gauge field we computed
the variation of the parity odd effective action (20) and the
induced Chern-Simons current (21). The action itself was
obtained in two particular cases. For stationary topologi-
cally nontrivial gauge field configurations the action was
computed in Sec. IV. For trivial Uð1Þ bundles, the variation
was integrated to the Chern-Simons action (22) with an
unusual level k ¼ � 1

4
. This result passed several consis-

tency checks in Sec. V.
An important message of the present work is that due to

the spectral asymmetry of the Dirac operator on 4D
manifolds with boundaries one cannot use D2 alone to
construct the full effective action. A similar conclusion
(though in a different setup) has been obtained in the recent
work [23].
Existing computations of the parity anomaly from four-

dimensional theories deal with domain walls rather than
with boundaries; see Ref. [6]. The spectral asymptotics of
the Dirac and Laplace operators for the configurations with
domains walls and with boundaries are quite different;
therefore, there cannot be any direct comparison with our
results.
A natural question is whether this parity anomaly is

measurable. The answer is probably positive, though the
Wick rotation to the Minkowski signature on manifolds
with boundaries is not a simple problem. Another hurdle
is that in all real materials the fermionic excitations have
some chemical potential, probably a mass gap, and defi-
nitely they experience some scattering on impurities. This
just stresses the importance of Minkowski signature com-
putations with all the effects listed above turned on, even
for the simplest geometries.
It is both interesting and important to compute the parity

anomaly for other types of the boundary conditions, which
may include the chiral bag conditions (that have a chiral
phase on the boundary) or even the nonlocal Atiyah-Patodi-
Singer conditions. Unfortunately, the relevant heat kernel
coefficient a3ðQ;D2Þ is not known yet for these two types
of boundary conditions.
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APPENDIX: HEAT KERNEL EXPANSION

Boundary conditions (6) and (7) belong to the so-called
mixed type. Spectral asymptotics of these boundary con-
ditions were thoroughly studied in Ref. [24]. The relevant
term in the heat kernel expansion will be taken from
Ref. [25] after a suitable adjustment of the notations.
One can write D2 in the canonical form of Laplace type
operators:

D2 ¼ −ð∇̂2 þ EÞ; ðA1Þ

where the covariant derivative ∇̂ ¼ ∂ þ ω and

ωμ ¼ iAμ þ
1

8
½γν; γρ�σ½ν;ρ�μ ; ðA2Þ

E ¼ i
4
½γμ; γν�Fμν; Fμν ¼ ∂μAν − ∂νAμ; ðA3Þ

σμ is the spin connection.
Let us now list the coefficients appearing in the asymp-

totic expansion (18)

a0ðQ;D2Þ ¼ 1

ð4πÞm=2

Z
M

dmx
ffiffiffi
g

p
trQ;

a1ðQ;D2Þ ¼ 1

4 · ð4πÞðm−1Þ=2

Z
∂M

dm−1x
ffiffiffi
h

p
trðχQÞ;

a2ðQ;D2Þ ¼ 1

6 · ð4πÞm=2

�Z
M

dmx
ffiffiffi
g

p
trQEþ

þ
Z
∂M

dm−1x
ffiffiffi
h

p
trð2QK þ 12QSþ 3Q;nÞ

�
;

a3ðQ;D2Þ ¼ 1

384 · ð4πÞðm−1Þ=2

Z
∂M

dm−1x
ffiffiffi
h

p

× trfQð−24Eþ 24χEχ þ 48χEþ 48Eχ

− 12χ∶aχ
∶a þ 12χa∶a − 6χ∶aχ

∶aχ þ 192S2

þ 96KSþ ð3þ 10χÞK2 þ ð6 − 4χÞKabKabÞ
þQ;nð96Sþ 192S2Þ þ 24χQ;nng; ðA4Þ

with m ¼ dimM.
The notations are as follows: n denotes the inward

pointing unit normal vector, while a, b, c correspond to
the tangential directions. h is induced metric on the
boundary; it is used to contract the tangential indices.
The semicolon is used to abbreviate full covariant deriv-
atives, e.g., Q;n ¼ ½∇̂n; Q�. The colon is used to denote
boundary covariant derivatives. The only difference to full
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covariant derivatives is that they use the Christoffel
symbol corresponding to the boundary metric h when
vector indices are differentiated. (The difference is mea-
sured by the extrinsic curvature Kab.) S is the zeroth order
term in Robin boundary conditions; see (8). χ is the
difference of two boundary projectors, χ ¼ Πþ − Π−.

In our case, χ ¼ iεαγ5γn. Let us remind the reader that
we have assumed that M is flat, so that all terms
containing the Riemann curvature of the bulk metric have
been suppressed.
These formulas are valid for ~D upon the replacement

M → ~M.
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