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The transition form factor of a gamma into three pions F3π is studied in a framework of nonlocal chiral
quark model. In the local limit the result is in agreement with chiral perturbative theory and reproduce
Wess-Zumino-Witten anomaly. Nonlocality does not change the value of transition form factor in chiral
limit. On the physical threshold of reaction the form factor F3π obtained is in a good agreement with
experimental data if the current quark mass is taken into account in the model.
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I. INTRODUCTION

Starting from a paper of J. Steinberger in 1949 [1]
anomalies have played an important role in the investiga-
tion of strong-interaction physics at low-energies. In the
case of the chiral model, anomalous Ward identities are due
to the Wess-Zumino-Witten (WZW) effective action [2].
The WZW action can be constructed in terms of pseudo-
scalar fields—Goldstone bosons and interaction vertices
involving an odd number of Goldstone bosons. Using
topology arguments, E. Witten showed [3] that this action
can be quantized and, i.e., a multiple of an integer
parameter n which are associated also with baryon number
in soliton models.
J. Wess and B. Zumino considered the hadronic system

in the presence of external vector and axial vector fields [2].
As a result the anomalous Ward identities and vertex of
interaction of Goldstone bosons with external vector field
were obtained. All amplitudes that follow from the WZW
action are given entirely in terms of the electric charge e
and the weak pion decay constant fπ .
A well-studied process that follows from the WZW

action is the decay of a neutral pseudoscalar meson into
two photons or production of a neutral pseudoscalar (PS)
mesons in eþe− collisions. This transition form factor was
studied using a number of different approaches: chiral
perturbation theory (ChPT), vector meson dominance
approach [4,5], sum rules [6,7], different local and nonlocal
quark models [8,9]. According to the WZW action, the
amplitude of this reaction has the following form

Aðπ0 → γγÞ ¼ FγγðM2
π0
Þϵμναβϵμkν1ϵαkβ2; ð1Þ

where ϵij and kij—polarizations and momenta of photons,
transition pion-photons form factor

Fγγð0Þ ¼
e

4π2fπ
: ð2Þ

The weak pion decay constant is fπ ¼ f0½1þOðmqÞ� ¼
92.4 MeV. The quark mass correction in ChPT is small
[10] but plays an important role in Dalitz decay π0 →
γeþe− as it was shown in Ref. [11]. On a mass-shell form
factor Fγγ have corrections due to mass of pion.
Another process which is also given entirely in terms of

the electric charge e and the pion decay constant fπ is the
reaction of γπ� → π�π0 or eþe− → γ� → π0π−πþ. These
processes have also a connection to the WZW anomalous
effective action and amplitude of reaction has the same
following form:

Aðγπ− → π−π0Þ ¼ −iF3πðs; t; uÞϵμναβϵμpν
0p

α
1p

β
2; ð3Þ

where ϵμ is polarization of incident photon and pi are
momenta of pions. In chiral limit in low-order by quark-
loops, the form factor of this amplitude is independent from
Mandelstam variables s, t, u and has a simple form [12]

F3πð0; 0; 0Þ ¼
e

4π2f3π
¼ 9.72 GeV−3: ð4Þ

The process that described this amplitude was measured for
the first time at the IHEP accelerator (Serpukhov) at the
40-GeV negative-pion beam [13]. The experiment was
based on pion pair production by pions in the nuclear
Coulomb field via the Primakoff reaction

π− þ ðZ; AÞ → π−0 þ ðZ; AÞ þ π0: ð5Þ

The value of F3π extracted from the experiment is

Fexp
3π ¼ ð12.9� 0.9� 0.5Þ GeV−3: ð6Þ

This expression still has a small difference from the
theoretical value given by the low-energy theorem (4).
The one-photon exchange is a dominating process in this
reaction. One can expect that the higher precision in
measuring of this value will be obtained from the future
experiments. Therefore, there is a need for more accurate
theoretical estimations of this value.*zhevlakov@phys.tsu.ru
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From the experimental side, the reaction (5) will be
measured in CERN COMPASS experiment [14] for scat-
tering kaons and pions on nuclear target. There exist
theoretical predictions on the value of the form factor
(5) in the framework of different approaches, e.g., low-
energy theorem, ChPT (with and without taking to account
the q2-dependence and electromagnetic corrections) [15],
dispersion relations and others.
The present work will be focus of the transition form

factor for γ� → πþπ0π− which will be described in the
framework of a nonlocal chiral quark model (NχQM). This
model is a nonlocal extension of the Nambu-Jona Lasinio
(NJL) model [16–20]. The NχQM model has tested in
different regions of particle physics: meson dynamics
[8,19], deconfinement [21], dense matter at high temper-
ature and/or intense magnetic fields [22,23].
In this work, the use of this model results in reproduction

of the low-energy theorem for the process photon into to
three pions. Due to nonlocality of this model the result
obtained is in a good agreement with the experimental data
from Serpuhov [13].
This paper is organized as follows. In Sec. II the nonlocal

quark model is briefly considered. In Sec. III the calculation
of transition form factor of photon into tree pions decay are
performed in the framework of this model and some
properties of results obtained are discussed. In Sec. IV
the summary is given and some conclusions are made.
Technical details can be found in the Appendix.

II. NχQM

The Lagrangian of the SUð2Þ × SUð2Þ nonlocal chiral
quark model has the form [16,20]

LNχQM ¼ q̄ðxÞði∂̂ −mcÞqðxÞ

þ G
2
½JaSðxÞJaSðxÞ þ JaPðxÞJaPðxÞ�: ð7Þ

where qðxÞ are the quark fields,mc is the diagonal matrix of
the quark current masses [24], and G is the four-quark
coupling constant.
The nonlocal structure of the model is introduced via the

nonlocal quark currents

JaS;PðxÞ ¼
Z

d4x1d4x2fðx1Þfðx2Þq̄ðx − x1ÞΓa
S;Pqðxþ x2Þ;

Γa
S ¼ τa; Γa

π ¼ iγ5τa; ð8Þ
where fðxÞ is a form factor reflecting the nonlocal proper-
ties of the QCD vacuum and τa are Pauli matrices. For
simplicity in this work we do not consider an extended
model [19,25] that includes other structures besides the
pseudoscalar (P) and scalar (S) ones.
The form factor fðxÞ characterizing the composite

structure of hadron is an unknown function. The choice
of this form factor can be sensitive for physical observables

[26]. To simplify the calculations the Gaussian [20,26]
form of the form factor function will be used. This function
describe a nonlocality of interaction of quark field with
mesons.

fðxÞ ¼
Z

d4k
ð2πÞ4 e

ixkfðk2Þ; fðk2Þ ¼ ek
2=Λ2

; ð9Þ

where Λ is a parameter cutoff. Note that this form is not the
only one that can be used for parametrization quark-
antiquark potential [19,26].
Observable degrees of freedom are meson states. The

procedure of introducing of meson states is due to using
properties of partition function Z ¼ R

DqDq̄ exp½−SE� and
a trick of the Gaussian integral. Integrating out the quark
fields one can see that the produced functional has a form:

Z ¼
Z

D~πDσ exp½−Sðσ;πÞE �; ð10Þ

where bosonizated action is

Sðσ;πÞE ¼ − ln detðDÞ þ 1

2G

Z
d4p
ð2πÞ4 ðσ

2 þ ~π2Þ: ð11Þ

The operator D in momentum space can be written as

D ¼ ð−p̂ −mcÞð2πÞ4δðp − p0Þ þ fðp2Þfðp02Þðσ þ τaπaÞ;
where fðpÞ is the Fourier transform of the form factor fðxÞ.
Assuming that scalar field σ has a nontrivial vacuum
average, while the mean field (MF) values of the pseudo-
scalar fields πa are zero, it is possibly rewritten in terms of
new scalar and pseudoscalar fields as follows:

σðxÞ ¼ md þ σðxÞ; πaðxÞ ¼ πaðxÞ: ð12Þ
This proposal of nontrivial vacuum average of scalar field
spontaneously breaks of symmetry. Parameter md is
dynamical mass of quark.
Bosonized effective action can be expanded in powers of

the meson fluctuations and the expression takes the form

Sðσ;πÞE ¼ SMF
E þ SquadE þ � � � ð13Þ

For calculation of considered transition form factor one
needs to concentrate on mean field action per unit volume
and action in the quadratic term for the pseudoscalar fields.
These are given by

SMF
E

Vð4Þ ¼ −4Nc

Z
d4p
ð2πÞ4 ln½p

2 þm2ðp2Þ� þ m2
d

2G
;

SquadE ¼ 1

2

Z
d4p
ð2πÞ4 G

−ðp2Þ~πðpÞ · ~πð−pÞ: ð14Þ

New notations are introduced here
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mðp2Þ ¼ mc þmdf2ðp2Þ; ð15Þ

G−ðp2Þ ¼ 1

G
− 8NcΠaðp2Þ; ð16Þ

where the mass of quark has in dependence on momentum.
The polarization operator Πaðp2Þ is

Πaðp2Þ ¼
Z

d4Ek
ð2πÞ4

f2kþf
2
k−
½ðkþ · k−Þ �mðk2þÞmðk2−Þ�

½k2þ þm2ðk2þÞ�½k2− þm2ðk2−Þ�
;

ð17Þ

with k� ¼ k� p=2 and fki ¼ fðk2i Þ, index a corresponds
to different channels of meson. The upper sign in the
numerator corresponds to the pseudoscalar channel and the
lower sign corresponds to the scalar channel. The integra-
tion here and later is done on Euclid space d4Ek and
k2 ¼ −k2E.

A. Fitting the model

After introducing the dynamical mass of quarks, the
model have four parameters: current mc and dynamical md
quark masses, four-quark interaction constant G and cutoff
parameter Λ. These parameters are not independent. They
have connections which can be obtained as follows. Using
the properties of action S for composite operators, one can
construct an equation for the size parameter (so-called gap
equation):

�∂S
∂σ

�
0

¼ 0: ð18Þ

The latter relation leads to the following expression for
dynamic quark mass:

md ¼ 8NcG
Z

d4Ep
ð2πÞ4

f2ðp2Þmðp2Þ
p2 þm2ðp2Þ : ð19Þ

One parameter can remain free, for example, dynamical
mass. This parameter can vary in its appropriate physical
range. Two parameters: currentmc and G or Λ can be fitted
using pion mass and width of pion into two photons decay.
The last parameter can be found from the gap equation.
The chiral condensates are given by the vacuum expect-

ation values hq̄qi ¼ hūui ¼ hd̄di. By performing the varia-
tion of mean field partition function with respect to the
corresponding current quark masses is obtained that

hq̄qi ¼ −4Nc

Z
d4Ep
ð2πÞ4

�
mðp2Þ
DðpÞ −

mc

p2 þm2
c

�
; ð20Þ

where DðpÞ ¼ p2 þm2ðp2Þ.
Value of chiral condensate of light quarks is one of the

fundamental parameters of nonperturbative QCD and chiral

symmetry. Detailed analysis of quark condensate behavior
in nonlocal quark model with different parametrizations
was provided in [27]. Typical interval for physical dynami-
cal mass of quark in the NχQM model is taken in range
200–350 MeV as reproduces empirical bands for light
quark condensate −hq̄qi1=3 ≃ 200–260 MeV [28–30]. In
addition, the physical range in NχQMmodel with Gaussian
function of description a nonlocality of quark interaction
with meson has qualitative agreement with the results of
quark condensate from lattice calculation [31,32] and the
result from renormalization group optimized perturbation
method [33]. The behavior of light quark condensate from
dynamical quark mass md in NχQM model is shown in
Fig. 1. The behavior of the quark condensate at physical
value of current quark mass has the same view of the curve
as the one in chiral limit but lies just below.
The error bar of estimation of different values in

framework of NχQM model comes from the band in the
region of physical dynamical mass of quark.

B. Nonlocal vertices

After we apply the mechanism of spontaneous symmetry
breaking, the nonlocal interaction of quarks with meson
fields generates corresponding quark self-interaction ver-
tices and interaction vertices with gauge fields. These
vertices can be incorporated in the model using
Schwinger phase factor. The theory of nonlocal interaction
gauge fields with quark and meson fields was constructed
in [34] and later was used to study the nonlocal quark
model [8,16,18,25,35].
The nonlocal vertex of interaction quark-antiquark with

external field can be written as:

FIG. 1. Behavior of quark condensate −hq̄qi1=3 from dynami-
cal mass of quark in NχQM model. Black solid line corresponds
to a chiral limit. Red dot-dashed line shows a dependence at
physical current quark mass. Dashed box corresponds to the
empirical bounds from [29,30].
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ΓμðqÞ ¼ γμ − ðp2 þ p1Þμmðp1; p2Þ; ð21Þ

where p1 and p2 ¼ p1 þ q are momenta of quarks, q is
momentum of external field [8,16,35]. Note that one can
generate infinite number interaction vertices of quarks with
external gauge fields. For interaction of quark-antiquark
with scalar or pseudoscalar mesons, vertices take forms:

Γa
σ ¼ gσðq2Þτafðp2

1Þfðp2
2Þ; ð22Þ

Γa
π ¼ gπðq2Þiγ5τafðp2

1Þfðp2
2Þ; ð23Þ

where p1 and p2 ¼ p1 þ q are momenta of quarks, q is
momentum of a meson, gσðq2Þ and gπðq2Þ are constants
which describe a renormalization of scalar or pseudoscalar
meson fields accordingly. The constants gðσ;πÞðq2Þ are
obtained by solving the Bethe-Salpeter equation (BSE)
[8,16,18] in the ladder approximation. As a result of
solving of BSE for a propagator of a meson, the corre-
sponding quark-pion constant can be expressed as

1

−Gþ Πðσ;πÞðp2Þ ¼
g2ðσ;πÞðp2Þ
p2 −m2

ðσ;πÞ
; ð24Þ

where mðσ;πÞ is mass of sigma or pion mesons. On mass-
shell pion, quark-pion constant can be fixed [17,36,37]

1

g2ðσ;πÞðm2
ðσ;πÞÞ

¼ ∂Πðσ;πÞðp2Þ
∂p2

����
p2¼m2

ðσ;πÞ

; ð25Þ

where Πðσ;πÞðp2Þ is polarization operator that is defined
above. Constant gπðq2Þ has a simple connection with weak
pion decay constant through the Goldgerger-Treinman
(GT) relation in the chiral limit of model.

III. FORM FACTOR OF F3π

In this section, the transition form factor photon into
three pions in the framework of NχQM is be described.
This form factor follows from anomalous Ward identity.
Here we reproduce the dependence of this form factor on

quark mass in NχQM model. Note that this dependence is
absent in local limit.
In general, the amplitude of γ� → πþπ0π− processes can

be written as a sum of six diagrams. One of these diagrams
is shown on Fig. 2 and the others can be obtained from it by
permutations of pion legs. There are three groups of
diagrams which have a symmetry under exchange of
direction of quark momentum in quark loop k → −k.
In framework of nonlocal quark model with linear case

of bosonization, contacted nonlocal vertices of interaction
pion with quark-quark-photon exist [9,18,38]. These ver-
tices do not make a contribution in F3π transition form
factor because terms which contain them vanish after Dirac
matrices trace calculation.
The amplitude of transition of gamma in three pions can

be written as

Aðγ → πþπ0π−Þ ¼ −iF3πðs; t; uÞϵμναβϵμpν
0p

α
1p

β
2; ð26Þ

where pi are momenta of pions, ϵμ is a polarization of
photon and F3πðs; t; uÞ is a Lorentz scalar function of the
Mandelstam variables. It can be defined from three types of
diagrams in different kinematics:

F3πðs; t; uÞ ¼ F1ðs; t; uÞ þ F2ðt; s; uÞ þ F3ðu; t; sÞ; ð27Þ
where s, t, u—are Mandelstam invariance variables. The
first function of transition form factor can be calculated
from the Feynman diagrams Fig. 2 and in NχQM model
have a form

F1ðs; t; uÞ ¼ eNc

Z
d4Ek
ð2πÞ4

gπðp2
0Þgπðp2

1Þgπðp2
2Þfkf2kþp1

f2k−p0
fk−p0−p2

Trf½Qðτ−τ3τþ þ τþτ3τ−Þ�
DðkÞDðkþ p1ÞDðk − p0ÞDðk − p0 − p2Þ

× 4fmðk2Þ½Aþ 1 − B� −mððk − p0Þ2Þ½Cþ A� þmððkþ p1Þ2ÞCþmððk − p0 − p2Þ2ÞBg; ð28Þ

where DðkÞ ¼ k2 þm2ðk2Þ, Q is a charge matrix of quark,
and τ� ¼ ðτ1 � τ2Þ= ffiffiffi

2
p

are combinations of Pauli matrices
that follow from pion fields. Coefficients A, B, C can be
found in the Appendix. Structure functions F2ðs; u; tÞ and
F3ðt; s; uÞ have a connection with F1ðs; t; uÞ by crossing
symmetry, namely:

F2ðt; s; uÞ ¼ F1ðs; t; uÞðp0⇆ − p1; τ3 ↔ τþÞ and

F3ðu; t; sÞ ¼ F1ðs; t; uÞðp0 ↔ −p2; τ3 ↔ τ−Þ: ð29Þ
In the low energy limit, when kinematic invariants s ¼

t ¼ u ¼ 0 and performing the chiral expansion over mc the
value of the transition form factor has a form

FIG. 2. Feynman diagram which describes the transition form
factor γ�π− → π0π−. All vertices are nonlocal.
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F3πð0; 0; 0Þ

¼ eNcNfg3π

Z
d4Ek
ð2πÞ4 f

6ðkÞ
�
4

	ðm0ðk2Þ −m0
0ðk2Þk2Þ

DðkÞ4



−32mc

	ðm2
0ðk2Þ −m0ðk2Þm0

0ðk2Þk2Þ
DðkÞ5 −

1

8

1

DðkÞ4

�

:

ð30Þ

Here mðk2Þ → m0ðk2Þ ¼ mdf2ðk2Þ, gπ ¼ gπð0Þ and the
second term in Eq. (30) has a dependence from current
mass of quark. In chiral limit current quark mass mc is zero
this form factor takes a form

F3πð0; 0; 0Þ ¼
eNcNf

f3π

×
Z

d4Ek
ð2πÞ4

	
4m4

0ðk2Þ − 4m0
0ðk2Þm3

0ðk2Þk2
DðkÞ4



;

ð31Þ

where m0
0ðk2Þ ¼ ∂m0ðk2Þ

∂k2 . Goldgerger-Treinman relation at
the quark level which holds in chiral limit of quark model,
fπ ¼ gπ=md, is used [20,39,40].
When the parameter of nonlocality tends to infinity

Λ → ∞, fðk2Þ → 1 and m0ðkÞ ¼ 0, mðk2Þ ¼ md in the
chiral case. Then the integral in Eq. (31) can be solved
analytically:

Z
∞

0

dk2
k2m4

d

ðk2 þm2
dÞ4

¼ 1

6
: ð32Þ

In this particular limit, the Eq. (31) reproduces the WZW
form factor [2]:

F3π ¼
eNcNf

24π2f3π
¼ e

4π2f3π
≃ 9.72ð0.09Þ GeV−3: ð33Þ

Behavior of the form factor F3π in NχQM model is
different on pion mass-shell and in chiral limit due to
nonzero current quark mass. The dependence of F3π form
factor on dynamical quark mass for both cases of pion
mass-shell and chiral limit is shown on Fig. 3. Averaged
quantity of F3π at low energy in the chiral limit is

F3πð0; 0; 0Þ ¼ 9.789ð0.4Þ GeV−3: ð34Þ

Therefore, we can conclude that the presence of non-
locality does not change the picture in chiral limit and the
obtained value of F3π is in agreement with the one obtained
from the low-energy theorem.
For physical masses of pions, the transition form factor

should be calculated on the physical threshold forq2 ¼ 0 and
sþtþu¼3m2

π . In this case, kinematics variables [12] take

the form sthr¼ðmπ−þmπ0Þ2, tthr¼−mπ−m2
π0
=ðmπ−þmπ0Þ,

and uthr ¼ mπ−ðm2
π− −mπ−mπ0 −m2

π0
Þ=ðmπ− þmπ0Þ. Thus

in lowest order of perturbation by m2
π transition form factor

Fthr
3π has the form:

Fthr
3π ðsthr; tthr; uthrÞ ¼ eNcNfg3πðm2

πÞ
Z

d4Ek
ð2πÞ4 f

6ðk2Þ

×

	
4mðk2Þ − 4m0ðk2Þk2

DðkÞ4


þOðm2

πÞ:

ð35Þ

Note that this form is similar to the one obtained in the chiral
limit. The corrections due to pion mass are suppressed.
Dependence on current quark mass leads to the following
change of transition form factor:

Fthr
3π ðsthr; tthr; uthrÞ ¼ 11.48ð0.58Þ GeV−3: ð36Þ

Direct violation of chiral symmetry by including nonzero
current quark mass leads to an increase of value of transition
form factor F3π (see Fig. 3). The shift of decay constant of
pion at nonzero current mass of quark plays an important
role here.
As in the case of pion transition form factor into two

photons [10], F3π form factor is slowly changed with the
growth of the dynamical mass of the quark. Inclusion of
the current mass of the quark is a more important effect for
the model. In lowest order of decomposition in powers of
electromagnetic constant, nonlocal interaction external

FIG. 3. Dependence of transition form factor γ�π− → π0π− on
dynamical mass of quark md. Solid black line show a behavior of
F3π in chiral limit, dash-dot red line corresponds to the transition
form factor on the physical threshold of process. The area
between the olive dot lines show a range from Serpukhov
experiment [13]. Blue dashed line corresponds a limit value
F3π when quark-meson nonlocality form factor tends to zero,
fðp2Þ → 0, in NχQM model or quantity obtained from low-
energy theorem.
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electromagnetic fields with quarks does not play a signifi-
cant role and the important contribution is due to local
vertex of interaction of quarks with a photon. The same
effect occurs for the transition form factor of pion into two
photons [8]. Nonlocality of meson–quarks vertices is
provided by the existence of form factors fðp2Þ. The
model in the chiral limit reproduces the form of expression
F3π that follows from the WZW action. The value F3π in
NχQM in the chiral limit is in agreement with the one from
the low energy theorem.

IV. OUTLOOK

In this article the transition form factor of γ� → πþπ0π−
which reproduces a WZW term from anomalous Ward
identities in chiral limit of model was studied. It is shown
that the nonlocality does not play a significant role for the
form factor F3π in chiral limit. On the physical threshold
value, the transition form factor in the nonlocal quark
model Fthr

3π ¼ 11.48ð0.58Þ GeV−3 has a good agreement
with experimental data which was measured by Antipov
et al. [13]. The dynamical quark mass has in the typical
interval 200–350 MeV for physical mass, and the current
mass of quark has typical values in the range of 4–9 MeV.
The result obtained for F3π has an agreement with results

from dispersion analysis in two-loop [41], in the framework
of integral equation approach [42], and from the case of
dispersive representations with the ππ P-wave phase shift
[43]. ChPT also has an agreement with experimental data
and with this result in case when take into account
correction at Oðp6Þ with q2—dependence and electromag-
netic corrections [15]. Full agreement with this result has
ChPT in case ofOðp8Þwhen electromagnetic corrections at
Oðe2Þ are included. The calculations in NχQM coincide
with the ladder Dyson-Schwinger calculation [44] which
also take into account the dependence of mass on momen-
tum of quark. One can say that nonperturbation effects are
incorporated inside NχQM by inclusion of nonlocality
structure of interaction quarks with mesons.
Recently it was shown that the picture of calculation will

change if one takes into account the intermediate vector
meson resonance exchange [45,46]. A similar picture
should appear in the processes πγ� → ππ=KK̄. We plan
to consider a role of lightest vector meson in these reactions
in the framework of extended SUð2Þ × SUð2Þ model
[25,39]. It is also interesting in connection with future
measurement of exclusive γp → πþπ−p reaction of
photoproduction at the GlueX experiment at Jefferson
laboratory [47].
In the future we plan to calculate Dalitz decays of η and

η0 mesons into γπþπ− or eþe−πþπ−. These decays are

well-studied experimentally and will be measured in future
experiments with very high accuracy. The important role in
these processes plays vector mesons play an important role
in these processes, which have to be included in the
extended SUð3Þ × SUð3Þ model.
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APPENDIX: KINEMATIC FUNCTIONS

Functions A, B, C that appeared in Eq. (28) after
rewriting dependence of Lorenz-index loop integral in
terms of external fields have the forms:

A ¼ ðkp1Þðp2
0p

2
2 − ðp0p2Þ2Þ
RT

þ ðkp2Þððp0p1Þðp0p2Þ − p2
0ðp1p2ÞÞ

RT

þ ðkp0Þððp0p2Þðp1p2Þ − ðp0p1Þp2
2ÞÞ

RT
; ðA1Þ

B ¼ ðkp1Þððp0p2Þðp0p1Þ − p2
0ðp1p2ÞÞ

RT

þ ðkp2Þðp2
0p

2
1 − ðp0p1Þ2Þ
RT

þ ðkp0Þððp0p1Þðp1p2Þ − ðp0p2Þp2
1ÞÞ

RT
; ðA2Þ

C ¼ ðkp1Þððp0p2Þðp1p2Þ − ðp0p1Þp2
2Þ

RT

þ ðkp2Þððp0p1Þðp1p2Þ − p2
1ðp0p2ÞÞ

RT

þ ðkp0Þðp2
1p

2
2 − ðp1p2Þ2ÞÞ
RT

; ðA3Þ

where denominator RT is

RT ¼ p2
0p

2
1p

2
2 þ 2ðp0p1Þðp0p2Þðp1p2Þ

− p2
0ðp1p2Þ2 − ðp0p1Þ2p2

2 − ðp0p2Þ2p2
1: ðA4Þ

These coefficients have a crossing symmetry: C ¼
Aðp0 ↔ −p1Þ and B ¼ Aðp0 ↔ −p2Þ.
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