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Abstract

This paper suggests predictors for the Ornstein-Uhlenbeck process
based on the truncated estimators of parameters. For these estimators
there are established the asymptotic and non-asymptotic properties with
guaranteed accuracy. Strong consistency of the obtained estimators is
proved. There are investigated asymptotic properties of the predictors
and shown their optimality.
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1 Introduction

Prediction is one of the most challenging and popular problems for modern
researchers all over the world. A lot of practically important problems, for in-
stance, predicting economic or technological processes, portfolio building etc.
require the development of methods that allow to construct adequate mathe-
matical models and perform statistical processing of such models. In addition,
the problem of developing prediction procedures that guarantee specific prop-
erties while using small samples of fixed size is extremely topical.

Stochastic differential equations are widely used in modern financial math-
ematics, for example, in the problem of optimal consumption and investment
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for the financial markets. However, construction of optimal strategies requires
knowledge of parameters and functions of the market model, determining the
dynamics of the risky assets movement. Therefore, to be used in practical
calculations, the optimal financial strategies must be able to assess the un-
known parameters and functions in models of financial markets. To sum it up,
the development of effective robust statistical methods of estimation of un-
known parameters is a momentous problem to solve. The quality of adaptive
prediction significantly depends on a choice of estimation method for model
parameters. Adaptive prediction problem for discrete-time systems was solved
in [1, 2, 7] on the basis of truncated estimators proposed in [5]. In this pa-
per we solve the optimization problem of the predictors built upon truncated
estimators in the sense of special risk function similar to discrete-time case
considered in [7].

2 Prediction of the Ornstein-Uhlenbeck pro-

cess

Assume the model
dxt = axtdt+ dwt, t ≥ 0 (1)

with an unknown parameter a, where x0 is zero mean random variable with
variance σ2

0 having all the moments, wt is a standard Wiener process, x0 and
wt are mutually independent. Suppose that the process (1) is stable, i.e. the
parameter a < 0. Note that in this case for every m ≥ 1

sup
t≥0

Ex2mt <∞. (2)

The problem is to construct a predictor for xt by observations xt−u =
(xs)0≤s≤t−u which is optimal in a sense of the risk function introduced below.
Here u > 0 is a fixed time delay.

Using the solution of (1) we obtain the following representation

xt = λxt−u + ξt,t−u, t ≥ u, (3)

where ξt,t−u =
t∫

t−u
ea(t−s)dws, λ = eau. Applying properties of the Ito integral it

is easy to calculate

Eξt,t−u = 0, σ2 := Eξ2t,t−u =
1

2a
[λ2 − 1].

Optimal in the mean square sense predictor x0t for xt is the conditional
mathematical expectation of xt under the condition of xt−u which can be found
by (3)

x0t = λxt−u, t ≥ u. (4)
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Since the parameters a and λ are unknown, we define the adaptive predictor

x̂t = λt−uxt−u, t ≥ u, (5)

where
λs = eâsu, s ≥ 0. (6)

Here
âs = proj(−∞,0]as,

as is the truncated estimator of the parameter a constructed similar to discrete-
time case [5] on the basis of the maximum likelihood estimator

as =

s∫
0

xvdxv

s∫
0

x2vdv

χ
( s∫

0

x2vdv ≥ s log−1 s
)
, s > 0. (7)

Denote the prediction errors of x0t and x̂t as

e0t = xt − x0t = ξt,t−u, et = xt − x̂t = (λ− λt−u)xt−u + ξt,t−u, t ≥ u.

Now we define the loss function

Lt =
A

t
e2(t) + t, t ≥ u,

where

e2(t) =
1

t

∫ t

u

e2sds

and the parameter A > 0 that is the cost of prediction error.
We also define the risk function Rt = ELt which has the following form

Rt =
A

t
Ee2(t) + t (8)

and consider optimization problem

Rt → min
t
. (9)

For the optimal predictors x0t it is possible to optimize the corresponding
risk function

R0
t = E

(
A

t
(e0(t))2 + t

)
=
Aσ2

t
+ t→ min

t
, (10)

where (e0(t))2 =
1

t

∫ t

u

(e0s)
2ds.
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In this case the optimal duration of observations T 0
A and the corresponding

value of R0
t are respectively

T 0
A = A

1
2σ, R0

T 0
A

= 2A
1
2σ, (11)

where σ :=
√
σ2.

However, since a and as follows, σ are unknown and both T 0
A and R0

T 0
A

depend on a, the optimal predictor can not be used. Then we define the
estimator TA of the optimal time T 0

A as

TA = inf{t ≥ tA : t ≥ A1/2σtA}, (12)

where tA := A1/2 · log−1A = o(A1/2). Here σt :=
√
σ2
t is the estimator of

unknown σ, where

σ2
t =

1

2
θt · [λ2t − 1]

and θt is the truncated estimator of θ = a−1 defined as follows

θt = a−1t · χ[at ≤ − log−1 t], t > 0.

Estimators at, λt and σt that are used in construction of adaptive predictors
have the properties given in Lemma 2.1 below which can be proved similar to
discrete-time case [5].

In what follows, C will denote a generic non-negative constant whose value
is not critical (and not always the same).

Lemma 2.1. Assume the model (1). Then the estimators at, λt and σt
are strongly consistent. Moreover, for t− u > s0 := exp(2|a|) the following
properties hold:

E(at − a)2p ≤ C

tp
(13)

and

E(λt − λ)2p ≤ C

tp
, p ≥ 1, (14)

E(σ2
t − σ2)2p ≤ C log2p t

tp
, p ≥ 1. (15)

Analogously to [3], [4] and [7], our purpose is to prove the asymptotic equiv-
alence of TA and T 0

A in the almost surely and mean senses and the optimality
of the presented adaptive prediction procedure in the sense of equivalence of
R0
A and the obviously modified risk

R̄A = A · E 1

TA
e2(TA) + ETA. (16)
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Theorem 2.2. Assume the model (1) and tA that is defined in (12). Let the
predictors x̂t be defined by (5), the times T 0

A, TA and the risk functions R0
t , R̄A

defined by (11), (12) and (10), (16) respectively. Then for every a < 0

i)
TA
T 0
A

−−−→
A→∞

1 a.s.; (17)

ii)
ETA
T 0
A

−−−→
A→∞

1; (18)

iii)
R̄A

R0
A

−−−→
A→∞

1. (19)

Proof of Theorem 2.2: First we prove the assertion (i). By definitions
of TA and T 0

A we have

TA
T 0
A

=
tA

A1/2σ
· χ[TA = tA] +

σtA
σ
· χ[TA > tA]

=
tA

A1/2σ
· χ[tA ≥ A1/2σtA ] +

σtA
σ
· χ[A1/2σtA > tA] −−−→

A→∞
1 a.s.

The property (17) is proven.
Now we prove the assertion (ii). The following representation will be used

TA
T 0
A

= 1 +
TA − A1/2 · σ
A1/2 · σ

= 1 + SA.

Rewrite SA in a form

SA =
tA − A1/2 · σ
A1/2 · σ

· χ[TA = tA] +
TA − A1/2 · σ
A1/2 · σ

· χ[TA > tA]

=
tA − A1/2 · σ
A1/2 · σ

· χ[tA ≥ A1/2σtA ] +
σtA − σ

σ
· χ[A1/2σtA > tA].

Then, by the third assertion of Lemma

|ESA| ≤ P [tA ≥ A1/2σtA ] + σ−1E|σtA − σ|

≤ P [σtA ≤ log−1A] + σ−2
√
E(σ2

tA
− σ2)2 −−−→

A→∞
0.

The property (18) is proven.
Prove the assertion (iii).
The left-hand side in this assertion can be rewritten as

R̄A

R0
A

=
1

2

(
A1/2E

1

TAσ
e2(TA) +

ETA
A1/2σ

)
.
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Then from (17) it follows that to prove (18) it is enough to show the
convergency

A1/2E
1

TAσ
e2(TA) −−−→

A→∞
1. (20)

For some ε ∈ (0, σ) we denote

T
′
= (σ − ε) · A1/2, T

′′
= (σ + ε) · A1/2.

Further we use the following properties

P (TA < T
′
) ≤ C

log3mA

Am/2
, P (TA > T

′′
) ≤ C

log3mA

Am/2
, (21)

which are fulfilled for every m ≥ 1. Indeed,

P (TA < T
′
) = P (A1/2 · σtA < (σ − ε)A1/2) ≤ P (|σtA − σ| > ε))

≤ 1

(εσ)2m
E(σ2

tA
− σ2)2m ≤ C

log2m(A1/2 log−1A) · logmA

Am/2
≤ C

log3mA

Am/2
.

Analogously, we have

P (TA > T
′′
) = P (T

′′
< A1/2σtA) = P (σ + ε < σtA)

≤ P (|σtA − σ| > ε) ≤ (εσ)−2m · E(σ2
tA
− σ2)2m ≤ C

log3mA

Am/2
.

Split the proof of (20) into 3 parts:

1) A1/2 · E 1

TAσ
e2(TA) · χ[TA < T

′
]→ 0 (22)

2) A1/2 · E 1

TAσ
e2(TA) · χ[TA > T

′′
]→ 0 (23)

3) A1/2 · E 1

TAσ
e2(TA) · χ[T

′ ≤ TA ≤ T
′′
]→ 1 (24)

as A→∞.
By definition of e2(t) we have

A1/2 · 1

T 2
Aσ
e2(TA) = A1/2 · 1

T 2
Aσ

∫ TA

u

e2tdt = A1/2 · 1

T 2
Aσ

∫ TA

u

(λt−u − λ)2x2t−udt

+2A1/2 · 1

T 2
Aσ

∫ TA

u

(λt−u − λ)xt−u · ξt,t−udt+ A1/2 · 1

T 2
Aσ

∫ TA

u

ξ2t,t−udt

=: I1 + I2 + I3. (25)
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Prove 1). By the Cauchy-Schwarz-Bunyakowsky inequality, (2) and Lemma
2.1

EI1 · χ[TA < T
′
] ≤ A1/2

t2Aσ

∫ T
′

u

E(λt−u − λ)2x2tdt

≤ A1/2

t2Aσ

∫ T
′

u

√
E(λt−u − λ)4 · Ex4tdt ≤ C

A1/2

t2A

∫ T
′

u

dt

t
≤ C

A1/2 logA

t2Aσ
→ 0.

By Cauchy-Schwarz-Bunyakovsky inequality and Lemma 2.1 we obtain

E|I2| · χ[TA < T
′
] ≤ 2A1/2

t2Aσ
E

∣∣∣∣∫ TA

u

(λt−u − λ)xt−uξt,t−udt

∣∣∣∣χ[TA < T
′
]

≤ 2A1/2

t2Aσ
·
∫ T

′

u

√
E(λt−u − λ)2x2t−uEξ

2
t,t−udt

≤ 2A1/2

t2Aσ

∫ T
′

u

(
E(λt−u − λ)4 · Ex4t−u

)1/4
dt

≤ C
A1/2

t2A

∫ T
′

u

dt

t1/2
≤ C

A1/2 · (T ′
)1/2

t2A
≤ C

log2A

A1/4
→ 0.

Using (21) with m = 2 as A→∞ we get

EI3 · χ[TA < T
′
] ≤ A1/2

t2A

∫ T
′

u

Eξ2t,t−u · χ[TA < T
′
]dt

≤ A1/2

t2A

∫ T
′

u

√
Eξ4t,t−udt ·P

1
2 (TA < T

′
) ≤ C

A1/2

t2A
·A1/2 · log6A

A
= C

log8A

A
→ 0.

Prove (23). Using (21) with m = 2 and (25) we get

EI1 · χ[TA > T
′′
] = A1/2E

1

T 2
Aσ

∫ TA

u

(λt−u − λ)2x2t−udt · χ[TA > T
′′
]

≤ A1/2

σ
· P 1/2(TA > T

′′
)

√
E sup

s≥T ′′

1

s4

(∫ s

u

(λt−u − λ)2x2t−udt

)2

≤ C log3A

√
E sup

s≥T ′′

1

s3

∫ s

u

(λt−u − λ)4x4t−udt.

For simplification we assume that the time T
′′

is integer. Then

C log3A

√√√√∑
n≥T ′′

E sup
n≤s≤n+1

1

s3

∫ s

u

(λt−u − λ)4x4t−udt
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≤ C log3A

√√√√∑
n≥T ′′

1

n3

∫ n+1

u

dt

t2
≤ C log3A ·

√√√√∑
n≥T ′′

1

n3

≤ C log3A
1

T ′′ ≤ C
log3A

A1/2
→ 0.

Similarly we obtain:

E|I2| · χ[TA > T
′′
] ≤ 2A1/2

σ
·

√
E sup

s≥T ′′

1

s4

(∫ s

u

(λt−u − λ)xt−uξt,t−udt

)2

≤ C log3A ·
√
E sup

s≥T ′′

1

s3

∫ s

u

(λt−u − λ)2x2t−uξ
2
t,t−udt ≤ C · log7/2A

A1/2
→ 0,

as well as

EI3 · χ[TA ≥ T
′′
] ≤ A1/2

σ
P 1/2(TA > T

′′
) ·

√
E sup

s≥T ′′

1

s4

(∫ s

u

ξ2t,t−udt

)2

≤ C
log3A

A1/2
→ 0.

Finally, for the (iii) assertion of the Theorem 2.2 let us decompose (24) in
a following way

EI3 · χ[T
′ ≤ TA ≤ T

′′
] = J1 + J2 + J3 + J4,

where

J1 = A1/2 · E 1

T 2
Aσ

∫ TA

u

(λt−u − λ)2x2t−udt · χ[T
′ ≤ TA ≤ T

′′
],

J2 = 2A1/2 · E 1

T 2
Aσ

∫ TA

u

(λt−u − λ)xt−uξtdt · χ[T
′ ≤ TA ≤ T

′′
],

J3 = A1/2 · E 1

T 2
Aσ

∫ TA

u

(ξ2t,t−u − σ2)dt · χ[T
′ ≤ TA ≤ T

′′
],

J4 = E
A1/2σ

TA
· χ[T

′ ≤ TA ≤ T
′′
].

We start with the assessment of J1

J1 ≤
A1/2

(T ′)2σ

∫ T
′′

u

E(λt−u − λ)2x2t−udt
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≤ CA−1/2 ·
∫ A1/2(σ+ε)

u

√
E(λt−u − λ)4 · Ex4t−udt ≤ C

logA

A1/2
→ 0.

J2 ≤
2A1/2

(T ′)2σ

√
E

(∫ TA

u

(λt−u − λ)ξt,t−udt

)2

· χ[TA ≤ T
′′
]

≤ 2A1/2 ·
√
T ′′

(T ′)2σ

√∫ T ′′

u

E(λt−u − λ)2ξ2t,t−udt ≤ C
log1/2A

A1/4
→ 0.

Denote NA = [u−1 · A1/2(σ + ε)]1 + 1, where [b]1 signifies integer part of
number b. Using the maximal inequality for martingales we obtain

J3 ≤ C
1

A1/2

√
E sup

s≤T ′′

(∫ s

u

(ξ2t,t−u − σ2)dt

)2

≤ C
1

A1/2
·

√√√√E sup
l≤NA

(
l∑

n=1

∫ nu

(n−1)u
(ξ2t,t−u − σ2)dt

)2

≤ C

A1/2
·

√√√√ NA∑
n=1

E

[∫ nu

(n−1)u
(ξ2t,t−u − σ2)dt

]2
≤ C

A1/2
·
√
NA ≤

C

A1/4
→ 0.

Now we show the convergence of J4 → 1 as A → ∞. J4 can be rewritten
in a form

J4 = P [T
′ ≤ TA ≤ T

′′
] + LA,

where

LA = E
1

TA
[A1/2σ − TA] · χ[T

′ ≤ TA ≤ T
′′
].

By the definitions of TA, T
′
, T

′′
and according to Lemma 2.1 the probability

P [T
′ ≤ TA ≤ T

′′
]→ 1 as A→∞.

Note that for A� 1 it holds that T
′
> tA, then TA = A1/2σtA and

LA ≤
1

T ′E|TA−A1/2σ| ·χ[TA ≥ T
′
] = C ·E|σtA−σ| ≤ C ·

√
E(σ2

tA
− σ2)2 → 0.
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