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ABSTRACT   
Model study of not phase matched and phase matched optical rectification or down-conversion of Ti:Sapphire laser 
pulses at 950 nm into THz and far-IRrange in pure and S-doped GaSe single crystals is carried out. First, the ordinary 
and extraordinary wave dispersions of the GaSe refractive indices were measured by terahertz time-domain spectroscopy 
(THz-TDS). Measured data were approximated in the form of Sellmeier dispersion equations for 0.62 – 2000 µm range 
with using available shorter wave data. 
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1. INTRODUCTION  
Over the past decades, frequency conversion through using phase matchable (anisotropic) nonlinear crystals has found 
more and more applications in producing THz coherent sources. The key to this technique lies in the nonlinear crystals, 
as they have to possess low optical loss, high damage threshold and large nonlinearity coefficient leading to high output 
power and hence can meet the increasing power demand in various applications. Besides, crystals should be hard for 
easy access and processing at arbitrary direction with fine finish. However, there is limited number of anisotropic 
inorganic nonlinear crystals suitable for THz applications that always possess much lower optical loss, higher damage 
threshold and larger hardness to that for organic crystals. Small optical loss and higher pump intensity is resulting in 
higher conversion efficiency. Larger hardness made easy access and processing at arbitrary direction.  

Most suitable inorganic acentrosymmetric crystals for THz frequency converters are ZnGeP2
1,2,3,ε-GaSe4,5 (herein after 

GaSe), AgGaSe2
6, AgGal-xInxSe2

6and Tl3AsSe3
7crystals. Among them, GaSe crystal is of extra interest due to extreme 

physical properties that allowed broadband highly efficiency parametric frequency conversion. For example, DFG within 
2.7-38.4 & 58.2-3540 μm8and further up to 5640 μm4is realized6. In the total, frequency conversion is realized within 
0.7895-5640 μm4,8,9; output power THz pulse power reached is up to 2 kW10; up to 10-50 MW is predicted. Interesting 
way for generation of THz emission, by realizing of parallel sum frequency generation of one non-selective CO laser, 
and difference frequency generation of sum frequencies and rest pump emission in a single GaSe sample at fixed angular 
position was recently proposed11.  

Many of the unique physical properties of GaSe are associated with its layered structure. The basic four-fold layer 
consists of two monoatomic sheets of Ga sandwiched between two monoatomic sheets of Se. The strong covalent 
interaction within the atomic layers and week, Van-der-Waals type bonding between basic layers, renders GaSe as a 
highly anisotropic material. On the other hand, the layer structure results in extreme low hardness (almost zero by Mohs 
scale) and easy cleaving along planes parallel to the atomic layers, and finally in hampering of out-of-door large-area 
crystals applications.  

Fortunately, an originalε-polytype structure of GaSe is strengthening doping with different elements, as well other 
physical properties responsible for frequency conversion efficiency are modifying. It allowed easier processing at 
arbitrary directions and improves frequency conversion efficiency. Modified properties and improved efficiencies are 
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reported for a number of doped crystals: light (GaSe:S) and heavely S-doped GaSe crystals that also referred to as solid 
solution crystals GaSe:GaS (GaSe1-xSx, where x is mixing ratio)12,13,14,15,16, GaSe:In and Ga1-xInxSe17,18,19,20,21, GaSe:Te 
and GaSe1-xTex

19,22,23, doped GaSe:Er24,25,26,GaSe:Al27,28,29, GaSe:Ag30, and GaSe:InSe or Ga1-xInxSe1-ySy
31 crystals. 

Increased frequency conversion efficiency is recorded for frequency conversion into both mid-IR13,17,18,20 and 
THz32,33,34,35range. Recently, summarized data were presented in few papers36-40, which consider some other double 
element doped GaSe crystals. Strengthened structuregives opportunity of the application in out-of-door applied 
systems41. 

Due to a set of modified parameters: increased damage threshold, decreased phase matching angle, lower absorption and 
refraction, short-wavelength shifted transparency and phase matching ranges etc. the highest frequency conversion 
efficiency was recorded for solid solution GaSe1-xSx crystals13,33,34. In particular, for Er3+:YAG laser SHG conversion 
efficiency in optimally composition GaSe1-xSx crystal was of 2.4 times higher to that for pure GaSe crystal, as well as for 
THz generation by Ti:Sapphire laser frequency down-conversion. In contradiction, negative effects of S-doping on the 
optical damage threshold and on frequency conversion efficiency were also reported16,42 that reflect doping-induced 
degradation in optical quality. 

In fact, differences in the state-of-the-art of growth technology, limited distribution of doped GaSe crystals and still 
problematic cut and high optical quality polishing of pure and doped GaSe crystals are reasons of paucity and highly 
scattered data on optical properties of pure and doped GaSe crystals in THz range. Until recently Due to limited 
distribution and hard processing absorption spectra for e-wave in GaSe1-xSx crystals (i.e. absorption anisotropy 
properties) in the THz range have only been studied for two solid solution compositions: GaSe0.74S0.26

15 and 
GaSe0.71S0.29

16. From data in these studies and measurements at fixed frequencies4,34 it was established that the absorption 
coefficient αo exceeds αeat THz frequencies as it does in the pure GaSe crystal. This difference in absorption loss leads 
to a higher efficiency of THz e-wave generation8,34. It was also predicted and confirmed experimentally that the 
uncommon ee-e type of interaction can be realized in pure and S-doped GaSe crystals15,16.  

Successful design of THz sources calls for adequate data on PM possibilities and potential efficiencies for all possible 
three frequency interactions. In turn, it needs in correct data on dispersion properties and absorption spectra over the 
entire transparency range for pure and S-doped GaSe and solid solution GaSe1-xSx crystals as a function of the mixing 
ratio. Correct data are a crucial factor in the selection of the most efficient type of three frequency interactions and in 
maximizing the frequency conversion efficiency. Original processing technology allowed fabrication of a range of high 
optical quality S-doped crystals at θ=90°. Recently, by using these and cleaved samples of the same composition, 
refractive indices for ordinary (o) and extraordinary (e) waves were successfully measured43. However, analyses of phase 
matching were not carried out.  

In the present work, we report model study of phase matching for different typesof three frequency interactions in GaSe 
and GaSe1-xSxcrystals by using designed dispersion equations.Two Ti:Sapphire lasers that are available in our lab 
(operating, respectively, at 950 nm and 980-1080 nm) are considered as pump sources.  

2. CRYSTAL GROWTH AND CHARACTERIZATION 
A modified synthesis of polycrystalline material and the vertical Bridgman single crystal growth method were employed 
to grow single crystals of solid solution GaSe1-xSx. The starting materials for the synthesis were Ga 99.9997, Se 99,99 
and S 99.95. The stoichiometric charge of Ga and Se, and the nominal 0, 1.1, 2.5, 5, 7 mass.% S (x=0, 0.05, 0.11, 0.22, 
0.29, 0.44) was weighed out. Synthesis ampoules were loaded up to 65% in volume to minimize the quantity of residual 
gases and cosequent interaction so as to improve optical quality. Other details on the synthesis process are reported 
elsewhere44. After several hours of melt homogenization during the synthesis process, the temperature was slowly 
decreased to 40 K below the melting point of 1238 K of the compound at the rate of ~10 K/h. For the growth process, the 
polycrystalline material was loaded into a single wall cylindrical ampoule. The internal surface had a layer of pyrolytic 
carbon which protected the melt from reaction with the ampoule wall material and impurities. The unseeded crystal 
growth was performed by the vertical Bridgman method with heat field symmetry change and the symmetry center 
moving all over the oven space that is described elsewhere45,46. The sealed growth ampoule was loaded into a furnace 
having a temperature gradient of ~15 K/cm at the estimated level of crystallization front. After homogenization of the 
melt at the temperature 30 K above the melting point, the ampoule was mechanically lowered at the speed of 10 mm/day. 
No eutectic was found by visual examination. The grown boule allows easy sample cleaving with high optical quality 
surfaces up until the end section.Photos of doped GaSe crystals are shown in Fig. 1. 
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Figure 1.External view on as-grown high quality GaSe:Scrystals: (a) 1 mass% and (b)  11 mass% S-doped.  

Two types of GaSe1-xSx samples were fabricated for the present study. The first type was cleaved from as-grown boules, 
i.e. it had faces orthogonal to the c-axis, so that a beam traversing the sample travelled parallel to the c-axis. The high 
optical quality of these samples can be estimated by the naked eye, evident in their transparency and homogenity. The 
second type was mechanically cut and polished. These samples were made by first immersing a section of the GaSe1-xSx 
boule in monomer (polymetil crylate) mixed with a thermoinitiator and placed in an oven for polymerization for 2 hours. 
The produced samples of both types were free from precipitates, voids or micro bubbles, or other visual defects.  

Optical properties in mid-IR range were studied by using homemade spectrophotometers but THz-TDS (time-domain 
spectroscopy) measurements of o- (αo) and e-wave (αe) absorption coefficient spectra and absorption anisotropy in the 
0.3-4.0 THz range for solid solution crystals GaSe1-xSx as it is described in details elsewhere39,40and commerce Z-3 
(Zomega, USA) spectrometer. It was found that grown GaSe crystals possesses from 2 to 3 times lower absorption 
coefficient that crystals grown by common syntheses and single crystal growth technology. In line, optimally 2-3 mass% 
S-doped GaSe crystals also demonstrated 2-3 times lower absorption coefficient to that for pure GaSe crystals grown by 
modified technology. So such, it seems us that measurement results are quite adequate.  

3. MODEL STUDY 
Dispersion properties for GaS and GaSe were measured in THz range and approximated in the form of dispersion 
equations all over the entire transparency range. Available data for from visible to through mid-IR were also used in the 
approximation43.  

Phase matching angles for difference frequency generation (DFG) were calculated by using well known relations: 

 = − ,      (1) 

 
considering phase matching condition as ks-ki-kp≤10-4. In relation (1) 

 = ,      (2) 
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=	 θ θ
.      (3) 

 

Dispersion equations for the entire transparency range of GaSe43: 

 = 10.6409 + . . + . . + . . ,   (4) 

 = 5.76 + − . + . + . . .    (5) 

 

Dispersion equations for the entire transparency range of GaS47: 

 = − . 	+	 . 	+ . + 6.59624 + . . ,   (6) 

 = . + . − . + 4.92144 + . . .   (7) 

 

Phase matching estimation for solid solution crystals GaSe1-xSx can be carried out by using relationship proposed in48 that 
is, in particular, adapted for solid solution GaSe:GaS in49 as follows: 

 

, ( ) = (1 − ) , ( ) + , ( )   (8) 
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4. RESULTS AND DISCUSSION 
Calculated dispersions and birefringence for pure and S-doped GaSe crystals are presented in the Fig. 2-5. 
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with the fact of wide using of Vodopyanov’s dispersion equations and well matching of experimental and estimated PM 
angles. It can be explained by differences in the magnitudes of PM angles for considered down-conversion processes. 
Common down-conversion process in published papers arerelated to down-conversion of 1.064 μm Nd:YAG laser and 
OPO operating at close wavelengths. It occurs at small internal PM angles anything like 2-4 degrees. In this case, ne 
magnitudes are close to no magnitudes that are identical for all dispersion equations presented in Fig. 2-5. For down 
conversion of Ti:Sapphire lasers PM angles are large and difference in the ne dispersion became important. It resulted in 
significant differences of PM angles.  

This result is very important for our prospective study on down-conversion of available 950 nm as and tunable 780-1080 
nm Ti:Sapphire lasers.   

5. CONCLUSION 
Improved quality crystals were grown by modified technology and used in these measurements. Dispersion properties of 
o- and e-wave refractive indices and absorption coefficients for GaSe and GaSe1-xSx crystals were preliminary measured 
by THz-TDS, approximated in the equation form and then used in the study. Model study of THz generation in pure and 
solid solution GaSe1-xSx crystals by Ti:Sapphire laser is carried out. 
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