Институт оптики атмосферы им. В.Е. Зуева СО РАН Институт солнечно-земной физики СО РАН

XXI Международный симпозиум

ОПТИКА АТМОСФЕРЫ И ОКЕАНА. ФИЗИКА АТМОСФЕРЫ

Тезисы докладов

Томск Издательство ИОА СО РАН 2015 09:35-09:50

B09

МОДЕЛИРОВАНИЕ МНОЖЕСТВЕННОЙ ФИЛАМЕНТАЦНН ТЕРАВАТТНЫХ ЛАЗЕРНЫХ ИМПУЛЬСОВ НА СТОМЕТРОВОЙ ВОЗДУШНОЙ ТРАССЕ

Д.В. Апексимов, <u>Ю.Э. Гейнц.</u> А.А. Землцяпов, А.Н. Иглакова. А.М. Кабанов. О.И. Кучинская, Г.Г. Матвиенко. В.К. Ошлаков, А.В. Петров

Институт оптики атмосферы им. В.Е. Зуева СО РАН. Томск, Россия

Представлены результаты численного моделирования множественной филаментации тераваттных фемтосекундных импульсов Ti:Sapphire-лазера проведенного по экспериментальным данным, полученным на воздушной трассе длиной 106 м при измении начальной пространственной фокусировки и мощности лазерного излучения.

09:50-10:05

B₁₀

ОПТИКО-АКУСТИЧЕСКАЯ КАЛОРИМЕТРИЯ ФЕМТОСЕКУНДНЫХ ЛАЗЕРНЫХ ИМПУЛЬСОВ

А.Н. Иглакова¹, В.К. Ошлаков¹. <u>Б.А. Тихомиров</u>*. Л.В. Селезнев?

¹Институт оптики атмосферы им. В.Е. Зуева СО РАН, г, Томск, Россия ²Физический институт им П.Н. Лебедева РАН. г. Москва. Россия

Для измерения энергии фемтосекундных лазерных импульсов (248. 744 н 800 нм) апробирован оптико-акустический приемник с черным телом (а качестве поглощающего элемента) и конденсаторным микрофоном (в качестве преобразователя). помешенных внутри замкнутого объема с газом. Прибор позволяет измерять энергию УФ — ИК лазерных импульсов в широком динамическом диапазоне (более 80 дБ с микрофоном МК 221) Частота следования импульсов - до 15 Гц, пороговая чувствительность — 10 нДж. Высоках чувствительность приемника обеспечивает надежные намерения энергии тераваттных фемтосекундных лазерных импульсов а основном канале по поглощению излучения, проходящего за поворотное зеркало с коэффициентом отражения, близким к 100%.

10:05-10:30 Объединенный доклад

B11

ФОТОННЫЕ НАНОСТРУИ ОТ СОСТАВНЫХ ДИЭЛЕКТРИЧЕСКИХ МИКРОЧАСТИЦ

Ю.Э. Гейни, А.А. Землянов. Е.К. Панина

Институт оптики атмосферы им. В.Е. Зуева СО РАН. г. Томск, России

Представлены результаты численного моделирования ближнего поля рассеяния световой волны (область фотонной (нано)струн - ФС) на составных частицах, представляющих собой усеченные круговые конусы с присоединенными полусферами. Впервые установлено, что совмещение сферической и конической фокусировок в составных частицах позволяет создавать высоко локализованные фотонные струн, с пиковой интенсивностью, в несколько раз превышающей интенсивность для изолированных микроаксиконов.