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Abstract—The N-terminal scheme is considered for studying the contribution of edge states to the response
of a two-dimensional topological insulator. A universal distribution of the nonlocal resistance between ter-
minals is determined in the ballistic transport approach. The calculated responses are identical to experimen-
tally observed values. The spectral properties of surface electronic states in Weyl semimetals are also studied.
The density of surface states is accurately determined. The universal behavior of these characteristics is a dis-
tinctive feature of the considered Dirac materials which can be used in practical applications.
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1. INTRODUCTION
Topological insulators and Weyl semimetals are

characterized by the linear dispersion of low-energy
excitations existing at the edge of two-dimensional
topological insulators or on the surface of three-
dimensional topological insulators, and in the bulk of
Weyl semimetals. Such electronic states have heli-
coidal spin orientation, and the spin orientation is
related to the direction of electron momentum. The
electronic states in topological insulators [1–3] are
protected by time-reversal symmetry, which leads to
topological protection of each Kramers partner and as
a result to the suppression of backscattering in systems
with moderate structural disorder. The distinctive fea-
ture of a Weyl semimetal is that this three-dimensional
material exhibits a conical spectrum near an even
number of points in momentum space, where the
bands touch each other.

The features of topological insulators manifest
themselves even for nanoscale samples. Indeed, topo-
logical order in topological insulators belongs to the
phase state with so-called short-wavelength order [4],
which is created by correlated quantum states on scales
on the order of the lattice constant. The topological
phase formed on large scales, so-called long-wave-
length topological order, belongs to a fundamentally
different class [4] formed by correlated quantum
states. One of its features is nonlocality in the Hilbert
space of states. This means that the full quantum state
is not equal to the product of local electronic states. In

other words, this state contains long-wavelength cor-
relations of topological excitations.

Nontrivial topological order has an effect on the
electron collision frequency [5]. The Berry phase of
quantum states in topological insulators appears in
interference phenomena and leads to the weak antilo-
calization phenomenon [6]. In Section 2, we consider
the universality of the transport characteristics of two-
dimensional topological insulators under conditions
when they contain information on nonlocal topologi-
cal order. The existence of nonlocality in the three-
dimensional case follows directly from the representa-
tion [7] of the topological invariant. The nontrivial
value of this Hopf invariant equal to unity means that
two loops are linked. In this paper, we focus on study-
ing the significantly nonlocal response detected in
experiments [8, 9].

2. NONLOCAL RESPONSE

The features of electronic states in two-dimen-
sional topological insulators manifest themselves in
the quantum-spin Hall effect [10–13]. In studying the
degree of nonlocality, we use the approach of [8, 14]
generalized to the case of the N-terminal scheme. Let
us consider the distribution of voltages between termi-
nals of the N-terminal scheme, caused by edge states
in a two-dimensional topological insulator. In the
Landauer–Büttiker ballistic transport approach [15,
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16], the current injected through terminal i to the sam-
ple is given by

 (1)

where Vj is the terminal j potential, e is the elementary
charge, h is Planck’s constant, h/e2 is the measure-
ment unit of the fundamental resistance which we fur-
ther set to unity, Tij is the matrix element of the transi-
tion from terminal i to terminal j, and N is the total
number of terminals.

In the general case, the transition coefficients Tij
depend on the potentials Vj and geometrical parame-
ters of the problem. We will consider the situation of
maximum resistance, experimentally implemented in
[8], when it can be considered that the transition coef-
ficients Tij are independent of potentials Vj. In this
case, the bulk Fermi level is at the energy-gap center,
and the renormalized voltage V* = 0 [8]. The relations
between the characteristic sizes of the terminal and
sample are considered at the end of the Section in dis-
cussing deviations from the ideal limit under study.
Taking into account that edge electronic modes in
topological insulators propagate in two mutually
opposite directions, let the coefficients of the transi-
tion between the nearest terminals in this ideal case be
unity, Ti + 1,i = Ti,i + 1 = 1, and other coefficients be
zero. Furthermore, the N-terminal scheme implies
that the periodic boundary conditions TN + 1,N = T1,N,
TN,N + 1 = TN,1 take place for both propagation direc-
tions of edge states.

Let us consider the number of terminals N as the
control parameter. The indices of terminals between
which we will measure voltage, contain information
about the effect of the current of edge states between
terminals through which it f lows on the distribution of
voltage at other terminals. This distribution defines
the degree of response nonlocality. It is clear that the
resistance between terminals with indices 1 and N,
through which the current f lows, will tend to unity
with increasing number of terminals N. For example,
in the case of adjacent terminals with indices 1 and 2,
the measured resistance will tend to zero by some law
with increasing N.

Let the current I1N f low through terminals 1 and N,
and the voltage be measured at terminals with random
indices i and j. In this case, the equation defining the
potentials between terminals is written as

 (2)

where Aij = 2δij – δi,j + 1 – δi,j – 1 – δi,1δj,N – δi,N δj,1, δij is
the Kronecker delta, 1 ≤ i, j ≤ N, V = (V1, V2, … VN–1,
VN), and I = I1N (1, 0,… 0, –1). Our interest is in the
difference between the terminal potentials Vi. Since
the vector V is invariant with respect to a constant-
value shift, we can set VN = 0.

=
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For arbitrary N, the solution to Eq. (2) is Vi =
I1N(1 – i/N). Therefore, the resistance (V1 – VN)/I1N
between terminals with indices 1 and N is R1N,1N =
(N – 1)/N. The nonlocal resistance Rkl,ij = (Vi – Vj)/Ikl
at k = 1, l = N in measuring the voltage between termi-
nals i and j in this more general case is

 (3)

To find the voltage distribution in the case where
the current f lows from terminal 1 to terminal k, it is
necessary to use the expression for the current I =
I1k(1, 0,… –1,… 0) on the right-hand side of (2). Here
–1 is at the k-th point. In this general case, the exact
solution to Eq. (2) is given by

 (4)

if 1 ≤ i ≤ k, and

 (5)

if k ≤ i ≤ N. Such a distribution of indices of the cur-
rent terminal and terminals at which voltages are read,
defines the following resistances

 (6)
After permutation of the current terminal indices

(1k) and indices (ij) of the terminals at which voltages
are read, and after shifts k → j – i + 1, j → k – i + 1,
i → N – i + 2, we can verify that these expressions sat-
isfy the Onsager–Casimir symmetry relations Rmn,kl =
Rkl,mn for nonlocal resistances Rmn,kl. We note the fact
that the universality of ballistic edge-state transport
under the considered ideal conditions is controlled by
the topological properties of bulk quantum electronic
states. Therefore, this phenomenon is lacking in trivial
insulators.

We considered the universal properties of nonlocal
transport existing due to helicoidal edge electronic
modes propagating along the edge of a two-dimen-
sional topological insulator in two mutually opposite
directions. Violation of the indicated equivalence cor-
responds to the chiral situation. This takes place in the
case of the violation of time-reversal symmetry. If the
time-reversal symmetry is violated, e.g., due to the
introduction of magnetic impurities, and the condi-
tion that backscattering is lacking is weakened, the
transition coefficients Ti,j can be written as Ti + 1,i =
1 + k1, Ti,i + 1 = k2 [17]. Here k1 < 1 and k2 < 1 are con-
stants, and unity in the transition coefficient Ti + 1,i
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means the existence of the chiral edge mode. In this
quasi-helicoidal edge state [17], the distribution of
potentials at terminals with the index i, if the current
flows through terminals 1, N to which voltage is
applied, has the exponential form

 (7)

where r = k2/(1 + k1).
Chiral edge states in the quantum Hall effect prop-

agate only in one of two possible directions. The tran-
sition coefficients for such states in Eq. (1) are nonzero
for terminals with indices j > i: Ti,i + 1 = 1 and Ti + 1,i = 0.
Therefore, the resistance R1N,ij appears equal to zero.
In other words, nonlocal resistance in systems with
violated time-reversal symmetry is absent. The exis-
tence of such symmetry at the macroscopic level
appears as nonlocal effects caused by helicoidal edge
states. The shape of responses and determined num-
bers before the factor h/e2 in the resistance depend on
the experimental conditions, e.g., on the temperature
which controls the contribution to the conductance of
inelastic backscattering processes. The experimental
data [8] exhibit a high degree of universality. The uni-
versality of expressions R1N,1N = (N – 1)/N, R1N,ij =
(i – j)/N and (4), (5) can be tested using experimental
setups for studying the quantum-spin Hall effect
through varying the total number of terminals and
indices of current-carrying terminals.

In this paper, we focus on the universal manifesta-
tion of topological order in the transport properties of
ideal two-dimensional topological insulators in the
simplest form of its representation. Studying the trans-
port characteristics of topological insulator SmB6
shows [9] that transport properties in the three-
dimensional case depend heavily on the sample con-
figuration and terminal distribution. The deviation
from universal behavior takes place in two-dimen-
sional systems as well. It results from metal droplets
within real terminals. This phenomenon can be
described in terms of an additional terminal. The
effect of this and other factors such as finite terminal
size, reflection from the inner boundaries, and other
conditions on the amplitudes of the transitions
between current terminals and test terminals from
which voltages are read was studied in [18].

Let us clarify in more detail the role played by ter-
minals in edge-state transport, following the approach
and main conclusions of [8, 18, 19]. We first note that
terminals are not potentials which violate time-rever-
sal symmetry, which mix oppositely propagating edge
states with oppositely oriented spins. After all, termi-
nals represent a reservoir of electronic degrees of free-
dom with incoherently populated channels of both
edge states. An ideal terminal populates both channels
of edge states with the same weight, injecting spin-up
and spin-down electrons with equal probability [8].
This is the cause of the additional resistance induced

1
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by terminals. The contribution of such a dephasing
reservoir to the additional resistance can be negligible
under the condition that L < Lc ~ 1/η. Here L is the
characteristic linear size of the terminal, Lc is the
dephasing length, η is the dephasing term in the
intrinsic energy [8]. We note that the intrinsic energy
should not violate time-reversal symmetry. The deco-
herent behavior is caused by the existence of the
dephasing reservoir with the distribution function
included in the so-called low intrinsic energy of the
terminal [8].

However, deep dips in the conductance exist even
at small parameters ηL. They can be sufficiently
strong to completely suppress coherent transport at
one of the edges [8]. Therefore, even a small dephasing
region can significantly affect the test terminal. The
experimental value of the maximum resistance for a
6-terminal scheme is 1/7 instead of the theoretical
prediction of 1/6. Such a result is consistent with the
existence of an additional dephasing region. Dephas-
ing regions can also exist due to sample inhomogene-
ity. The experimental results show [8] that a change in
the output voltage also affects the sample heterogene-
ity due to occupied states gaining a charge at the semi-
conductor–insulator interface. This results in a non-
uniform potential in the region of terminals and the
formation of metal islands which exist, even when
most terminal regions are insulating. In other words,
the metal island can cause an effect similar to the exis-
tence of an additional test terminal. Experimental sit-
uations when coherent transport is observed in the
entire sample were discussed in [8, 18].

There are two different methods for suppressing
nonlocal transport. The first approach is as follows:
the sample scale is made so small that it induces back-
scattering in the edge-state channels. Backscattering
occurs if wave functions for the opposite spin orienta-
tion are overlapped [20]. This occurs in a sample
200 nm wide. Therefore, if the width of the central
region of a two-dimensional sample strip satisfies the
condition W > W1, i.e., is rather large, the deviation

 from the ideal value T1N = 1 is negligible [18]. The
same condition W > W2 for the absence of tunneling
between edges of an individual terminal is valid for the
terminal width W2. Measurements of the nonlocal
resistance [18] in samples being in states of the quan-
tum-spin Hall effect yield values expected for non-
perturbative nonlocal transport over edge states.
Numerical calculations of the scattering matrix at the
metal–topological-insulator interface confirmed the
negligible values of for the used samples. The sec-
ond method for suppressing the contribution to non-
local edge-state transport consists in the selection of
such nonlocal configurations which assume transport
via the edge channel to distances larger than the
inelastic scattering length [19]. This means that the
largest number of terminals Nc = L1/(W2 + L2) can be

1
'
NT

1
'
NT



SEMICONDUCTORS  Vol. 49  No. 12  2015

UNIVERSAL PROPERTIES OF MATERIALS 1553

roughly estimated as 10 for actual experimental
parameters. Here L1 is the characteristic size of the
sample and L2 is the distance between terminals.

Finally, it should be noted that we described the
universal distribution of resistances, studying the non-
local transport of edge states in two-dimensional
topological insulators in the ballistic mode. It is of
interest to study problems of the macroscopic mani-
festation of topological order in other topologically
ordered systems. An important problem in this field
lies in simulation [21] of the distribution of degrees of
freedom in systems with long-wavelength topological
order. In this case, instead of H-shaped basic elements
of the scheme used in this study, we should use Y-shaped
terminals as building blocks.

3. DENSITY OF SURFACE STATES
In this Section, we consider the spectral properties

of surface electronic states in Weyl semimetals. A nec-
essary condition for the existence of Weyl semimetals
is violation of the spatial inversion or time-reversal
symmetry. The topological protection of bulk quan-
tum states of this three-dimensional analogue of
graphene appears in the form of surface states belong-
ing to Fermi arcs in momentum space. Therefore,
studying the properties of surface electronic states
which are characteristic features of hidden topological
order in three-dimensional systems with the conical
spectrum near Weyl points, allows the clarification of
some symmetry aspects of topological protection of
three-dimensional quantum states.

A remarkable feature is that Weyl points in
momentum space are monopoles with topological
charges equal to the first Chern invariant [22, 23]. The
existence of an even number of Weyl points character-
ized by alternating opposite-sign monopole charges,
hence, zero total topological charge, allows the fol-
lowing conclusion. The bulk spectrum of electronic

states in Weyl semimetals at finite-energy distance
from Weyl points necessarily has the hyperbolic shape.
This means that the surface spectrum projected on the
two-dimensional Brillouin zone will reflect the indi-
cated hyperbolicity: it will contain disconnected one-
dimensional dispersion distributions in the form of
Fermi arcs, when the dispersion relation of surface
states is sectioned by the constant energy at the Fermi
level. Summarizing, we can say that the cause of the
existence of Fermi arcs is the hidden topological
behavior of bulk electronic-state phases in Weyl semi-
metals.

The class of materials for implementing Weyl semi-
metals includes TaAs [24, 25], heterostructures con-
structed from topological and conventional insulators
[26], and topological insulators doped with magnetic
impurities [27]. Currently, the topological classifica-
tion [22, 28–30] of phase states in topological insula-
tors is extended to Weyl semimetals [31]. The nontriv-
ial values of topological invariants allow materials
containing Weyl points to exhibit a wide spectrum of
new phenomena. Recently, the transport features [32,
33] of semimetals, associated with the existence of a
chiral anomaly in these media [34], were studied, as
well as the spectrum of collective excitations [35, 36],
negative magnetoresistance [37], nonlocal transport
[38], anomalous quantum Hall effect [39], and
extraordinary superconductivity [40] and other phe-
nomena [41, 42] were detected. Friedel oscillations
due to Fermi arcs in Weyl semimetals were studied in
[43], where the contribution of bulk and surface states
to the density of surface states in the model of alternat-
ing band and topological insulators was calculated.
Surface-state-density oscillations in Weyl semimetals
in a strong magnetic field and their experimentally
verified results were studied in [44, 45].

We consider properties of Weyl semimetals in the
case where there is time-reversal symmetry, and spa-
tial inversion is violated [46], focusing on the study of
the density of surface states. This type of Weyl semi-
metal was studied in [47], where the spectrum of sur-
face states was obtained. It is given by

 (8)

and is shown in Fig. 1. Here k = (kx, ky) is the two-
dimensional wave vector, t is the amplitude of hopping
to neighboring lattice sites, and a is the lattice con-
stant.

Figure 2 shows the Fermi arcs obtained by section-
ing the surface E(kx, ky) = E at a level of E = 0.2t. The
density of surface states is defined by the integral over
the surface Brillouin zone (BZ) |kx ± ky| ≤ 2π/a, i.e.,
the function δ[E – E(kx, ky)] as follows

 (9)
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Fig. 1. Spectrum of surface states in the Weyl semimetal.
The dot is the origin of coordinates kx = ky = 0.
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After introducing dimensionless quantities, i.e., the
density of surface states n(ε) = N(E)/N0, V0 = 4/(π2a2t),
the energy ε = E/2t, wave-vector components (x, y) =
(kxa/4, kya/4), and after changes in the variables ξ =
x – y, η = x + y, we obtain

After changing the integration variables in this expres-
sion, the second step reads the δ-function, and the
third step leads to the first-order Legendre elliptic
integral

 (10)

The amplitude φ = arcsin  and the
parameter m = 1 – (ε/2)2 of the elliptic integral of the
first kind F(φ,m) depends on an energy ε in the range
0 < ε < 1. The asymptotic values of the elliptic integral
of the first kind define the behavior of the density of
surface states for ε → 0 and ε → 1 as

 (11)

The density of surface states as a function of energy ε
in the range 0.1 < ε ≤ 1 is shown in Fig. 3.
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It should be noted that expression (10) for the den-
sity of surface states is applicable to the energy range
ε1 < ε < ε2 with ε1 > 0 and ε2 < 1 until surface states
merge with the continuum of bulk electronic states
[47]. In other words, the energy range belonging to
surface states at moderate violation of the reversal
symmetry is smaller than the interval (0, 1).

The density of states is defined by the electron-
spectrum dispersion and the spatial dimension d of the
problem at hand. In general, the density of states is a
non-decreasing function of energy. An exception is the
one-dimensional case with the quadratic spectrum
Ep = p2/2me, when N(E) ∝ E–1/2. For comparison, the
density of surface states in topological insulators is
N(E) = E/(2πh2 ), whereas for bulk states in Weyl
semimetals, it has the form N(E) = E2/(2π2h3 ),
where vF is the Fermi velocity. The phase-space con-
straint affects the contribution to thermodynamic
characteristics, e.g., decreases the specific heat C ∝ Td

(T is the temperature and d = 2, 3) for Dirac materials.
In the considered two-dimensional problem, the rea-
son that the function n(ε) is a decreasing function is
associated with the existence of a saddle point at the
center of the surface Brillouin zone. The latter leads to
the appearance of the van Hove singularity at ε → 0.
The further decrease in the function n(ε) at ε → 1
reflects the decrease in the Fermi-arc length. As a
result, in the intermediate energy region, the surface-
state density appears to greater resemble the behavior
of this function for a system of two one-dimensional
mutually perpendicular Dirac metals, than its behav-
ior in the case of two-dimensional Dirac metal, when
n(ε) ∝ ε. This note is consistent with the published
observation [48–50] that the system of Dirac surface
electronic modes can be considered as a composition
of orthogonal Luttinger one-dimensional metal con-
ductors.
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Fig. 2. Fermi arcs at ε = 0.1.
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Fig. 3. The density of surface states n(ε) as a function of
energy ε in a Weyl semimetal.
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Knowledge of the function n(ε) and its value n(εF)
at the Fermi energy εF makes it possible to find the
quantum capacitance CQ = e2N(εF) in a two-dimen-
sional system per unit area, and to determine the con-
tribution to the low-frequency conductance σdc by the
Einstein formula σdc = e2N(εF) D. Here D = τ is the
diffusion coefficient and τ is the transport lifetime. It
is clear that the density of surface states N(εF) at the
Fermi energy also defines the contribution of the sur-
face conductance to the total tunneling conductance
in Weyl semimetals. As for the distributions of spin
degrees of freedom, the bulk states for one Dirac point
in a Weyl semimetal resemble chiral quasi-spin con-
figurations in graphene, whereas surface states in a
Weyl semimetal are analogues of helicoidal distribu-
tions of spin orientations in topological insulators. The
energy spectrum and spin texture of surface states can
be experimentally studied using the tunneling spec-
troscopy for which the behavior of the density of sur-
face states is key. To separate surface contributions
from bulk ones, to find the differences and to control the
electron transport of surface carriers of different topolog-
ical nature, we should follow the approach of [51].

The answer to the question which properties of the
model under consideration are general and are inher-
ent to other Weyl semimetals with violated spatial
inversion symmetry can be as follows. The key proper-
ties controlling the hyperbolic dispersion dependence
(8) and the Fermi-arc structure are the crystal sym-
metry and time-reversal symmetry (compare with
[52]). In the case at hand (8), the character of the
Fermi-arc dispersion is a consequence of the existence
of the second-order axis, when arcs formed by rotation
about this axis and after the time-reversal operation
coincide [47]. It is now not difficult to imagine the arc
structure in systems with different point groups
[47, 52].

Certainly, the Fermi-arc dispersion in systems with
spatial-inversion symmetry reflects features of situa-
tions when time-reversal symmetry is in some way vio-
lated. What properties of the density of states in this
case and in the case considered in the present study are
general? The above-mentioned observation of the
behavior of the density of states in the intermediate
energy range ε1 < ε < ε2, where it is almost constant as
a result of embedding one-dimensional Fermi arches
into two-dimensional momentum space, leads to the
following assumption. The behavior of the energy
dependence of the density of states in this intermediate
region will be qualitatively the same as in systems with
violated spatial-inversion symmetry.

It should be noted that we calculated the surface-
state density in Weyl semimetals with violated spatial
inversion and showed that it has a logarithmic singu-
larity at ε → 0, slowly decreases in the intermediate
region, and tends to zero at ε → 1 according to the law

. In the intermediate energy region, this is

2
Fv

2(1 )− ε

reminiscent of the behavior of the density of states
in a composition of two orthogonal Dirac metals
immersed into two-dimensional space.
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