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dDépartement de Physique Théorique and Center for Astroparticle Physics,

Université de Genève,
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1 Introduction

The singularities in the relevant solutions of general relativity indicate the limits of appli-

cability of the theory. For this reason they represent an important motivation to study

quantum effects, which are supposed to make the theory free of singularities. For instance,

in cosmology we know that this really happens, since in the framework of the complete,

quantum theory-based, non-local version of the Starobinsky model [1, 2] there is no initial

singularity [3–6]. The exploration of the same issue in the black hole case is much more

difficult (see, e.g., [7] and also [8]) and at present there is no comprehensive investigation

of the problem in this case. On the other side, the singularity which looks very similar to

the one in the black hole solution can be met already in Newton gravity, in the case of a

single point-like particle. In the recent works (see also [9–12]), the Newtonian singularity

problem has been addressed in the framework of non-local gravity. The same non-local

model has been suggested earlier by Tomboulis [16] as a version of super-renormalizable

and ghost-free theory. It turns out that at least some special version of the theory, with

exponential type of non-locality, the theory is really singularity-free. Let us note that much

earlier, the same result concerning the absence of Newtonian singularity has been obtained

in [18, 19] for a modified low-energy string effective action, which is essentially equivalent

to the model of [16] and [9–12]. In the present work we shall extend this result for a set of

local higher-derivative models suggested in [20].

In order to verify the presence of Newtonian singularity, one can consider metric fluc-

tuations around Minkowski space-time, gµν = ηµν + hµν . Then the linearized Lagrangian

provides the IR Newtonian limit in the amplitude corresponding to the one-graviton ex-

change between two static masses. Since the Newtonian gravity comes from the linear

approximation on the flat background, at the covariant level the result is completely de-

termined by the terms of up to the second order in curvature tensor.

Consider the general version of higher derivative gravitational action of up to the

second order in curvature tensor, but without restrictions on the number of derivatives.
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The corresponding action has the form

S =
1

4κ

∫
d4x
√
−g
{
− 2R+RF1(�)R+Rµν F2(�)Rµν +Rµναβ F3(�)Rµναβ

}
, (1.1)

where we used notation κ = 8πG. Let us note that the cosmological constant is not

included, because it is known to be very small and also does not affect singularity in the

Newtonian potential of the point-like mass.

The expressions such as (1.1) emerge naturally in different physical situations. To start

with, the one-loop semiclassical corrections to the gravity action produce the form factors

which have exactly the form (1.1), with the non-polynomial functions F1,2,3 = F1,2,3(�/m2),

typically with the logarithmic asymptotics in the far UV [21, 22]. The constant values

of F1,2,3 correspond to the well-known fourth-derivative models of renormalizable quan-

tum gravity [23], with existing extensive discussion of classical properties in the literature

starting from [24]. Furthermore, the polynomial form of the same functions F1,2,3, if be-

ing introduced into the classical action, leads to super-renormalizable models of quantum

gravity [20], even if the O(R3
...) and other higher-order (corresponding to the order of poly-

nomials) terms are included. In both these cases, however, the spectrum of the theory

has a set of massive spin-2 excitations, some of them are always unphysical ghosts with

negative kinetic energy. The problem of ghosts has a long and interesting history, but since

it is not the subject of the present work, let us just readdress the reader to the recent pa-

pers [25, 26] of one of us for a brief review and further references. The models of [20] were

promoted to the ghost-free non-polynomial form in [16], but the quantum properties of this

version, such as (super)renormalizability are not clear yet. One can see the discussion of

this question in [25, 26] and also parallel consideration in [27, 28].

The functions F1,2,3 used in [16] to avoid ghosts are exponential, quite different from the

asymptotically logarithmic form factors of one-loop semiclassical terms of [21, 22], from the

constants in the renormalizable gravity case [23], and from the polynomial form of a super-

renormalizable quantum gravity models of [20]. As we have mentioned above, recently the

exponential form of these functions has been used in [10–12] to cure the singularity of the

Newtonian point-like solution. This result looks quite remarkable. One may think that it

indicates that the strong in UV, exponential form-factors are very special and that they

are necessary to cure the singularity. If it is really so, this would mean that there is some

fundamental physical reason for the absence of singularity in the strongly growing in UV

functions F1,2,3. Then one may expect that the same will happens also in the non-linear

regime, when we deal with the full black-hole solution, being it Schwarzschild or Kerr.

In the present work we are going to show that the singularity-free solutions are possible

not only for the exponential functions F1,2,3, but also for the polynomial versions of the

functions F1,2,3, including the constant functions (which is the very well-known result

of [24]). Therefore, in this work our purpose is to explore the singularity problem in a

different class of higher derivative theories compared to the ones which were considered

in [24] and [12]. The paper is organized as follows. In section 2 we present the general

theoretical background of the problem. Section 3 contains the main results, including the

proof of the non-singular behavior of local higher derivative gravity theories with a real
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spectrum. In section 4 we discuss the role of tensor and scalar ghosts in the cancellation

of Newtonian singularity and, also, the existing relation between this cancellation and

(super)renormalizability of the corresponding quantum theory. Finally, in section 5 we

draw our conclusions and also present some discussions.

2 Modified Newtonian limit

The Newtonian limit means static weak-field approximation. So, we consider metric fluc-

tuations around Minkowski space-time

gµν = ηµν + hµν . (2.1)

To find linearized field equations we need to consider only those terms in the action which

are of the second order in the perturbations hµν . The following relevant observation is in

order. By means of the Bianchi identities and integrations by parts one can prove that for

any integer N∫
d4x
√
−g
{
Rµναβ�

NRµναβ − 4Rµν�
NRµν +R�NR

}
= O

(
R3
...

)
= O

(
h3
)
. (2.2)

Assuming that the functions F1,2,3 admit an expansion into power series in �, one comes to

the conclusion that the Riemann-squared term is not relevant in the linear regime. Then

one can simply trade F1,2,3 → F̃1,2,3, where F̃1 = F1 − F3, F̃2 = F2 + 4F3 and F̃3 = 0.

In what follows we effectively use the relations for F̃1,2,3, but do not write the tildes for

simplicity of notations. So, from now on, F3(�) ≡ 0 .

Performing the expansion in hµν , the bilinear part of the action (1.1) is given by

Lquadr = − 1

4κ

[
hµν�hµν +A2

ν + (Aν − φ,ν)2
]

− 1

16κ

[
−�hµνF2(�)�hµν +Aµ,µF2(�)Aν,ν + FµνF2(�)Fµν

−
(
Aα,α −�φ

)
(F2(�) + 4F1(�))

(
Aβ,β −�φ

) ]
, (2.3)

where the vector and antisymmetric tensors are below defined in terms of the gravitational

fluctuation,

Aµ = hµν,ν , φ = hµµ (trace of hµν) , Fµν = Aµ,ν −Aν,µ . (2.4)

Inverting the quadratic operator in (2.3), we find the following two-point function in

momentum space in terms of spin-2 projector P (2) and scalar projector P (0−s) (see, e.g., [23]

or [31] for details),

G2(k) =
P (2)

k2 (1 + k2F2(−k2)/2)
− P (0−s)

2k2 [1− k2 (F2(−k2) + 3F1(−k2))]
. (2.5)

Since we are interested to find a solution for the point-like static mass source, let

us take

Tµν = ρ δ0
µδ

0
ν = M δ3(r) δ0

µ δ
0
ν . (2.6)

– 3 –
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One can then easily calculate the solution of the linear equations of motion coming

from (2.3) by means of the Fourier transform of the potential. The Lagrangian for the

graviton fluctuation and matter source reads

Lh = hµν
(
G−1

2

)µν,ρσ
hρσ − 4κhµνT

µν . (2.7)

Therefore in short notation,

ĥ = 2κ Ĝ2 T̂ =⇒ ϕ(r) = −h00

2
. (2.8)

In this way, after some algebra it is possible to express the potential as

ϕ(r) = −2GM

πr

∫ ∞
0

dp

p
sin(pr)

{
4

3 (1 + p2F2/2)
− 1

3 [1− p2 (F2 + 3F1)]

}
, (2.9)

where F1 = F1(−p2) and F2 = F2(−p2). We can introduce the short notation

a(�) ≡ 1−�F2(�)/2 and c(�) ≡ 1 + � (F2(�) + 3F1(�)) , (2.10)

for future reference. For the special case where a = c the potential is given by

ϕ(r) = −2Gm

πr

∫ ∞
0

dp

p

sin(pr)

a(−p2)
. (2.11)

Some extra notes about the a = c case are in order. This condition can be achieved if we

choose the functions Fi(�) according to

F1(�) =
a(�)− 1

�
, F2(�) = −2F1(�) , F3(�) = 0 . (2.12)

This means, for the non-linear case, the special form of the higher derivative part of the

gravitational action

S = − 1

2κ

∫
d4x
√
−g

{
R+ Gµν

a(�)− 1

�
Rµν

}
, (2.13)

where Gµν = Rµν− 1
2gµνR is the Einstein tensor. It is important to stress that, despite the

relation (2.2) holds in the linear approximation, in the non-linear regime, F3(�) = 0 can

be achieved only in an ad hoc manner, exactly as the second relation in (2.12). In what

follows we will not apply the constraint a = c and will mainly deal with the general case,

except some places where it is specially indicated.

The propagator of the gravitational field in the theory (2.13) simplifies to the follow-

ing form,

G2(k) =
1

k2 a(−k2)

[
P (2) − 1

2
P (0−s)

]
, (2.14)

which has an algebraic structure that does not depend too much on the form of the function

a(−k2), since the last enters this expression as an overall factor. The general relativity

propagator can be recovered if we set a = 1. Then, in order to have the correct general

relativity limit, one has to assume that in the infrared, when k2 → 0, this function must

– 4 –
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satisfy the condition a(−k2) → 1. This requirement means that a(�) should be a non-

singular analytic function at k2 = 0 and cannot contain non-local operators such as 1/�.

Furthermore, if the residue of the P (2)-term coefficient at k2 = 0 is negative, the theory

contains a higher derivative ghost. On the other hand, by choosing a(�) to be an entire

function, one can construct a theory being free from higher derivative ghosts [16].

Essentially the same example of entire function has been considered in refs. [9, 12, 15]

(see also [13, 14], including for the non-commutative geometry case), namely

a(�) = e−�/m
2
. (2.15)

For the function (2.15) the solution for the modified Newtonian potential (2.11) is

ϕ(r) = −GM
r

erf
(mr

2

)
. (2.16)

Since erf(r)→r when r→0, the modified Newtonian potential has a non-singular behavior.

Is it true that the singularity disappears due to the non-locality and that the effect

depends on the presence of the exponential form factor? In order to answer this question,

in the next section we are going to construct other examples of the functions F1,2,3(�)

leading to a non-singular Newtonian limit in r = 0 and also have a correct infrared behavior

at r →∞.

3 Polynomial functions

As we have already mentioned in the Introduction, the main advantage of the polynomial

form factors is that the corresponding theory is (super)renormalizable, that is not certain

yet for the nonlocal ghost-free models. Consider the most general local action [20]

S =
1

4κ

∫
d4x
√
−g

{
− 2R+ α0R

2
µν + β0R

2 + γ0R
2
µναβ + . . .

+ α1Rµν�R
µν + β1R�R+ γ1Rµναβ�R

µναβ + O
(
R3
...

)
+ . . . (3.1)

+ αNRµν�
NRµν + βNR�

NR+ γNRµναβ�
NRµναβ + · · ·+O

(
RN+2
...

)}
.

As we have already explained above, only the terms quadratic in curvature tensor may be

relevant for deriving the modified Newtonian potential. Moreover, due to the relation (2.2)

one can safely omit the terms with the squares of the Riemann tensor, so the result will

depend only on the coefficients αi and βi, with i = 0, 1, . . . , N .

The N = 0 model is the 4th-order gravity [23]. For this case the solution for the

modified Newtonian potential is pretty well-known [23, 24],

ϕ(r) = −GM
(

1

r
− 4

3

e−m(2)r

r
+

1

3

e−m(0)r

r

)
. (3.2)

The mass parameters are defined by m(2) =
(

1
2α0

)−1/2
for the tensor mode and by m(0) =

[−(3β0 +α0)]−1/2 for the scalar mode. The scalar sector has a gauge-fixing ambiguity [31],

but this has no importance for the scattering amplitude behind the result (3.2). For the sake

– 5 –
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of simplicity we can say that the two parameters m(2) and m(0) correspond, respectively, to

the masses of tensor and scalar massive degrees of freedom in the propagator of the theory.

At large distances the effects of the Yukawa corrections in (3.2) disappear and one

meets a standard Newton limit in the gravitational potential. On the other hand, in

the short-distance regime the situations depends on the coefficients α0 and β0. At the

origin r = 0, expanding the exponential into power series one can easily check that the

contributions of higher derivative terms to the Newtonian potential make it regular. The

modified potential tends to the constant value

ϕ(r) = − 1

3
GM

[
4m(2) − m(0)

]
+ O(r) . (3.3)

This well-known example shows that the theory without any kind of non-locality can be

free from the Newton singularity. The singularity cancellation occurs because the zero-

order terms of the two different Yukawa potentials combine exactly into the coefficient

−4/3 + 1/3 = −1, to cancel the original Newtonian term.

The solution for the Newtonian potential in the theory which has only Einstein-Hilbert

and the square of scalar curvature terms in the action (i.e., when αi = γi = 0 for i =

0, 1, · · · , N in (3.1)) was previously considered in ref. [32]. It was shown that in this case

the modified Newtonian potential gains a higher derivative contribution given by a sum of

Yukawa potentials, namely

ϕ(r) = −GM

(
1

r
+

N∑
i=0

ci
r
e−m(0)i r

)
, (3.4)

where the coefficients ci satisfy the condition

N∑
i=0

ci =
1

3
. (3.5)

For the full theory with at least αN 6= 0 we expect a number of new terms with Yukawa

potentials coming for the Ricci tensor-squared terms. And if the coefficients of these

Yukawa potentials satisfy some kind of relation like (3.5) but with the sum of coefficients

equal to −4/3, then the Newtonian potential is singularity free for the general local higher

derivative gravitational action of the form (1.1). The proof of this statement is the main

purpose of this section.

In the linear regime the action (1.1) is equivalent to the action (3.1) with

F2(�) = α0 + α1� + · · ·+ αN�
N , (3.6)

F1(�) = β0 + β1� + · · ·+ βN�
N . (3.7)

Consider the integral (2.9) for the Newtonian potential ϕ(r). It is easy to see that for the

case of our interest there is the following relation (2.9), (2.10):(
4

3a
− 1

3c

)
=

[
4

3

1

P2N+2
− 1

3

1

Q2N+2

]
, (3.8)
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where P2N+2 andQ2N+2 are polynomials of � of the corresponding order. Due to eqs. (3.6)–

(3.7), the functions P2N+2 and Q2N+2 can be written in terms of the coefficients αN
and βN as

P2N+2 = 1 +
1

2

[
α0p

2 − α1p
4 + · · ·+ (−1)N αN p

2N+2
]
, (3.9)

Q2N+2 = 1− (3β0 + α0)p2 + (3β1 + α1)p4 + · · ·+ (−1)N+1 (3βN + αN ) p2N+2 . (3.10)

Let us assume that the coefficients of the polynomials (3.9), (3.10) do not vanish, i.e, αi 6= 0

and αi + 3βi 6= 0 for i = 0, 1, · · · , N . According to the fundamental theorem of algebra,

the polynomials P2N+2 and Q2N+2 can be factorized as

P2N+2 =
1

m2
(2)0m

2
(2)1 · · ·m

2
(2)N

×
(
p2+m2

(2)0

)
×
(
p2+m2

(2)1

)
× · · · ×

(
p2+m2

(2)N

)
, (3.11)

Q2N+2 =
1

m2
(0)0m

2
(0)1 · · ·m

2
(0)N

×
(
p2+m2

(0)0

)
×
(
p2+m2

(0)1

)
× · · · ×

(
p2+m2

(0)N

)
. (3.12)

Here the square of the roots of eqs. P2N+2 = 0 and Q2N+2 = 0 are −m2
(2)N and −m2

(0)N ,

correspondingly.

In what follows we assume that by adjusting the coefficients αN and αN + 3βN of

subleading terms of the polynomials P2N+2 and Q2N+2 it is possible to provide that all

m(k)j are real quantities and

0 < m2
(k)0 < m2

(k)1 < · · · < m2
(k)N , (3.13)

m(k)i 6= m(k)j , i 6= j (3.14)

for k = 0, 2. The last condition means that all the poles of the propagator are simple.

From the physical side m(2)N and m(0)N corresponds to the masses of spin-2 and spin-0

massive extra degrees of freedom in the propagator of the theory (3.1).

Using the identity (3.8) and formulas (3.11), (3.12) the Newtonian potential (2.9) can

be cast into the form

ϕ(r) = −2GM

πr

[
4

3
I(2) −

1

3
I(0)

]
, (3.15)

where

I(2) =

∫ ∞
0

dp

(
m2

(2)0m
2
(2)1 · · ·m

2
(2)N

)
sin(pr)

p
(
p2 +m2

(2)0

)(
p2 +m2

(2)1

)
· · ·
(
p2 +m2

(2)N

) (3.16)

and

I(0) =

∫ ∞
0

dp

(
m2

(0)0m
2
(0)1 · · ·m

2
(0)N

)
sin(pr)

p
(
p2 +m2

(0)0

)(
p2 +m2

(0)1

)
· · ·
(
p2 +m2

(0)N

) . (3.17)

To evaluate the integrals I(2), I(0) we perform an analytic continuation p → z to the

complex plane C. Then the integral I(2) can be written as

I(2) =
W1 −W2

4i
, (3.18)

– 7 –



J
H
E
P
0
4
(
2
0
1
5
)
0
9
8

Im z

Re z

...

...

Im z

Re z

...

...

Figure 1. The first and second curves of the integration on the complex plane. On the left the

poles at z = 0 and z = +im(2)N are inside the contour. On the right the poles at z = −im(2)N are

inside the contour.

where

W1 =

∮
Γ
dz

(
m2

(2)0m
2
(2)1 · · ·m

2
(2)N

)
eizr

z
(
z2 +m2

(2)0

)(
z2 +m2

(2)1

)
· · ·
(
z2 +m2

(2)N

) , (3.19)

W2 =

∮
Γ
dz

(
m2

(2)0m
2
(2)1 · · ·m

2
(2)N

)
e−izr

z
(
z2 +m2

(2)0

)(
z2 +m2

(2)1

)
· · ·
(
z2 +m2

(2)N

) . (3.20)

Since the masses m(2)j are different, the integrals W1, W2 have simple poles at the points

z = 0 and z2 = −m2
j , where j = 0, 1, · · · , N . Let Γ be a positively oriented simple closed

path in C which passes on the left of the poles on the lower half plane z = −im(2)j and on

the right of the poles at the points z = 0 on the upper half plane z = +im(2)j .

For W1 which contains eirp, the contour Γ should be chosen in such a way that it

encircles the poles at z = 0 and z = +im(2)j . One can see the left plot of figure 1 for the

illustration. Then, using the Cauchy’s residue theorem we find

W1 = +2πi

Res


(
m2

(2)0 · · ·m
2
(2)N

)
eizr(

z2 +m2
(2)0

)
· · ·
(
z2 +m2

(2)N

) , z = 0

 (3.21)

+ Res


(
m2

(2)0 · · ·m
2
(2)N

)
eizr

z
(
z + im(2)0

)
· · ·
(
z2 +m2

(2)N

) , z = +im(2)0


+ · · ·+ Res


(
m2

(2)0 · · ·m
2
(2)N

)
eizr

z
(
z2 +m2

(2)0

)
· · ·
(
z + im(2)N

) , z = +im(2)N


= 1−

(
m2

(2)1· · ·m
2
(2)N

)
e−m(2)0r

2
(
m2

(2)1−m
2
(2)0

)
· · ·
(
m2

(2)N−m
2
(2)0

) +· · ·−

(
m2

(2)0· · ·m
2
(2)N−1

)
e−m(2)Nr

2
(
m2

(2)0−m
2
(2)N

)
· · ·
(
m2

(2)N−m
2
(2)N−1

) .
The integral W1 is calculated in counterclockwise direction which we define to be positive.
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For W2 which has e−irp, the path Γ is chosen in such way that encircles the poles at

z = −im(2)j . One can look at the plot on the right in figure 1 for the illustration. The

integral is evaluated in clockwise direction, then we find

W2 = −2πi

+Res


(
m2

(2)0 · · ·m
2
(2)N

)
e−izr

z
(
z − im(2)0

)
· · ·
(
z2 +m2

(2)N

) , z = −im(2)0

 (3.22)

+ · · ·+ Res


(
m2

(2)0 · · ·m
2
(2)N

)
e−izr

z
(
z2 +m2

(2)0

)
· · · (z − im(2)N )

, z = −im(2)N


=

(
m2

(2)1 · · ·m
2
(2)N

)
e−m(2)0r

2
(
m2

(2)1−m
2
(2)0

)
· · ·
(
m2

(2)N−m
2
(2)0

) + · · ·+

(
m2

(2)0 · · ·m
2
(2)N−1

)
e−m(2)Nr

2
(
m2

(2)0−m
2
(2)N

)
· · ·
(
m2

(2)N−m
2
(2)N−1

) .
Now, by using eqs. (3.21), (3.22) and (3.18) we obtain

I(2) =
π

2

1−
N∑
i=0

∏
j 6=i

m2
(2)j

m2
(2)j −m

2
(2)i

e−m(2)ir

 . (3.23)

By an analogous consideration it is possible to evaluate I(0). We are going to leave this

calculation to be an exercise for an interested reader, the answer is

I(0) =
π

2

1−
N∑
i=0

∏
j 6=i

m2
(0)j

m2
(0)j −m

2
(0)i

e−m(0)ir

 . (3.24)

Finally, from (3.15), (3.23) and (3.24) we arrive to the final answer for the modified

Newtonian potential

ϕ(r) = −GM

1

r
− 4

3

N∑
i=0

∏
j 6=i

m2
(2)j

m2
(2)j −m

2
(2)i

e−m(2)ir

r

+
1

3

N∑
i=0

∏
j 6=i

m2
(0)j

m2
(0)j −m

2
(0)i

e−m(0)ir

r

 . (3.25)

Now let us study the behavior of potential (3.25) near the origin. When r → 0

ϕ(r)→ 1

r
− 4

3r

N∑
i=0

∏
j 6=i

m2
(2)j

m2
(2)j −m

2
(2)i

+
1

3r

N∑
i=0

∏
j 6=i

m2
(0)j

m2
(0)j −m

2
(0)i

+ const. (3.26)

For any set of numbers aj the following relation is valid:

N∑
i=0

∏
j 6=i

aj
aj − ai

= 1 . (3.27)

With this relation, one can see that the limit (3.26) goes to a constant and the modified

Newtonian potential is regular in r = 0.
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To illustrate the consideration of this section, let us present an exact solution for the

sixth-order gravity, corresponding to N = 1. In this case the masses of the spin-2 particles

are given by

m2
(2)0 =

−α0 −
√
α2

0 + 4α1

2α1
, m2

(2)1 =
−α0 +

√
α2

0 + 4α1

2α1
. (3.28)

In order for these solutions to define two different non-zero real masses, the parameters

should satisfy the conditions

α0 > 0 , α1 < 0 , α2
0 + 4α1 > 0 . (3.29)

For the massive scalar particle, defining ωN ≡ 3βN + αN , we have

m2
(0)0 =

ω0 −
√
ω2

0 − 4ω1

2ω1
, m2

(0)1 =
ω0 +

√
ω2

0 − 4ω1

2ω1
. (3.30)

For real different masses we need to impose

ω0 < 0 , ω1 > 0 , ω2
0 + 4α1 > 0 . (3.31)

Since α0 must be positive and α1 must be negative, these relations are true only if

β0 < 0 , β1 > 0 (3.32)

and if their absolute values satisfy

|β0| >
1

3
|α0|, |β1| <

1

3
|α1|. (3.33)

4 Ghosts and repulsion forces

As we know from [23], the cancellation of Newtonian singularity in the four-derivative case

is due to the opposite signs of the contribution of graviton and scalar degree of freedom

from one side, and the massive tensor ghost from another side. It would be interesting and

useful to understand whether a similar relation takes place for the higher derivative models

of [20], especially in view of the absence of singularities that takes place for the ghost-free

theory of [18, 19] and [9, 15, 16].

In the case of fourth-order gravity, the eq. (3.2) shows that the massive spin-2 ghost

particle contributes with an opposite sign, different from the contribution of graviton and

scalar massive particle. When a test particle is approaching to the origin r = 0 the gravita-

tional force applied to it tends to zero because the repulsive force due to the ghosts cancels

the attractive force of graviton plus an extra massive scalar degree of freedom. Let us show

that the same situation holds for the more complicated case of superrenormalizable gravity

theory. In this case, again, one can say that all ghost particles contribute with repulsive

force, while the non-ghost degrees of freedom always contribute to the attractive force.

– 10 –
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To prove this statement, let us begin considering the scalar sector of the theory. Con-

sider the propagator of the scalar part,

G
(0)
2 (k) =

[
A0

k2 +m2
(0)0

+
A1

k2 +m2
(0)1

+ · · ·+ AN
k2 +m2

(0)N

]
P (0−s) , (4.1)

according to [20], the residues of the propagator satisfy Aj . Aj+1 < 0. For the scalar degree

of freedom we have A0 > 0. As a consequence, the residue Ak with an odd k always has a

negative sign and represents a ghost particle, while the even components are always a non-

ghost degrees of freedom. It proves useful to rewrite the contribution to the gravitational

potential coming from the i-th massive scalar particle, that is the last term in eq. (3.26),

in the form with an explicit sign dependence,

ϕ(0)i(r) = −GM
3

(−1)i
∏
j 6=i

∣∣∣∣∣m
2
(0)j

m2
(0)i

− 1

∣∣∣∣∣
−1

e−m(0)ir

r
. (4.2)

In the last equation we used the relation (3.13) and the sign of each product is shown

explicitly. For and odd i we have a ghost, that is the sign in (4.2) is positive and there

is a repulsive potential. At the same time, the massive healthy particles contribute to an

attractive force.

For the tensorial part the situation is similar. The total propagator of the spin-2

massive particles can be written as

G
(2)
2 (k) =

[
B0

k2 +m2
(2)0

+
B1

k2 +m2
(2)1

+ · · ·+ BN
k2 +m2

(2)N

]
P (2) , (4.3)

where the residues satisfy Bj . Bj+1 < 0 [20]. Since for the spin-2 massive particles we

have B0 < 0, each Bk with an even index have negative sign and represent a ghost. The

gravitational potential for the i-th spin-2 massive particle can be written as

ϕ(2)i(r) = +
4GM

3
(−1)i

∏
j 6=i

∣∣∣∣∣m
2
(2)j

m2
(2)i

− 1

∣∣∣∣∣
−1

e−m(2)ir

r
. (4.4)

For the ghost potentials, when i is even, we have a positive sign in (4.4) and, consequently,

a repulsive force.

With the simple consideration presented above, we have shown that for a point-like

source the ghosts always induce a repulsive Newtonian potential. As in the fourth-order

gravity, in the superrenormalizible models of [20] the singularity of the potential disappears

because the repulsive force acting on a test particle due to the ghosts cancels with the

attractive force of graviton and non-ghosts massive particles near r = 0.

The main point of the above consideration is that the singularity cancellation only

occurs because for each massive spin-2 ghost particle we have a non-ghost massive scalar,

and vice-versa. This structure of cancellation has an important consequence. If we recast

the relevant part of the action (1.1) in the form

S =
1

4κ

∫
d4x
√
−g

{
−2R+RΦ1(�)R+

1

2
Cµναβ Φ2(�)Cµναβ

}
, (4.5)
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where Φ2 = F2, Φ1 = F1+F2/3 and Cµ. ναβ is the Weyl tensor, then where the form factor Φ2

alone will define the tensor sector and the form factor Φ1 alone, the scalar sector. Imagine

that the two functions Φ1 and Φ2 are polynomials of the different orders. Then the pairs

scalar particle — tensor ghost and tensor particle — scalar ghost will be broken and there

will be no singularities cancellation. The effect takes place only when the two polynomials

are of the same order. It is interesting that this corresponds, in principle, to the condition

of superrenormalizability as it follows from the consideration of [20]. In case of the different

orders of the two polynomials one meets non-homogeneous propagators and vertices and it

is certainly possible to have some diagrams with the growing power counting index. This

means that there is a direct relation between the cancellation of Newtonian singularity and

quantum renormalizability properties. Of course, this relation is a kind of a post factum

feature, which may not have deep physical meaning, but it gives, anyway, a certain hint

to the quantum properties of the ghost-free theory with an exponential form-factor, as

suggested in [12, 15]. As we have noted in [25, 26], the power counting in this theory is

indefinite, of the ∞−∞ type, but we can not exclude at the moment a consistent way to

define a quantum field theory of gravity with asymptotically exponential growth. On the

other hand, the theory is perfectly well defined for exponential form factors asymptotically

polynomial [9, 16]. In this case the theory is unitary and superrenormalizable or finite at

quantum level [9, 16, 17]. At the same time, the absence of Newtonian singularity for the

class of theories in [12, 15] tells us that the UV behavior of this theory is the right one,

corresponding to the (super)renormalizable models of quantum gravity. In our opinion, this

gives a strong hope and motivation to study the quantum UV divergences of this model in

more details than it was done until now.

Another possibility to interpret the role of ghosts in the cancellation of singularities

concerns the proposal of [33, 34] that the consistent quantum theory must describe ghosts

not as individual particles, but as part of a pair of ghost and graviton. As we have seen,

this idea is not working for the cancellation of Newtonian singularity and one can easily

show that it is nor working also for the super-renormalizable models suggested in [20]. The

consideration presented above shows that the role of the ghosts and normal particles in the

singularity cancellation requires that these particles should actually enter by the pairs of

scalar particle plus tensor ghost and tensor particle plus scalar ghost. This may mean that

the proposal of [33, 34] should be modified accordingly.

5 Conclusions and discussions

We have considered the problem of point-mass singularity in the wide class of higher

derivative models, including fourth derivative ones, and the higher than four-derivative

theories, of the polynomial (superrenormalizable at quantum level) type. The singularity in

the modified Newtonian potential disappears in the theories of (3.1), due to the cancellation

of the contributions from scalar and tensor modes to the Yukawa-type potential with the

initial Newtonian singularity.

The cancellation can be easily provided in the ghost-free model of [12, 16], eq. (2.15), in

the fourth derivative model of [23] and in the superrenormalizible gravity. For the last two
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cases the tensors and scalars contribute respectively with coefficients −4/3 and 1/3 near the

origin, and this leads to the cancellation of Newtonian singularity. Compared to the case

of exponential form factors considered in [12], we see that the presence of non-polynomial

and therefore non-local terms is not really necessary for the cancellation of Newtonian

singularity. At the same time, it is remarkable that the local and non-local theories manifest

the same property. In particular, one may expect that the non-singular feature of local

theories will hold under semiclassical [21, 22] and quantum gravity corrections to the terms

quadratic in curvature. At the same time, the definite answer to this question can be

obtained only after more detailed analysis, which we postpone for the future work.

The effect of singularity cancellation is essentially a linear effect involving the indepen-

dent contributions of scalars and tensors. Therefore, it is not certain that the cancellation

may hold in this theories at the non-linear level, e.g., for the black hole solutions. Of course,

the singularity avoidance in black holes by means of higher derivatives is natural and is

expected to be possible, but in order to verify this phenomenon one has to go beyond the

linear approximation, which works so well in the modified Newtonian case. Let us note

that some aspects of the full non-linear solutions for the static spherically symmetric case

in the fourth-order gravity (Fi = constant, in our notations) were considered in [24], then

in [8] and, most recently, in [35]). Through the study of the asymptotic behavior of the

solutions it was shown that there are different families of solutions, some equivalent to the

Schwarzschild solution in GR. According to [24], one of these solutions is regular at the

origin. However, in order to determine whether the solutions that match to the modified

Newton solution at infinity still have singularity at r = 0 or not, a more detailed analyt-

ical or numerical investigation is needed. In the more complicated theories with higher

than four derivatives, which we consider here, one can expect a similar general situation

in the non-linear regime and hence a complicated analysis of the general field equations

is necessary to achieve concrete results about the black hole singularities. The first step

in this direction was done in [36], where the theory under investigation is apparently the

one of [20]. Indeed, the comprehensive investigation of the problem of r = 0 singularity is

very difficult and still not completed task in both cases. An important aspect is that the

divergences of quantum theory are apparently related to the Newtonian singularities and

not to the ones at the non-linear level of modified.

One may think about some relation between the absence of Newtonian singularity

in classical theory and asymptotic freedom at quantum level. Such a relation would be

somehow natural, because Newtonian singularity is indeed the simplest UV divergence

due to the interaction. So, when the singularity disappears, it looks like a kind of an

UV screening of the interaction [37]. However, our results show that the relation with

asymptotic freedom is not so relevant. Indeed, the cancellation of singularity occurs in all

superrenormalizable models of [20] if the massive spin-2 and spin-0 excitations correspond

to real simple poles. At the same time, most of the coupling constants in the theories

described in [20] are not renormalized. For example, in case of N ≥ 3 the one-loop β-

functions are exact and they are non-zero only for the zero-, two- and four-derivative

terms. Furthermore, these β-functions depend on the coupling in the highest derivative

sectors (but not on the gauge fixing!), and their sign can be deliberately changed by tuning
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these highest derivative couplings, while the couplings in the higher than four-derivative

sector are not renormalized. As we saw, this does not affect the cancellation of classical

Newtonian singularity.

Another possibility is to look for some relation with the (super)renormalizability of

the theory. Indeed, that the singularities are canceled in the renormalizable theory fourth-

derivative is known already from the first works of Stelle [23, 24]. We can say that this is

also true for at least some of the superrenormalizable models of [20], and for the non-local

model of [9, 16]. So, in reality there is a strong correspondence between quantum and

classical properties in this case. However, the complete answer to this question is possible

only after further analysis of the problem, taking into account the theories with complex

and multiple poles in the propagator. One observation concerning this issue has been done

recently by one of us in [38]. The cancelation of Newtonian singularity in the exponential

gravity of [18, 19] and [16] can be actually seen as an effect of an infinite amount of

hidden ghost-like complex-poles states in this theory, presumably acting in a way similar

to eqs. (4.4) and (4.2). This situation represents an additional strong motivation to explore

all aspects of the theories with complex poles with a special attention.
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