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A theoretical study of the interstitial molecular hydrogen in the silicon single-crystal is reported.
H2 and Si have been approximated as a rigid object and a static matrix, respectively. A five-
dimensional numerical-analytical representation of an ab initio potential energy surface of the system
has been constructed. This representation has been used to calculate rotational, translational, and
roto-translational energy levels of the interstitial hydrogen, where three levels of theory, 2D, 3D,
and 5D were considered. The potential energy surface, the band structure of energy levels, and
the roto-translational states obtained are presented together with the symmetry analysis of the
roto-translational wavefunctions. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934368]

I. INTRODUCTION

Silicon is a widely applicable material in semiconductor
device development and fabrication. Interstitial hydrogen is
known to have significant influence over the physical and
chemical properties of semiconductors.1 Hydrogen penetrates
into the structure of semiconductors at almost all technolog-
ical stages, for example, during annealing, sintering, dry and
wet etching, or cleaning by solvent processes. The presence
of atomic hydrogen leads to the appearance of shallow and
deep donor electron levels. Some of the hydrogen atoms that
penetrated into the semiconductor crystalline structure form
molecular hydrogen2 which has practically no influence on
the electrical and optical properties of the crystal and thus is
difficult to detect. These hidden defects can be reactivated into
their atomic form and thereby change the properties of the
sample. For a number of technologies it is important to be able
to control the diffusion and distribution of hydrogen inside a
semiconductor. A detailed investigation of the hydrogen pres-
ence effects in silicon and other semiconductors is a challeng-
ing problem aimed to assist in related R&Ds.

The stability of molecular hydrogen in the crystalline
silicon was first predicted more than 30 years ago by two
independent groups.3,4 However the detection of H2 in semi-
conductors for many years remained unfeasible and was finally
resolved with the help of Raman spectroscopy.2 Results of
dozen of experimental and theoretical studies on the properties
of hydrogen in semiconductors have been reported (see, for
example, Refs. 1–21 and references therein).

The stability, equilibrium positions, vibrational frequen-
cies, and energy characteristics of H2 in silicon were inves-
tigated ab initio.5–10 Porter, Towler, and Needs11 carried out
the quantum-mechanical calculations of zero-point oscilla-
tions and energy levels hyperfine structure of hydrogen. A
combined ab initio and classical molecular dynamics

a)Author to whom correspondence should be addressed. Electronic mail:
melnikov@phys.tsu.ru

calculations were presented by Estreicher et al.12 Fowler,
Walters, and Stavola13 studied rotational and vibrational prop-
erties of interstitial H2 and its isotopologues in crystalline
silicon by using a potential energy function represented as a
superposition of potentials for two separated hydrogen atoms
from Ref. 11. The experimental investigation by Markevich
and Suezawa14 deals with the O–H complex kinetics in the
crystalline silicon. The ortho-para conversion of the interstitial
H2 in Si was studied in Refs. 15–19. A theoretical study
of the rotational energy states of the hydrogen molecule in
the silicon crystal within the framework of 2D quantum-
mechanical model was presented in our recent work,20 which
was followed by a rather detailed investigation of the structural
and energy properties of the H2–Si system based on ab initio
calculations.21

It should be mentioned that translation-rotation dynamics
of H2 and its isotopologues inside nanoscale cavities has
been investigated rigorously and in great detail for the past
decade by means of quantum 5D calculations. For instance, in
Refs. 22–25 investigations of molecular hydrogen in clathrate
hydrate cages were presented. Several works were devoted to
the study of H2 inside the fullerenes C60,26–29 C70,29 open-cage
fullerene,30 and in the interstitial sites of solid C60.31 These
theoretical studies revealed a picture of intricate quantum
dynamics, arising from the interplay between the symmetry of
the confining nanospaces and the translation-rotation coupling.

As it follows from the above mentioned studies the
hydrogen molecule interacts quite strongly with the silicon
crystal which leads to a noticeable increase in the length of
the H–H bond and a decrease in the vibrational frequencies.
However along with this H2 behaves as a nearly free rotator,
i.e., the rotational degrees of freedom are not frozen and the ex-
isting spectra of the interstitial defect can be interpreted within
the framework of a free molecule model. At the equilibrium
configuration the H2 center of mass is found at the tetrahedral
position (T site) of the Si crystalline lattice and the molecule
is oriented along the equivalent to the [100] crystallographic
directions. The corresponding rotational potential barrier is

0021-9606/2015/143(16)/164305/9/$30.00 143, 164305-1 © 2015 AIP Publishing LLC
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of the order of 0.01 eV. According to the experiment14 the
activation energy of the molecular hydrogen diffusion is 0.78
± 0.05 eV.

In this work we present a theoretical study of energy
states of the interstitial molecular hydrogen in the silicon
single-crystal. Ab initio energies of the H2–Si system calcu-
lated in Ref. 21 were used to construct a five-dimensional
numerical-analytical representation of the potential energy
surface (PES). This PES representation was used to calculate
rotational, translational, and roto-translational energy levels
of the interstitial hydrogen variationally. In order to take into
account the periodicity of the H2–Si interaction potential and
estimate H2 tunneling properties, the expected band structure
of energy levels was calculated using a reduced 3D model
approach.

II. THEORY

A theoretical treatment of the H2–Si system is carried
out in accordance with the adiabatic approximation. To study
states of the interstitial molecular hydrogen in the silicon
single-crystal we employ the following model. The molecule
is considered as a rigid diatomic object with the bond length
fixed at its average position. The crystal is substituted by a
static matrix representing a periodic atomic structure. Thus
in this model the system has five degrees of freedom (two
rotational and three translational) and possess the appropriate
Td point group symmetry. The model is based on the facts that
the proton is notably lighter than the silicon atom and H2 is
a rigid molecule and quite stable inside the crystal. In spite
of the relative crudeness of this model we expect that it can
provide a reasonable description of the system especially for
low temperatures.

Our Hamiltonian of the H2–Si system has the following
form (see also Ref. 22):

Ĥ =
P̂2

2M
+

Ĵ2

2µρ2 + V (R, θ, φ), (1)

where P̂ is the center-of-mass momentum operator of the H2
molecule with the total mass M , Ĵ is the molecule angular
momentum operator, ρ is the average H2 bond length inside
the crystal, µ is the molecule reduced mass. The function
V (R, θ, φ) is the corresponding potential energy, θ and φ are
spherical coordinates defining the orientation of the molecule
and R = (X,Y, Z) are the Cartesian coordinates of the molecule
center of mass; the value θ = 0 corresponds to the orientation
of H2 along the Z axis. It is assumed that the PES is known
here. All necessary information concerning calculation and
representation of the potential function is presented in Sec. III.

The corresponding stationary Schrödinger equation with
the Hamiltonian in Eq. (1) and the periodic boundary condi-
tions was solved numerically using the variational approach.
The computational algorithm is realised as a FORTRAN pro-
gram. The ansatz composed by the products of the plane waves
and the spherical harmonics is defined by the following expan-
sion:

Ψkn(R, θ, φ) =


G,l,m

akn
lm(G) exp[i(k +G)R]Ym

l (θ,φ), (2)

where G are reciprocal lattice vectors, k is a wavevector,
akn
lm
(G) are coefficients to be determined, and n is a serial

number of the state. The summation over l and m is limited by
lmax for the spherical harmonics Ym

l
and by the cutoff energy

Ecut for the plane wave basis set, i.e., l 6 lmax and |G|2/2 6 Ecut.
It should be noted that the plane wave basis set was chosen

since it allows to consider the system both with periodic infinite
and finite potentials. If the molecule is well localized in the
vicinity of its equilibrium position, it can be treated isolated
in a single box which corresponds to the calculations at the Γ
point.

The crystal structure is defined by a unit cell with the
lattice vectors a, b, and c, which in turn uniquely determine
the periodic boundary conditions. To calculate the translational
matrix elements of the Hamiltonian in Eq. (1) a uniformly
distributed grid of Na × Nb × Nc points for the Cartesian coor-
dinates R with the discretization steps |a|/Na, |b|/Nb, and
|c|/Nc for respective directions was used. Hereafter, the coor-
dinates of an ith point will be denoted by Ri.

The matrix elements of the Hamiltonian are calculated
in two steps. At first their angular components are computed
analytically. To this end the potential energy function is repre-
sented as an expansion in terms of the spherical harmonics at
each grid point Ri,

V (Ri, θ, φ) =
6

l=0

l
m=−l

glm(Ri)Ym
l (θ,φ). (3)

The corresponding expansion parameters glm are determined
on-the-fly through numerically precise fitting to the PES values
by means of the least squares technique (see below for details
about the PES). Subsequent step calculations are carried out
using the discrete Fourier transform. When all of the matrix
elements evaluated, the Hamilton matrix is diagonalized and
the corresponding eigenvalues and eigenvectors are stored for
further analysis.

III. POTENTIAL ENERGY SURFACE

A. Ab initio calculations

The adiabatic potential energy surface of the ground elec-
tronic state of the H2–Si system has been calculated using the
density functional theory with the PW91 exchange-correlation
functional32 in the generalized gradient approximation33,34 as
implemented in the CRYSTAL09 code.35,36 Most of the ab
initio calculations were carried out in Ref. 21 and the same data
are employed in the current study. For the sake of completeness
and consistency in the following the details of those calcula-
tions are reproduced.

The system was treated within the framework of the cubic
supercell model with the periodic boundary conditions. The
size of the cell was chosen so as to exclude the interaction
of the hydrogen molecule with its periodic images. In these
calculations supercells consisting of 4 and 32 primitive cells
of crystalline silicon were used, containing 8 and 64 silicon
atoms, respectively. The final PES calculations were carried
out using the smaller cell. To check the quality of this model,
the calculations for some selected atomic configurations were
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FIG. 1. The supercell used in the ab initio calculations consisting of eight Si
atoms and one hydrogen molecule at the T site located exactly at the center
of the cube. The Cartesian coordinates of four Si atoms in fractional units
indicate the orientation of the XYZ reference frame.

repeated using the larger cell, which showed a small difference
of the order of 10 cm−1.

The small supercell is shown in Fig. 1. The Cartesian coor-
dinate system is chosen such that its axis directions coincide
with the supercell ones. Hereinafter, we mainly use this refer-
ence frame both in connection with angstrom and fractional
units.

In the course of all calculations the Si atoms were fixed
at their equilibrium positions of the corresponding crystal. Ab
initio energies of the H2–Si system were obtained for a large
number of possible positions of H2 inside the cell using a
8 × 8 × 8 grid of k-points for the smaller cell and a 4 × 4 × 4
grid for the larger one. Based on the preliminary calculations
(such as reproduction of structural and energy properties) the

optimized basis set by Torres et al.37 for Si and the Dunning
DZP basis set38 for the hydrogen atoms were chosen. Due to the
use of the Gaussian basis functions in our calculations the basis
set superposition error (BSSE) correction was always taken
into account.

The calculated bond length of the free H2 molecule was
found to be 0.7487 Å (slightly greater than the experimental
value of 0.7414 Å, e.g., see Ref. 39) and 0.7810 Å for the
hydrogen at the T site in the silicon crystal. The latter number
was used in the ab initio calculations. It should be noted that
our value of the silicon lattice parameter (a = 5.47 Å) differs
from the experimental one (a = 5.43 Å) by not more than
0.7%. A potential barrier between two neighbouring T sites is
found to be about 7961 cm−1 and of the same order of magni-
tude as the experimental value.14 A calculated global minimum
energy of the system relative to free H2 and defect-free Si is
about 1.1 · 104 cm−1 (1.4 eV). More detailed information about
the ab initio PES properties, including the minimum energy
path and preferable H2 orientations in the crystal, can be found
in Ref. 21.

B. Potential energy surface representation

We use the following analytical function to represent the
ab initio potential energy surface of H2 in the crystalline sili-
con:

V (R, θ, φ) =
N
i=1

[VR(ri) + Vα(ri,αi)] , (4)

where the summation runs over the surrounding Si atoms, ri
is the distance between the center of mass of H2 and the ith
Si atom, αi is the angle between the hydrogen bond and a line
connecting the center of mass and the corresponding Si atom.
It is obvious that the distances ri depend on the translation
position vector R only, while the angles αi depend both on
R and θ,φ. The two-body radial VR and angular Vα compo-
nents of the pairwise potential are defined by the following
expressions:

VR(r) =

ϵ12

r12 +
ϵ6

r6 +
ϵ2

r2 +
ϵ1

r1 + D1e−βr + D2e−2βr + ∆G(r)

× fσ(r), (5)

Vα(r,α) = �
G2 cos2α + G4 cos4 α

�
× fσ(r). (6)

For the very short distances between H2 and Si (r 6 rmin), the
potential is set to a large value Vmax, which is also the largest
value of the potential energy, i.e., a numerical substitution
of the positive infinity, which otherwise would arise when
two atoms approach each other. Only the Si atoms within the
threshold radius Rmax are taken into account to contribute to
Eq. (4). Thus a finite number of atoms N is used to repre-
sent the crystal structure. The periodicity of the structure is
taken into account at the programming level by reducing the
translational coordinates R to the selected unit cell of the
crystal.

The auxiliary function fσ(r) is responsible for the correct
asymptotic of the two-body potential at large distances and
defined as follows

fσ(r) =

1 + exp

( r − rmax

σ

)−1
. (7)

An additional term ∆G(r) in Eq. (5),

∆G(r) = DG exp
�
−βG(r − rmin)2� , (8)

does not have physical meaning but allows to improve the form
of VR(r) at small distances.
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TABLE I. The potential energy surface parameters obtained by the fitting to
the ab initio data.

Parameter Valuea

Fixed parameters
rmin 1.30
Rmax 8.00
σ 0.25
βG 0.20 × 102

DG 1.00 × 106

Vmax 1.00 × 1010

Fitted parameters
β 4.587 116 633 8
ϵ1 1.270 263 271 8 × 104

ϵ2 −1.361 267 268 9 × 105

ϵ6 8.528 627 857 1 × 106

ϵ12 4.646 997 769 3 × 108

G2 7.257 764 931 0 × 102

G4 −2.223 853 034 2 × 103

D1 −1.571 968 464 5 × 109

D2 −2.627 957 732 3× 1012

aDimensions of the quantities correspond to the reciprocal centimeters for the energy
and angstroms for the distance.

The parameters introduced in Eqs. (4)–(8) were deter-
mined by an iterative combination of fittings to the ab initio
data and convergency analyses of the consequent variational
calculations. The corresponding values are listed in Table I.
The weighted standard deviation of the final fitting over 244
data points is 25.2 cm−1, which is sufficiently accurate to main-
tain all important properties of the ab initio PES. Taking into
account the level of the ab initio theory employed, fitting qual-
ity, complexity, and scale of the system under consideration we
conclude that this representation is reasonably accurate to be
used for calculations of energy states of the hydrogen mole-
cule in the silicon crystal. Moreover our numerical-analytical

PES possesses correct symmetry properties of the system and
allows studying the interstitial defect properties both in the
vicinity of the T site and in the whole bulk of the single-
crystal.

Although most of the ab initio data points were selected
around the equilibrium position, our representation repro-
duces other important regions also sufficiently well, includ-
ing the minimum energy path. For instance, for the mini-
mal/maximal values of the saddle point using Eqs. (4)–(8)
we obtained 7769/9073 cm−1 which are comparable with the
original ab initio values of 7961/8947 cm−1. These two extreme
values for the saddle point correspond to two different orien-
tations of the molecule (θmin = 129.1◦, θmax = 54.7◦, φmin
= φmax = 45◦) with the same position of its center of mass in
the (5/8,5/8,5/8) and equivalent points.

Contour plots of the PES up to 10 000 cm−1 in the XY
plane for Z = 0 and Z = 0.5 bohr are shown in Fig. 2. The XY Z
origin corresponds to the T site here, H2 has a fixed orientation
along the X axis. One can see that in the closest vicinity of
the T site the potential is nearly centrally symmetric. For the
coordinate range shown the longitudinal motion of H2 is less
rigid than the sideways one.

The dependence of the potential energy function on the
orientation of a hydrogen molecule is demonstrated in Fig. 3.
As it could be expected the rotational barrier increases with the
displacement from the equilibrium position. One should notice
that due to the indistinguishability of two hydrogen atoms the
rotational energy surface at the T site has a cubic symmetry.

IV. ROTO-TRANSLATIONAL STATES

A. Computational details

In order to analyse the H2–Si system at different active
degrees of freedom as well as to accomplish an additional
verification of our new PES, the following three cases were

FIG. 2. The potential energy surface in the vicinity of the equilibrium position, plotted for fixed Z = 0 (on the left) and Z = 0.5 (on the right). The XYZ origin
corresponds to the T site and the unit of length is bohr here. Isoenergetic contours are plotted at the step of 500 cm−1. H2 has fixed orientation along the X axis
(θ = 90◦, φ = 0).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

82.200.70.124 On: Fri, 27 Nov 2015 09:34:57



164305-5 V. V. Melnikov and S. N. Yurchenko J. Chem. Phys. 143, 164305 (2015)

FIG. 3. The potential energy function (cm−1) vs the orientation of the hydrogen molecule. The direction of a radius vector V= (VX,VY,VZ) at the point on the
displayed surfaces is determined by the angles θ and φ, and its magnitude is equal to the values of the potential function V . The center-of-mass coordinates are
fixed at X =Y = 0, Z = 0 (on the left) and Z = 0.1 bohr (on the right).

considered: rotational (2D), translation (3D), and roto-
translation (5D) problems. The 2D rotational study was per-
formed for the molecule center of mass fixed at the T site. To
test the convergency we used lmax equals to 7, 10, and 15.

The 3D translation problem was realized by setting the
rotational part in Eq. (2) to Y 0

0 only. This is analogous to the
J = 0 state and per se equivalent to averaging of PES over the
rotational variables at each R point. In the periodic description
of the structure the primitive cell of the crystalline silicon was
used. A uniformly distributed 3D grid contained 54 × 54 × 54
points, the cutoff energy Ecut for the plane wave basis set was
set to 16 000 cm−1. In the low lying states (quantum satis)
the H2 molecule is mainly localized in the vicinity of the
equilibrium position. Therefore, to span the whole space of
the unit cell a rather large number of plane waves is required
that makes the computations to be highly resource consuming
and prevents a complete 5D calculations. The latter was done
around the equilibrium region only.

The energy levels of the interstitial defect Ekn were calcu-
lated for the values of wavevector k that fall in the segments
L – Γ – X/X ′ – K – Γ connecting the high symmetry points
of the Brillouin zone. Band formation was analyzed in the
energy range up to 9000 cm−1 (hereinafter all energy values
are given relative to the zero point energy). The present as
well as previous21 calculations reveal that there is no band
formation taking place for energies below ∼6000 cm−1. Thus
for the low-lying states the system can be considered at the Γ
point only without any loss of physical information. Besides
a localization of H2 around the T site allows one to treat the
system in a finite spatial domain at least for the states lying
within this energy region.

To solve the 5D roto-translational problem we considered
the system isolated in a cubic box with theT site located exactly
at the center. To construct the box the PES was substituted
by artificial infinite walls at the borders whereas inside the

box the PES was represented by Eqs. (4)–(8). The dimension
of the box abox along with other parameters was selected by
means of additional 2D and 3D calculations repeated with
the presence of the box. In resultant computation abox = 0.4a,
Ecut = 7000 cm−1, and the grid of 20 × 20 × 20 points were
used. The average H2 bond length ρ was taken as ~/


2µB0

with B0 = 52.683 378 cm−1 according to Ref. 20. To estimate
the role of the translation - rotation interaction, the 5D results
were compared to the calculations obtained by combining
results of the 2D and 3D studies (2D+3D).

To assign the translational modes we use approximate
quantum numbers (nh, lh) which correspond to the states of a
three-dimensional isotropic harmonic oscillator. This choice is
governed by the system symmetry as well as by the PES prop-
erties and reasonable at least for the low lying energy levels. To
assign the rotational excitations we use an approximate quan-
tum number J which corresponds to the largest contribution
of the rotational basis functions Ym

J to the wavefunction of the
state. The contribution coefficients for the state n are calculated
as follows:

CJ =


G,m

|a0n
Jm(G)|2. (9)

Thereby, the roto-translational energy state n is assigned
(nh, lh) and J.

To analyse molecule localization behavior we calculate
standard deviations of the center-of-mass coordinates ∆X , ∆Y
and ∆Z . For the n-fold degenerate states the wavefunctions
related to the same energy are defined up to an arbitrary n-
dimensional unitary transformation and to avoid ambiguity
in this case the standard deviations were averaged over the
corresponding degenerate states. As consistent with the system
symmetry for the degenerate states ∆X = ∆Y = ∆Z as well as
for the nondegenerate states ∆X = ∆Y = ∆Z .
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Symmetry labeling of the states was accomplished accord-
ing to the Oh point group for the rotational 2D calculations
and the Td point group for the translational 3D and roto-
translational 5D calculations. In our group-theoretical analysis
in the case of Oh point group the sets of spherical harmonics
{Ym

l
} belong to the following irreducible representations:40

A1g (l = 0), T1u (l = 1), Eg + T2g (l = 2), A2u + T1u + T2u (l
= 3), and A1g + Eg + T1g + T2g (l = 4). And in the case of
Td point group: A1 (l = 0), T2 (l = 1), E + T2 (l = 2), A1 + T1
+ T2 (l = 3), and A1 + E + T1 + T2 (l = 4). In order to label the
calculated energy levels the symmetry properties of obtained
wavefunctions were analysed. To determine the symmetry of
the degenerate states the matrices of corresponding symmetry

operations were generated and its traces were compared with
the appropriate character tables.40

B. Results

The calculated low lying energy levels and some of their
characteristics within the framework of different models are
listed in Table II. Columns are labeled by the dimension of
the problem in accordance with the computational details dis-
cussed above. The column labeled as B0J(J + 1) contains the
rotational energies of the molecule in the rigid rotor approx-
imation. All energy values are given relatively to the corre-
sponding zero point energy.

TABLE II. Calculated energy levels of H2 in silicon.

States Properties (5D) Energy levels (in cm−1)

(nh, lh)a Jb CJ
c ∆Xd 5D calc.e 2D calc.f 3D calc.g 2D+3D calc.h B0J (J +1) Exp.16

(0, 0) 0 0.987 0.21 0.00 (A1) 0.00 (A1g) 0.00 (A1) 0.00 0.00
(0, 0) 1 0.995 0.21 103.45 (T2) 105.20 (T1u) 105.20 105.37 99

(0, 0) 2 0.971 0.21 307.64 (T2) 300.21 (Eg) 300.21 316.10 297
0.997 0.21 310.37 (E) 327.06 (T2g) 327.06

(0, 0) 3 0.870 0.23 588.59 (A1) 622.79 (T1u) 622.79 632.20
0.949 0.22 610.32 (T2) 635.97 (T2u) 635.97
0.932 0.22 612.15 (T1) 652.97 (A2u) 652.97

(1, 1) 0 0.956 0.26 727.38 (T2) 715.27 (T2) 715.27

(1, 1) 1 0.992 0.27 802.87 (E) 820.47
0.929 0.26 847.07 (T1)
0.942 0.26 853.71 (T2)
0.865 0.25 853.80 (A1)

(1, 1) 2 0.792 0.25 930.83 (T2) 1015.48
0.732 0.25 961.14 (A1) 1042.33
0.766 0.25 961.69 (E)
0.757 0.25 967.85 (T1)
0.983 0.27 1018.22 (T2)
0.994 0.27 1027.72 (T1)

(0, 0) 4 0.770 0.23 1116.02 (A1) 1040.51 (A1g) 1040.51 1053.67
0.795 0.23 1118.03 (E) 1047.08 (T1g) 1047.08
0.759 0.23 1126.21 (T1) 1052.56 (Eg) 1052.56
0.812 0.23 1138.99 (T2) 1067.32 (T2g) 1067.32

(1, 1) 3 0.846 0.28 1257.70 (T2) 1338.06
0.889 0.27 1273.80 (E) 1351.24
0.893 0.27 1301.48 (T1) 1368.24
0.886 0.27 1301.67 (T2)
0.922 0.28 1308.64 (A1)
0.942 0.27 1325.59 (T1)
0.951 0.27 1327.73 (T2)
0.990 0.27 1341.99 (E)
0.997 0.27 1346.68 (A2)

(2, 0) 0 0.924 0.31 1442.22 (A1) 1422.82 (A1) 1422.82

(2, 2) 0.928 0.31 1451.72 (T2) 1426.51 (T2) 1426.51
0.916 0.31 1466.82 (E) 1446.61 (E) 1446.61

aThe approximate quantum numbers corresponding to the states of a three-dimensional isotropic harmonic oscillator.
bThe approximate quantum number corresponding to the rotational states of free molecule.
cThe largest contribution of the rotational basis functions Ym

l
with l = J to the corresponding wavefunction.

dThe standard deviation of the X coordinate (in bohr). For the degenerate states the average values are presented.
eRoto-translational energy levels of H2 at the Γ point. Symmetry labeling of the states (in brackets) is done according to the Td point group.
f Rotational energy levels of H2 calculated with the center of mass fixed at the T site. Symmetry labeling of the states is done according to the Oh point group.
gTranslational energy levels of H2 at the Γ point calculated with lmax= 0. Symmetry labeling of the states is done according to the Td point group.
hThe sum of the corresponding 2D and 3D values.
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The degeneracy of the energy states calculated is in agree-
ment with the system symmetry. Thus the 2D energy levels
split exactly as predicted by the group theory40 for the angular
momentum in the cubic symmetry Oh. The splitting of the 3D
energy levels is in line with the symmetry properties of the
vibrational angular momentum in the Td environment. Fur-
thermore in spite of the translation-rotation interaction the
symmetry of the 5D energy states correlates with the symmetry
of the corresponding 3D and 2D states. For example, for the
state (nh = 1, lh = 1, J = 2) we have T2 × (E + T2) = A1 + E
+ 2T1 + 2T2, etc.

One can see that the term values with J 6 2 for the ground
translational state (zero-point oscillations of the molecule as a
whole about the T site, nh = 0) are close to the experimental
ones from Ref. 16 and comparable to the results obtained
by Fowler, Walters, and Stavola.13 These authors obtained
107.7 cm−1 and 89.1 cm−1 for the term nh = 0, J = 1 without
and with the zero-point motion taken into account, respec-
tively. It should be noted that our calculations also show the
tendency of lowering of the energy values when more degrees
of freedom are included. However our values differ by less
than 2 cm−1 (5D vs 2D calculations) in contrast to 18.6 cm−1

calculated using a more simple model.13

It should be noted here that the contribution coefficient CJ

for the states with J < 2 is almost equal to unity. This fact is
perfectly consistent with the nearly free rotator behaviour of
an interstitial H2 molecule.

It can be also seen that for nh = 0, J < 2 the term values
obtained for different models agree within about 2 cm−1 and
due to the system symmetry they remain degenerate. The
degeneracy is removed for the states with J > 2. Analyzing the
magnitudes of the energy level splitting one can conclude that
the translational - rotational interaction exercises a significant
influence over the system properties and smoothes the effect of
the rotational barrier for the low lying states. For example, for
the states with nh = 0, J = 2 a splitting of almost 27 cm−1 (2D)
is reduced to the value of about 2.7 cm−1 (5D). It is reassuring
that the results obtained with the most advanced level of theory

considered in this work are in the best agreement with the
experiment.16

Calculated standard deviations of the center-of-mass coor-
dinate ∆X (for the degenerate states the averaged over the
degenerate components) are also listed in Table II (5D prob-
lem). As it is expected the molecule is mainly localized in the
vicinity of the equilibrium position and the root-mean-square
amplitude grows with the increase of translational mode exci-
tation. To show the localization domain the three-dimensional
probability distribution functions were calculated as

PXYZ(R) =
 2π

0
dφ

 π

0
dθ sin θ |Ψ0n(R, θ, φ)|2. (10)

The plots of PXYZ for the ground translation-rotation state and
for the excited state (nh = 2, lh = 0, J = 0) are presented in
Fig. 4. The ∆X values for these states are 0.21 and 0.31 bohr,
respectively. Revealed dependencies are reasonable and very
similar to the 3D isotropic harmonic oscillator ones.

We should also mention that the harmonic translational
frequencies were found to be approximately 745 cm−1 and
727 cm−1 for the 3D and 5D models, respectively (estimated
as two thirds of the corresponding zero point energies).

Visualization of the 3D translation solution is presented
in Figs. 5 and 6. In accordance with the system symmetry the
low lying energy levels are degenerate. An additional twofold
degeneracy at fixed values of k arises due to the existence of
two equivalent T sites in the primitive unit cell of silicon. When
the energy increases, the probability of the molecule tunneling
between the T sites grows and a band structure formation takes
place. Moreover, in this case the magnitude of the energy level
splitting ∆ obtained at the Γ point corresponds to the width of
the allowed band formed.

In Fig. 5 the values of the width ∆ of the broadest allowed
energy bands and energy levels Ekn (k = 0) in the range from
6000 to 8500 cm−1 are shown. A weak splitting is observed
for the energies of about 6170 cm−1 resulting in the band
formation with ∆ ≈ 0.1 cm−1. This energy is by ∼170 cm−1

higher than the corresponding value obtained in Ref. 21. For

FIG. 4. The three-dimensional probability distributions functions for the ground translation-rotation state (on the left) and for the excited state (nh= 2, lh=
0, J = 0) (on the right). The XYZ origin corresponds to the T site and the unit of length is bohr here.
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FIG. 5. The width values of the broadest allowed bands (circles) and the
energy levels Ekn (dashes) for the energy region selected. The circles point
out on the band bottom (abscissa value) and ∆ corresponds to the band width.
The energy level values Ekn vs its index number n at the Γ point are shown.

higher energies the band width increases, for instance, the
allowed energy band with the width of approximately 1.1 cm−1

is close to 6803 cm−1, while ∆ exceeds 24 cm−1 already at
8304 cm−1.

In Fig. 6 the band structure of energy levels in the range
from 6802 to 6806 cm−1 is presented. Two allowed bands with
∆ of about 1 cm−1 are found to be formed in this energy region.
It should be noted that the dispersion laws in the segments
L – Γ – X/X ′ – K – Γ obtained in this work and in Ref. 21
do qualitatively agree with each other. Our calculations reveal
quite similar dependencies but only at higher energy values.
Thus an analogous band structure was obtained in Ref. 21 for
the energy range lower by ∼200 cm−1.

Analysis of the corresponding group velocity of the mole-
cule shows that this quantity is maximal for the [100] direction
and minimal for [111]. This result is concordant with the
observation of the hydrogen-containing planar defects (plate-
lets) formed mainly in the {111} planes.1 Despite the vacancy
mechanism is considered to play a key role in the platelets
formation, this orientation remains predominant even in terms
of the ideal crystal model.

Another peculiarity of the calculated energy spectrum
should be noted. For the energy range up to 9000 cm−1 there

FIG. 6. The band structure of energy levels of H2 in silicon.

are only a few allowed energy bands with∆ > 0.1 cm−1 formed
and most of the states are discrete. Two possible explanations
can be suggested for this result. First, the region of the tran-
sition point between two neighbouring T sites is a bottleneck,
i.e., the PES is quite steep there when the molecule moves away
from the minimum energy path and thus the transition motion
is hindered. Second, when H2 passes from one T site to the
nearest one, the orientation of H2 relatively to the surrounding
Si atoms changes (equivalent to a 90◦ rotation about one of
X , Y , or Z axis). Therefore, one can suppose that only states
with certain symmetries are involved in the band structure
formation. As a result such restrictions can make additional
contributions to the molecule T site confinement.

V. SUMMARY AND CONCLUSION

A theoretical study of H2 in the silicon crystal was carried
out. A five-dimensional numerical-analytical representation
of an ab initio potential energy surface of the system was
constructed, which preserves the main properties of the PES,
including the correct geometry and symmetry.

The PES representation was used to calculate the rota-
tional, translational, and roto-translational energy levels of the
interstitial hydrogen. Three models were considered, 2D, 3D,
and 5D. The results obtained with the most advanced level of
theory (5D) are in the best agreement with the experiment.
One can see that for nh = 0, J < 2 the term values obtained
for different models agree within about 2 cm−1 and due to the
system symmetry they remain degenerate. Our calculations re-
vealed that the translation - rotation interaction has a significant
influence over the system properties and smoothes the effect of
the rotational barrier for the low lying states.

Taking into account that H2 is located in a periodic poten-
tial we calculated a band structure of energy levels using a
reduced 3D model approach. For energies up to 9000 cm−1

there is not many allowed energy bands formed where most
of the states are discrete. Nevertheless, an allowed energy
band with the width about 1.1 cm−1 is close to 6803 cm−1.
The width of the band formed in the vicinity of 8304 cm−1

exceeds 24 cm−1. The band structure properties analyzed agree
with the observation of the platelets which are mainly formed
in the {111} crystallographic planes.1 Despite the vacancy
mechanism is considered to play a key role, this orientation
remains predominant even in terms of the ideal crystal model.
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