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SCALAR FIELD VACUUM POLARIZATION ON HOMOGENEOUS
SPACES WITH AN INVARIANT METRIC

© A. I Breev*

We develop a method for calculating vacuum expectation values of the energy—momentum tensor of a
scalar field on homogeneous spaces with an invariant metric. Solving this problem involves the method of

generalized harmonic analysis based on the method of coadjoint orbits.
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1. Introduction

Quantum field theory in a curved space-time is a sufficiently well developed theory (see [1]-[3] and [4]),
which attracts interest in view of relevant applications to cosmology and astrophysics. The most important
quantity characterizing matter is the energy—momentum tensor (EMT). It plays the role of a source for the
gravitational field in the Einstein equations and describes the coupling of matter to the gravitational field.
Expectation values of the EMT in the vacuum state characterize the effect of vacuum polarization and, if
the vacuum state is not defined uniquely, also the effects of particle creation by the gravitational field.

Divergences occur in calculating quantum expectation values over any state for operators (the EMT
in particular) that are bilinear in the fields because bilinear operators contain products of operator-valued
generalized functions. Hence, obtaining finite values of vacuum expectation values of the EMT requires
using some procedure for removing the divergences. In the case where the space is homogeneous and
isotropic, using the dimensional regularization method [5] is efficient. Another way to regularize is by the
method of splitting the arguments of field operators in the bilinear form of the EMT, proposed in [6]. We
note that although these regularization methods do not require calculating vacuum expectation values of
the EMT, these last are also interesting because it is possible to eliminate the divergences directly in several
cases (for example, using the n-wave regularization method [7]).

We note that practically all the currently known models of Riemannian manifolds of general relativity
are associated with various transformation groups and, not infrequently, belong to the class of homogeneous
Riemannian spaces. In modern cosmology, homogeneous spaces underlie the construction of Big Bang
models, initial singularities, and inflationary models. The problem of taking quantum vacuum effects on
homogeneous space into account then arises naturally.

This problem is closely related to the problem of exactly integrating relativistic wave equations on
manifolds with curvature and a nontrivial topology. The most universal solution method is the method of
separation of variables [8], [9]. But it accounts for only a commutative algebra of the symmetry equations,
while there exists a class of spaces that do not admit separation of variables. Therefore, in most cases,
quantum vacuum effects can be calculated by imposing various constraints on the metric of the space (such
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as selecting conformally flat metrics [2], homogeneous isotropic spaces [1], Stéckel metrics [10], and so on)
that would allow integrating the wave field equations.

This paper is devoted to calculating vacuum expectation values of the EMT of a scalar field on a
homogeneous space with an arbitrary invariant metric of a static space—time.

To solve this problem, we use the method of orbits, which allows performing a noncommutative re-
duction (the method of noncommutative integration [11], [12]) of the Klein—Gordon wave equation to an
equation with fewer independent variables on a manifold with simpler geometry and topology. This method,
unlike the method of separation of variables, takes the noncommutative symmetry algebra of the Klein—
Gordon equation into account. Moreover, the solution is constructed globally and is independent of the
choice of local coordinates on the homogeneous space. The method of coadjoint orbits (K-orbits) was first
described by Kirillov [13], [14] and then developed by Kirillov, Kostant, Souriau, and others. The main
results of the method were presented in [15]-[17].

In our previous work [18], we used the orbit method to investigate particular cases where a homogeneous
space is commutative (the defect of the homogeneous space is equal to zero) and where it is a Lie group
(the defect is maximum). Here, we take the algebra of invariant operators on the homogeneous space into
account in integrating the wave equation and assume that the defect of the space is arbitrary.

In Secs. 2 and 3, we briefly expound the method of K-orbits and the harmonic analysis on homogeneous
spaces based on that method. A more detailed presentation with proofs of the main statements can be
found in [19]-[22].

Section 4 is devoted to applying the orbit method to noncommutative reduction of the Klein-Gordon
equation. We obtain relations that express a basis of solutions of the Klein—-Gordon equation in terms of
a basis of solutions of the reduced equation and satisfy the scalar field normalization condition. We note
that noncommutative reduction on a homogeneous space with a nonvanishing defect essentially involves
the algebra of invariant operators (the F-algebra in what follows) on the homogeneous space. We find an
expression for the generalized local zeta function of the Klein—-Gordon equation operator and show that
it is independent of the choice of local coordinates on the homogeneous space but is defined in terms of
quantities defined on a Lagrangian submanifold to a symplectic leaf of the F-algebra. This facilitates
finding the analytic continuation of the zeta function in specific problems because the expression for the
zeta function turns out to be simplified and to depend on fewer independent variables.

In Sec. 5, we consider the EMT of a scalar field in a static space—time. The EMT is considered in the
quasitetrad components introduced in [18]. This allows proceeding without using local coordinates on the
homogeneous space; we can always pass to the standard EMT components at the end of the calculation. In
quasitetrad components, we find expressions for vacuum expectation values of the EMT that are defined by
algebraic properties of the homogeneous space (such as a A-representation of the Lie algebra of the Lie group
of transformations and of the F-algebra of invariant operators) and are independent of local coordinates
on the homogeneous space. To obtain finite values of the vacuum expectation values of the EMT, we use a
ramification of the generalized zeta function method, proposed in [23]. In [18], the generalized zeta-function
method was used to calculate vacuum expectation values of the EMT on Lie groups with an invariant metric.
This method for renormalizing vacuum expectation values of the EMT is based on calculating functional
derivatives of a one-loop effective action over the metric and reduces the problem to finding an analytic
continuation for the generalized zeta function.

As a nontrivial example, we consider a homogeneous space with the defect equal to unity and with a
four-dimensional Lie algebra of transformations given by a direct product of an Abelian two-dimensional
algebra and two one-dimensional ideals. For an arbitrary invariant metric of a static space—time, we find an
expression for the generalized local zeta function and the renormalized value of the vacuum energy density
of the scalar field due to the nontrivial topology and curvature of this homogeneous space.
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2. The A-representation of a Lie algebra and a Lie group on a
K-orbit

Let G be a connected simply connected real Lie group, g be the Lie algebra of GG, and g* be the space
of linear functionals on g. Let the Lie group G act on the dual space g* by the coadjoint representation
Ad*: G x g* — g*. This action foliates g* into K-orbits of dimension dimg — indg — 2k, where the
number k ranges from 0 to (dimg — ind g)/2. The index ind g of the algebra is defined as the number of
independent Casimir functions on the dual space g* with respect to the Poisson-Lie bracket { -, - }M¢. It
was shown in [20] that the coalgebra g* is the union of connected invariant algebraic surfaces My, where
each connected surface My is a union of K-orbits of dimension dim g — ind g — 2s.

In what follows, we use the terminology introduced in [19], [20]. Functions K l(f) (f) that are nonconstant
on My and commute with any function on M) are called (s)-type Casimir functions. The number 7 of
functionally independent (s)-type Casimir functions coincides with the space dimension, ) = dim M.
A K-orbit is called an s-type orbit if Oy € My, and the number s is the degeneration degree of the orbit.
The K-orbits with degeneration degree zero are said to be nondegenerate and otherwise singular. We let
Fcis)( f),a=1,...,dimg — 7 denote an independent tuple of functions defining the surface M.

For a Lie group G, let O, be an (s)-type K-orbit containing a covector A. The Kirillov form w) defines
a symplectic structure on the K-orbit Oy. On the K-orbit, we introduce canonical Darboux coordinates
(p,q) € PxQ, in which the Kirillov form w) takes the canonical form wy = dp,Adg®, a =1,...,dim Oy /2. Tt
is obvious that the domains P and @ are Lagrangian submanifolds of dimension dim O, /2. In accordance
with [22], we define a canonical embedding f: Oy — g* under which a covector f € g* is assigned its
canonical coordinates on the corresponding K-orbit. The canonical embedding is defined uniquely by
functions fx = fx(p, ¢, \) satisfying the system of equations

{vafY}LiC:f[X,Y]v fX(0,0,A):)\(X), X,YEQ

Because f € M), it follows that in the case of singular K-orbits, the canonical embedding must also satisfy
the condition Fi” (f) =0, a = 1,...,dimg — r().

We pass from the Lie algebra g to the corresponding complex extension gc and consider the canonical
embedding linear in the variables p:

fX(qvpaA):O[g((Q)pa_FXX(qv)\)a Xeg(c’ a’zlvadlmQ (1)

It was shown in [22] that for the existence of linear canonical embedding (1) of an orbit Oy, it is necessary
and sufficient that the functional A admit a polarization p. We recall that a polarization p of a functional X is
a subalgebra in g¢ of dimension dimp = dim g — dim O, /2 subordinated to the functional A: (X, [p, p]) = 0.
We note that a polarization p is an isotropy subalgebra of the algebra g¢ of the local group G acting on
the local homogeneous space Q ~ G¢/eP.

We quantize K-orbits, which amounts to assigning each spectral type of orbits a special representation
of the Lie algebra [20]. The canonical embedding functions fx(p,q, ) then correspond to the operators
fX(q, A) = fx(—i0y, 4, A). This quantization procedure is unique under the condition

ilfx, fv] = fixy), XY €q

The operators Ix(q,\) = ifx (4, p, \) realize an irreducible representation of the Lie algebra g in the space
of smooth functions L(Q,p, A) (the so-called A-representation of a Lie algebra [19], [20]).
On the manifold @, we introduce a measure dpug(q) and the scalar product

(1, ) = /Q G (@)a(@) dpla),  dule) = Alg) duo(a),
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where A(q) = A(s(q),em), A(g) is the modulus of the Lie group G, and s: () — G is a smooth section
of the bundle G¢ with @ as a base and e” as a fiber. We require that the A-representation operators be
skew-Hermitian with respect to the measure duo(q). To satisfy this condition, it suffices to introduce the
corresponding “quantum shift” by a real vector 3 in the A-representation operators: Ix (g, :\) =lx(q, \+if)
(see [24]).

We introduce a lift of the A-representation of the Lie algebra g to a local representation of its Lie
group G:

Tela) = [ Dl @e@)duta) g lmaTe)ela) = Lx(a: oo

where ¢ € L(Q,du(g)). It can be shown (see [19]) that the generalized functions D;‘q,(g) satisfy the
overdetermined system of equations

x (9) + Lx (@ MDY, (9) =0, [x(9) — Ik (¢, M]D)y, (9) =0, (2)

where {x(g) = (Lg)«X and nx(g) = —(Rg)+X, X € g, g € G, are left- and right-invariant vector fields on
G. It was shown in [20] that the requirement that the functions D;‘q, (g9) be well defined on a Lie group G
implies the Kirillov integrality condition for the orbit Oy [15]:

1
/ Wy =Ny € Z.
2 YEH2(Ox)

We assign an invariant subspace M) of g* an invariant functional subspace Ly = {¢ € L2(G, du(g)) |
Fé”({)gﬁ(g) = 0} of La(G,du(g)). The family of generalized functions Dqu,(g) has the completeness and
orthogonality properties, and the direct and inverse Fourier transformations are therefore defined for each
function ¢(g) in L [19]:

vla.d\N) = A7) [ 60D} (s dulo) (3)

o(g) = / W@ d ND, (g7 dug) dud') du(N), (4)

where dpu()) is the spectral measure of Casimir operators K, (n) on the group and du(g) is the right Haar
measure on the Lie group G. For nondegenerate orbits, direct and inverse transformations (3) and (4) are
defined on the entire space Ly = L2(G, du(g)).

3. The A-representation of the algebra of invariant operators and
harmonic analysis on homogeneous spaces

We consider a right homogeneous space M admitting a motion group G. Any point z € M of the
homogeneous space defines the isotropy subgroup H, € G that leaves this point fixed. Let H be the
closed stationary subgroup of some point zg € M and b be its Lie algebra. The homogeneous space M is
diffeomorphic to the quotient manifold G/H of right conjugacy classes of G by the isotropy subgroup H,
and the group of transformations G can be regarded as the fibered manifold of the bundle (G, x, M, H) with
the structure group H, base M, and canonical projection 7: G — M. The linear space of the Lie algebra
g admits a decomposition into the direct sum of subspaces g = h & m, where m ~ T, M is a complement
of h.

It is known [25] that an associative algebra D(M) of invariant differential and pseudodifferential op-
erators commuting with the group generators corresponds to each Lie group GG acting on a homogeneous
space M.
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In the algebra D(M), we can single out a finite set of functionally independent generators {L,} that
are symmetric functions of the operators —ihn and satisfy the nonlinear commutation relations

1

h[Lw L,,] = Q#V(L)v (5)

where §,,,, (L) is a symmetric function of the operators L. The algebra of nonlinear commutation relations
of form (5) is called the functional algebra (the F-algebra) [12].

The number s); = dimg — ind g — dimax, Where dpax is the maximal dimension of (s)-type K-orbits
that have a nonvanishing intersection with the subspace h* = {f € g* | f(X) = 0,X € b}, is called
the degeneration degree of the homogeneous space M. It was shown in [21] that a set of i5; independent
identities (functional relations for the transformation group generators) on a homogeneous space M consists
of the functions T(f) = {F{™M)(f), K5 (£)}, where K™ (f) are trivial Casimir functions of the (spr)
type (trivial Casimir functions are equal to zero for all f € h*). The number 4, is called the homogeneous
space index. The index and the degeneration degree of a homogeneous space are defined by structure
constants of the transformation group algebra g and of the isotropy subalgebra f [21]:

1 1
sy =, sup rank( [g,g]) — indg, iy = dimb — rank(}, [g,b]),
)\ehj‘ 2

where )\ is a generic element of h*. The positive integer
. . 1 .
d(M)=dim M + iy — sy — 2(dlmg +ind g)

is called the defect of the homogeneous space. It was introduced in [19], [21]. The defect of a homogeneous
space characterizes the properties of the algebra of invariant operators. For commutative spaces (d(M) =
0), such as, in particular, symmetric and weakly symmetric spaces, the algebra of invariant operators is
commutative and consists of Casimir operators K, ) (X).

To the algebra of invariant operators D (M), there corresponds a Poisson algebra F with the commu-
tation relations

{apa e = Q@) 06 (a) = lim 0 (a), (6)

where a,,(f) = limp_o L,(f) are functions on the dual space g* (the symbol of the operator L,). Let F*
be the linear space conjugate to F. The infinite-dimensional linear space of smooth functions on F* is a
Poisson algebra with respect to the Poisson bracket

{p(a), v(a)}” =, ()0"p(a)0"P(a), =, , a€F" (7)

Poisson bracket (7) is degenerate in general, and the space F* foliates into symplectic leaves
O, ={a € F*| Z(a) =0y =const, t =1,...,ind F}, (8)
where the functions Z;(a) are called Casimir functions of the F-algebra and can be found from the system of
equations Qf}l,(a)(?“ Zt(a) = 0. The number ind F is equal to the number of independent Casimir functions
Zt(a) and is called the index of the F-algebra. The dimension and the index of the F-algebra are defined

by the formulas [21],

dimF =iy +2dim M — dim g, indF =ind g+ 2sy — ins.
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The dimension of a symplectic leaf O, is determined by the defect of the homogeneous space: dim O, =
dim F — ind F = 2d(M).

We note that the number of Casimir functions Z;(a) on F* coincides with the number of nontrivial
Casimir functions K, (f), and there exist functions D;(Z) such that

Dy(Z(a(f))) = K&(f), febt, t=1,... indF.

Hence, the method of coadjoint orbits allows studying the structure of the F-algebra of invariant operators
in detail. In particular, based on the foregoing constructions, it is relatively easy to provide an explicit
form of these operators.

On symplectic leaves (8) of the dual space F*, we pass to canonical Darboux coordinates (u,v). As in
the case of K-orbits, we can define the canonical embedding a,: O, — F*, which is given by the functions
a, = a,(u,v,0) satistying the system of equations {a,,a,} = Qf}l,(a), wv=1,...,dimF.

We proceed with the quantization of symplectic leaves. For this, we replace the functions a,(u,v,0)
with differential operators a,,(v, i0,, &) acting in the space of functions defined on a Lagrangian submanifold
of the symplectic leaf (functions of the variables v € V') and impose the commutation relations —i[a,,, ,| =
Q.. (@). In the operators a,(v,i0,, &), we introduce the “quantum shift” ¢ — &, which occurs in quantizing
(sm)-type K-orbits corresponding to the homogeneous space. We have the identities

Z,(a) =6, Dy(6) = k" (o). (9)

The realization of the F-algebra by the operators @ such that conditions (9) are satisfied is called a A-
representation of the F-algebra [19].

We consider the procedure for constructing a harmonic analysis for functions on a homogeneous space
M that belongs to the Hilbert space Lo(M, du(x)), where du(z) is the Riemann measure constructed from
an invariant metric.

Over a trivialization domain U € P in the fibered space G, we introduce coordinates g4 = (%, h®) of
the direct product U x H (a =1,...,dimM,a =dim M + 1,...,dim G). The coordinates of an arbitrary
point g € G can then be represented as g = hs(x), where s: M — G is a local smooth section of the bundle
G. Any smooth function ¢(g) on the Lie group G that is constant on the fibers H of the principal bundle
(G, 7, M, H) uniquely corresponds to a function (7*¢)(z) = ¢(s(x)) on the homogeneous space M (the
projection of ¢ onto M). In other words, there is an isomorphism C°°(M) ~ F¢, where the functional
space F¢, in view of the connectedness of the Lie group H, is defined by the equality

Fa={pcC®(G) |[nxelg) =0, X €bh, g€ G}.

Because F(M)(€) = 0, the space Lo(M, du(z)) is isomorphic to the space

Ligyy(M) ={p € L(s,,) | nxp = 0,X € b}

Hence, harmonic analysis on a homogeneous space M reduces to harmonic analysis in the space L,,,)-

(sm)

The invariant space L(y,,) corresponds to the invariant subspace M(,,,) consisting of K-orbits Oy

whose representatives are in h-. We quantize the K-orbit and construct a A-representation of the algebra
g corresponding to the K-orbit O(ASM). Because A € h*, the condition f(l(fM)(/\) =0, p=1,...,7(s,) is
imposed on the parameters A. In [19], the A-representation satisfying this condition is said to correspond

to the homogeneous space M.
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We lift the A-representation of the (sps)-type algebra g corresponding to the homogeneous space M
to a representation of the Lie group GG. By completeness and orthogonality, the set of functions Dqu/(g_l)
constitutes a basis of the functional space L,

We define a parametric family of functions D;v(a:) that form a basis in the functional space

LQ(M, du(ﬁ)) ~ L(SM) NFa

as the decomposition in terms of the functions D;‘q, (g71):

D(a) = [exld o)DY (g™ auld), g = (o). (10)

We impose the conditions
la(d', Neald',v) =0, (11)
[Lu(=il(d'. X)) = (0. V]er(q',v) = 0 (12)

on the decomposition coefficients. In view of condition (11), the right-hand side of (10) belongs to the class
of functions Fq. If (12) is satisfied, then the functions D;‘U(a:) constitute a basis of the A-representation of
the F-algebra of invariant functions.

By relations (2), the functions D, (x) satisfy the system of equations

[Xa(2) +1a(g. N]Dgy (2) =0, [Lyu() — @, (v, N)]Dg, () =0,

where A = 1,...,dimg and g = 1,...,dimF. We define a family of generalized functions ﬁ;‘v(x) as
solutions of the system

(X () + (@ VD) (@) =0, [L(2) — af,(v, ] D), (x) = 0.

Because the generalized functions D;‘q/ (g7 1) have the properties of completeness and orthogonality in the

functional space Ls,,, it follows that the family of generalized functions D}, (z) and f?g‘v (), where X is a
nondegenerate covector of the (sps) type, constitute a complete and orthogonal set in the functional space
L2 (M7 d:u'(x))

| DR D @) dute) = ba. 05501505, 13)

[ D@D () duta) o) du(y) = 33, 2). (14)
QxXVxJ

Relations (13) and (14) allow introducing analogues of direct and inverse Fourier transformations on the
homogeneous space M. Let ®(M) C Lo(M,du(x)) C ®'(M) be a Gelfand triplet. The space ®(M) is a
linear space of functions ¢(z) € Lo(M, du(x)) for which a generalized Fourier transformation is defined:

algv) = /M () D), () du(z). (15)

The functions ¥, (g, v) constitute a linear space ®(M) dual to ®(M). The inverse transformation is given
by

o(z) = / (@, 0) D2 () dia(q) dis(w) dia(N). (16)
QXVxJ

65



Transformations (15) and (16) define a continuous one-to-one map of the spaces ®(M) and ®(M). By
analogy with harmonic analysis on Lie groups, we assume that the differential operators X4 and L, acting
in ®(M) are also differential in the dual space ®(M):

Xa(@) <= =ll(q, ),  Lu(@) <= al(g,N).

We note that the Casimir operators Kt(SM)(iX) = D¢(Z(L)) in the space <T>(M) are operators of multipli-
cation by £\ (\).

4. Noncommutative reduction of the Klein—-Gordon equation

We introduce an invariant metric on the homogeneous space M. Let G be a nondegenerate quadratic
form on a subspace m C g satisfying the Ady-invariance condition:

G(X,Y],Z2)+G(Y,[X,Z]) =0, Xebh, Y,Zeg, (17)

where the overline denotes the projection of an element of g onto the subspace m. The quadratic form G
defines an Adg-invariant scalar product on the tangent space T, M ~ m. The Ady-invariance requirement
in (17) allows using the group G action to make this scalar product well defined on the entire homogeneous
space M:

g (7,0)(x) = G((Rg-1)+7, (Rg-1)s0), 7,0 T, M, x=m(g), ge€G. (18)

Scalar product (18) defines an invariant metric g on the homogeneous space M [26].
We give expressions for the metric tensor of the invariant metric gps in local coordinates on M:

(gm)ij(x) = Gabaf(m)a;’(a:), Gap = Gleq, €p).

Here, {e,} is a fixed basis in the space m, o¥(x) are basis right-invariant 1-forms, o®(y) = (R,)*e’, and
{e’} is a basis in m*, (e4, e®) = 6°. For contravariant components of the metric tensor, we then have

(ga)" = Gy (2)f (), G = (Gap) ™"

Summation over the repeated upper and lower indices is understood.

We assume that an invariant metric gp; with Lorentzian signature is defined on the homogeneous space
M. We consider the model of a static space-time, where a global timelike vector Killing Xy = 0,, orthogonal
to constant-time hypersurfaces ¥: xg = const exists on M. Then x = (z,t), where z = (x!,... pdimM-1)
are local coordinates on the hypersurface ¥ and t = xg is a variable playing the role of time. We assume
that the metric tensor depends only on local coordinates on the hypersurface ¥: gpr = gar ().

The Klein-Gordon equation is the Euler-Lagrange equation for the action S = [ £%du(x) of a scalar

field p(z) on the homogeneous space M with the Lagrangian

L, } = 5

(G®nap(x)mp(a) — [m® + (Rl (x)[?), (19)
where R is the scalar curvature of M, ¢ = (dim M — 2)/4(dim M — 1) is the conformal factor ensuring the
coupling of the gravitational field to curvature, and G = det(Gyp). The Klein—-Gordon equation on M then
has the form

(Ans +m? + CR)p(a) = 0, (20)
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where Ay is the Laplace operator of the invariant metric on M:

1
= Gy — 2¢amy), Ca =, Sp(adg |m)- (21)

Our aim is to construct a basis of solutions ¢, (z) of Eq. (20) labeled by a collective index o and
satisfying the scalar field normalization condition:

iy / 2) Xoor (1) —grr (@) dz = 6(0,0"), gar() = det((gar)is (2)). (22)

Positive- and negative-frequency solutions ¢F (z) are defined as eigenfunctions of a timelike Killing vector
XQZ
Xo(2)eF) () = FiweP) (), weo. (23)

We note that Eq. (20) can be regarded as a wave equation on the Lie group G of transformations in
the class of functions F¢. We therefore reduce Eq. (20) similarly to how quantum equations on Lie groups
are reduced. It follows from (23) that

D;U(x, t) = e_i“’tD;‘;(x, 0), lp =iw, ag=w,

where the parameter w enters the set of parameters A = (w, \’) labeling the orbits.

We introduce operators 1y = nx —cx that are a trivial continuation of the vector fields nx: [y, n}] =
an)Y], X,Y € g. The vector fields nx are Hermitian with respect to the Riemannian measure, and
operator (21) can be represented as a symmetric form of 7’

Ay = H'() = Gl — G%cqcy.

Because the generators X of the Lie group of transformations are Killing vectors of the invariant metric
gm(x), the Laplace operator Aj; on the homogeneous space M commutes with X and can therefore be
represented as a differential operator expressed polynomially in terms of the invariant operators L, (—in') =
L, (—in+ic): Ay = H(L(x)). In contrast to L,(—in), the operators L, (—in’) are Hermitian with respect
to the Riemannian measure.

Equation (12) in our case has the form

(L, (—=il(q', ) +ic) — au(v, N)]ex(q’,v) = 0.
We choose the measure dyu(v) with respect to which the operators a,(v, A) are Hermitian. Then b;‘v(x) =
A~ (q) Dy, ().

Using transformations (16), we reduce Eq. (20) to an equation on a symplectic leaf of the F-algebra
of invariant functions. The variables ¢ enter the reduced equation as parameters, and the set

1
o (x,t) =

)= efm/diw(va /\’)Dé‘;(ﬂc,o) du(v), o =(q,A), (24)
\/2wA(Q)\/—G

therefore constitutes a basis of solutions of Eq. (20). The functions (v, A’) can be found from the reduced
equation with d(M) independent variables on a symplectic leaf:

(H(a(v,\)) +m? + (R)wy, (v, ') = 0. (25)
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Equation (25) is an ordinary differential equation whenever d(M) < 2.
Because the operator of Eq. (25) is Hermitian, the eigenfunctions 1, (v, \) satisfy the orthogonality
condition

/Q Bold's Xt (¢, ) i) = 8(w,"). (26)

This relation implies normalization conditions (22) for the complete set of solutions (24). We note that
Eq. (26) is a normalization condition for the functions ¢, (v, \") and defines the measure following from w.
We consider the generalized zeta function of the operator F=A v + CR + m? of the Klein-Gordon

— [ 67 duto)

where 6, are the eigenvalues of F labeled by a collective index o. The generalized zeta function ((s) admits

equation:

an analytic continuation to the complex plane that is regular at the point s = 0, and can be defined as an
integral over M of the local zeta function:

C(a,t;s) = /955%(%,25)%(33,25) du(o),  ((s) = \/—G/C(x,t;S)du(x),
where ¢, (x,t) is a complete orthogonal set of eigenfunctions of F such that the normalization condition
\/—G/¢g(x,t)¢g/ (x,t)dp(x) = 6(0,0)

is satisfied.
As in the case of the Klein—-Gordon equation reduction, we seek the eigenfunctions ¢, (x,t) in the form

o) = (A6 [ D0 ND) @) du(0), o= (g A (27)
The eigenvalue problem ﬁqzﬁg (z,t) = 0,0, (xz,t) then reduces to the equation

H(a(v, \))thy (0, 2) = (fux = (R —m? )iy (v, ) (28)

on the symplectic leaf. The spectrum of the operator H(a(v, A)) is determined by an additional quantum
number v and is independent of ¢. We impose the condition

/ (0, N (0, X) dpa(v) = 8(v,)

on 1@,(1}, A). For the local zeta function, we obtain the expression

Gocle) = " / 0 ( / zﬁyw,wu(wwv,ﬁ)du(v)du(@))dum du(v),

(29)
(0.5) = [ D3(@)Ds(w) dho(o)
We show that integral (29) is independent of local coordinates. Substituting decomposition (10), we
obtain
XM, 0) = /Cx(q’,v)CA(d’,ﬁ)Ip?q, du(q') du(d@), o = /DA DD (g™ )dno(g).
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It follows from system of equations (2) that D;‘q, (g1 = (A(q)/A(q/))D;‘/q(g)a and the integral I(;\,q, is
therefore equal to

1
Ipg = Dy o(9)D) (97 ") dp(q) = D, So(q',q).
/ P07 due) = 5 D)y (0) = dold . 7)
We then have an expression for x*(v,?) that is free of local coordinates:

3w, 5) = / ex(d's v)er(d, D) diao(d). (30)

If the homogeneous space is a Lie group, then ¢(¢’,v) = §(¢’,v), and expression (30) gives a Dirac delta-
function [18]. We note that the generalized zeta function can be expressed in terms of the set of solutions
of the reduced equation and is defined in terms of algebraic characteristics of the homogeneous space.

5. Vacuum expectation value of the scalar field EMT on a
homogeneous space

The metric EMT of the scalar field on a homogeneous space M is defined by varying the scalar field
action with Lagrangian (19) over the metric [1]

—y [ V-on(@)(T. 3901 (0) (o) .

where (-, -} is the contraction of the EMT T with the variation of the metric tensor gas(x). The expression
for the EMT scalar field in local coordinates is well known and in our notation has the form [1]

1
Ti{e, 0} = 1= 2000 + <2C - z)gijg“so,m —l(ViVip)p + (Vi) -
1 2 2
= |CBi + (20—, Jgis(m” + CR) ||l (31)
where (a,b) = (ab+ba)/2, A, is the covariant derivative of the Levi-Civita connection on the homogeneous
space M with an invariant metric, and R;; is the Ricci tensor.

We multiply expression (31) by n' (x)n{,(x) and use the properties of an invariant metric on a homo-
geneous space to obtain

T'(X,Y){p, ¢} = T(nx,nv ){e, ¢} = Tij{e, o}n (@)n, (z) =

1
(2C - >n<x<m7y>so+ (2C - 2>G(X, Y)GAPnaonpe —

- [QRic(X, Y)+ <2§ — ;) G(X,Y)(m? + CR)] 0P —
— i [(ViVi)e +o(ViVjp)], X,Y €m, (32)

where we introduce the notation Ric(X,Y) = R;;n (x)n{/(a:) Using the expression for Christoffel symbols
of the Levi-Civita connection on the homogeneous space M in local coordinates, by a simple but cumbersome
calculation, we can obtain

Ny ViV = 0x1y — 1Ir(x,y), (33)
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where the bilinear map I': m X m — m defines the Levi-Civita connection and is uniquely defined by the
system of equations

2G(T(X,Y),2) = G([X,Y],2) + G([Y, Z], X) - G(|Z, X],Y), X,Y,Zcm.

We note that the quantity Ric(X,Y) is independent of local coordinates and can be defined as the trace
of the linear operator Z — R(Z,Y)X, X,Y, Z € m, where

R(X,Y)Z =T(Y,I'(X,Z)) -T(X,T(Y, 2)) + T([X,Y],Z), X,Y,Z€m.

As a result, we obtain

T'(X, Y){p, 0} = (1 = 2O)nxenvye + (4 = DG(X,Y) L, ¢} = (Rie(X,Y)|pl* -

1
V-G
— ([(xmyy = nzxv))ee + e(ixnyy — nzxxy))e], X, Y €m, (34)

where Z(X,Y) = (T'(X,Y) + I'(Y, X))/2. We call components (34) the quasitetrad components of scalar
field EMT (31). We note that expression (34) is independent of local coordinates on the homogeneous
space; by the relation

oy (x)ng(x) =6,  oc(@)ny(x) =65, a,be=1,...,dimM,
we can always pass to the usual EMT components:
Tij =T (eq, eb)og(x)o?(x). (35)

Relations (31)—(35) are an analogue of the tetrad formalism for tensor fields on a homogeneous space and
can be generalized in an obvious way to the case of arbitrary-rank tensor fields.

We proceed with quantizing the scalar field with Lagrangian (19) on the homogeneous space M. We
decompose the field operator qAS(x, t) with respect to the basis of solutions of wave equation (20):

3(0.0) = [ duto) [o(w. )i + ol )al),
where dyu(o) is a measure for all quantum numbers and @/ and a, are the respective creation and annihilation
operators. Covariant quantization is realized by imposing the commutation relations [, di,] = 6(a,0").

The vacuum state corresponding to this quantization procedure is defined by the conditions a,|0) = 0. The
vacuum expectation values of the EMT are then defined by an integral over all quantum numbers:

(X)) = /T/(X,Y){%,%}du(a), XY em (36)
To calculate integral (36), we find an expression for the vacuum expectation values of the form
B(XY) = (1xprd) = [ (nxea)iven dula)du(), XY €m.
Substituting (24) and using the equality

mxD)et) = [ (Lxld Nes(d',0)D), (s du(a)
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we have a chain of equalities for the expectation values ®(X,Y):
BY) = [0 X Ner g 0) W (X Ve (0 7)
X Iy dpalq') dp(q') dpa() dpa(@) dpa(N) =
— e | N N (@ ) (5. X ) (' N 8)
2\/—G w w\Y X ) A ) w\Yy Y ) A )

x dpo(q') du(v) du(®) du(X). (37)

Similarly, for vacuum expectation values of the squared field operator ($?) = (5, @), we obtain

)= 5 ) | Ve NP5 NN 0,5) du(0) ) ). (39)

We note that in (37), the A-representation operators are skew-Hermitian with respect to duo(q’), whence
it follows that (nxny®,®) = —®(X,Y) and (nx@, ) = —(P,nxP). We can then express the vacuum
expectation values of the EMT in terms of ®(X,Y) and (5?):

(T'(X,Y)) = ;(@(X, Y) +®(Y, X)) — CRic(X, Y )(@?) +

# (2 )G TIE B(en ) — (4 R
Using (37) and (38), after some simplifications, we finally obtain
TEY) ==, ) [ o 0elo N @ Do VT XY Jer (a1 0)
x dpo(q") dp(v) du(®) du(N),

TUX,Y) = ()b (@ ) b+ CRie(X,Y) x

+ (24 — ;>G(X7Y)G“b Sp(ady |w)ls(q', N),

where {a,b} ; = ab+ ba denotes the anticommutator of operators.

A separate problem is given by performing the renormalization procedure and obtaining finite values
of vacuum expectation values (39) characterizing the effect of vacuum polarization by the gravitational
field. Because the vacuum expectation values of the EMT are defined by taking functional derivatives of
the effective action over the metric, this problem is equivalent to renormalizing the effective action W of
the quantized field.

In the {-regularization method, the effective action is expressed in terms of a generalized zeta function
of the Klein—Gordon equation operator F=A a + CR+m?:

i

W(s) = =, ({(s) +<(s) log(=2mip®)),  Wien = W(s)|s=0, (40)

where p is a normalization constant independent of the metric and having the dimension of mass. The
renormalized vacuum expectation value can be obtained by evaluating the functional derivatives of effective
action (40) over the metric and then finding an analytic continuation at s = 0:

2 SW(s) i ( d

j—\‘i’ ren — s=0 — —
Bl = gata) o "0 2 s

oo t:5) + 225 50) (-2 ).
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where the function Z;;(x,t;s) is an analytic continuation with respect to the variable s of the variation of
the zeta function ((s) over the metric,

2 0l(x, t;
Zij(z,t;s) = J—oni (@) g‘;fj (tg;) = 25G;(2,t; 5 + 1) + $Qoc(5)gi5 (2),

Gyl tss) = / AT Ty {bos 60 } du(o).

In [23], this function was called the EMT zeta-function. The quantities (oc(0) and (/,.(0) must be finite,
and therefore

lim s¢l,.(s) =0, lim $Cloc(s) = 0.

For the renormalized EMT, we can then obtain the expression [23]
. , 1
(Tij)ren =i\ Gij(z t;8 + 1) + 291'3' (2)Coc(s) +

+ (G (@, t5 s + 1) 4 G (. 155 4+ 1) log(—27riu2)]>

s=0

This approach to the problem of obtaining finite values of vacuum expectation values was proposed in [23]
and was used in our previous work [18] in the particular case where the homogeneous space is a Lie group
with an invariant metric.

Using expression (34), we obtain the quasitetrad components of the function (;;(x,t;s) in the form

CXY)(e) = G ¥)(5) — CRICCX,¥)s) — (26 = )G Y) Gcls = 1)+ on(o)
(XY N6) = [ 6800000 (e vy 0 (0,1) ),

Cunls) = 2Gbc, / 0560 (@, O)sbo (,1) dpi(o).

Using inverse Fourier transformation (27), we can easily see that ((X,Y)(s) is independent of local coordi-
nates:

XV ==y [ OR 0 N o) (5. V(6 0. (4 N er (4 )
x dpo(q") du(v) du() du(X) du(v),

Cun(5) G, / 072 (4 (0, Nea (s 0)) b (8, Mo (d's Nea(d's 9) x

!
= /g
x dpio(q') du(v) du(D) dpu(N) du(v).

As a result, the quasitetrad components of the renormalized vacuum expectation values of the EMT become

(XY n = 1(COE Y64 1)+ GOX Y )G (s) +

+s[¢"(X, V) (s +1) + (X, Y)(s + 1) log(—Zﬂ'i,uz)])

s=0
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Hence, calculating renormalized vacuum expectation values (41) reduces to solving reduced equation (28)
and finding an analytic continuation of the function {(X,Y)(s).

It can be shown that if the massless scalar field in a four-dimensional homogeneous space M has no
conformal anomaly of the EMT, in other words, (Sp(f’ (X,Y))ren = 0), then

1ir%3<(X,Y)(s—|—1) =0, 1ir%3<'(X,Y)(s—|—1) =0,

and the expression for the renormalized EMT is independent of the parameter .

For example, we consider a four-dimensional homogeneous space with a five-dimensional Lie group
of transformations whose Lie algebra g with the generators {eg,...,e5} is defined by the commutation
relations

[61, 63] = €1, [61, 64] = €1, [627 63] = €2, [627 64] = —é€, [60, €A] =0

and the isotropy subalgebra hh = {e4}. The index and degeneration degree of the homogeneous space are
equal to zero, and the defect is equal to unity.

The algebra g is a solvable Lie algebra of index 1, and the coalgebra g* admits a Casimir function
Ko(f) = fo and is the union of nonintersecting invariant surfaces

M = {1 f> > 0},
ME = {fi=0,£f>0}, MP ={fi=0,+f<0}, My={fi=fo=0}

Hence, each nondegenerate K-orbit belongs to one of the spaces Méi) and passes through the parameterized
covector A(w) = (w,+1,41,0,0), w € R. The algebra g admits a real polarization p = {eg, e1,e2}, and the
A-representation corresponding to a nondegenerate orbit (’)EJ +) has the form

ly = 1w, [ = die 179 Iy = Fie?* ™92, l3 = (‘9Q2, ly = 8q1, (42)

where (q1,¢2) € @, q1 € [0,27), and g2 € R. Operators (42) are skew-Hermitian with respect to the measure
dpo(q) = dgi dga.

The homogeneous space admits a three-dimensional Poisson algebra of invariant functions ag = fo,
a; = f3, and az = fi o fo with the commutation relation {a;,as} = —2as and the Casimir function
Z(f) = fo- The A-representation operators of the F-algebra of invariant functions

&sz, dl :i(&,—l), &2 :€2U
are Hermitian with respect to the measure du(v) = e?"dv, v € R. Solving system (11), (12), we obtain
e(q',v) = 6(gh,v).

The homogeneous space admits a G-invariant metric of a static space—time

1 0 0 0
0 0 —c 0 2
G = ’ , R = 6¢y, Rp=—""1 0q203, €1 >0, c2>0.
0 —co 0 0 C2
0 0 0 c1

The reduced Klein—Gordon equation is a second-order ordinary differential equation,

c1(" (v) — 29" (v)) + (2c2®° — w? + m? + 1)y (v) = 0. (43)



The functions

o) = e (2260), m

where J,(z) is a Bessel function of the first kind, constitute a complete and orthogonal set of solutions of
reduced equation (43) with respect to the measure

/(~)du(n)=4zn(~)
n=1

if the spectral parameter satisfies the condition w, = 4c¢in? + m2. Functions (44) constitute a set of
eigenfunctions of operator (28) with the eigenvalues 0,,, = 4cin? + m? — w?.

The generalized zeta-function of the Klein—Gordon equation is given by

iv/m (s —1/2) i (dern? +m?)1/2=

- _ 45
CREIVERTE D DR (45)
A simple calculation shows that
B 1 C(s—1)
Cun(s) - 07 COO(S) - 2 s—1 .
We then use (41) to find the energy of the scalar field as
i C(s)
= oo ==} 1y .

Using the Abel-Plana formula for regularizing zeta function (45), we obtain the renormalized value of the
scalar field energy density

B e {m 2/°° VAcit2 —m2dt (46)

€ = — .
Ve [ 2 m/(2yer) (€27 —1)(42 — 1)

Expression (46) describes the effect of the scalar field vacuum polarization on a homogeneous space with a
Lie algebra of transformations g and an isotropy subalgebra b.
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