T. 56, № 4

ФИЗИКА

2013

УДК 535.37

О.М. ЖАРКОВА*, Ш.И. РАХИМОВ**, Ю.П. МОРОЗОВА*

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ СПЕКТРАЛЬНЫХ СВОЙСТВ ФЛУОРЕСЦЕНТНЫХ ЗОНДОВ НА ОСНОВЕ ПРОИЗВОДНЫХ НАФТАЛИНА (ПРОДАН, ПРОМЕН)¹

Проведено исследование молекулы продана и промена *ab initi*o методами. Установлены геометрические структуры промена и продана в основном и возбужденном состоянии. Показано, что как спектр поглощения, так и спектр флуоресценции промена и продана сформирован несколькими конформациями молекул. Разделены вклады универсальных и специфических межмолекулярных взаимодействий в спектре флуоресценции продана при переходе от циклогексана к воде.

Ключевые слова: продан, промен, конформационные превращения, метод МД, метод TDDFT, модель IEFPCM.

Введение

Флуоресцирующие органические молекулы широко используются в биохимических исследованиях в качестве зондов для изучения физико-химических свойств растворителей, поверхностей различной физической природы, больших биологических молекул, мембран, клеток и т.д. [1]. К таким объектам относятся флуоресцентные зонды с одновременным присутствием донорных и акцепторных групп. Одним из таких зондов, на который в последние годы направлено внимание исследователей [2–13], является молекула продана (6-пропионил-2-диметиламино нафталин). Молекула продана впервые была синтезирована Вебером и Фаррисом [14]. Эта молекула обладает структурной нежесткостью [7, 9, 12, 13]. Эмиссионное состояние молекулы продана неоднократно изучалось различными авторами [4–9, 15]. Однако до сих пор дискуссионным остается вопрос о существовании конформаций зонда, связанных с поворотом пропионильной группы продана на углы $\pm 90^{\circ}$ (O-TICT), и конформаций, связанных с поворотом диметиламиногруппы продана на углы $\pm 90^{\circ}$ (N-TICT) во флуоресцентном состоянии. В работах [12, 13] нами была проведена попытка оценить влияние структурной жесткости продана на спектры поглощения и флуоресценции молекулы. Однако эти результаты расчета зонда были выполнены в рамках полуэмпирических методов исследования.

Для ответа на вопрос о существовании конформаций продана, связанных с вращением диметиламиногруппы, в этой работе было проведено квантово-химическое исследование молекулы промена (6-пропионил-2-метилоксинафталин). Метоксигруппа обладает более слабыми электронодонорными свойствами, чем группа N-(CH₃)₂, поэтому промен будет менее чувствителен к растворителю, чем продан. Результаты квантово-химического исследования промена в литературе отсутствуют. В работе [15] приведены экспериментальные данные (максимумы полос) по спектрам поглощения промена, полученные для ряда растворителей. Спектры флуоресценции промена в литературе не обсуждаются.

Целью данной научной работы является квантово-химическое исследование спектральных свойств флуоресцентных зондов на основе производных нафталина – продана и промена. Для достижения поставленной цели будут решены следующие задачи: 1) установлена геометрическая структура продана и промена в основном и возбужденном состояниях; 2) исследовано динамическое поведение молекул продана и промена; 3) исследовано проявление внеплоскостных конформаций продана и промена в спектрах флуоресценции молекул; 4) разделены вклады универсальных и специфических межмолекулярных взаимодействий в спектре флуоресценции продана в полярном растворителе (вода).

¹ Исследование выполнено при финансовой поддержке РФФИ (грант № 12-03-90911-мол_снг_нр).

Методы исследования

Электронные спектры поглощения регистрировались с помощью двухлучевого спектрофотометра Cary 5000, а спектры флуоресценции – на установке для снятия спектров люминесценции СДЛ-2. Все наблюдения производились при комнатной температуре. В качестве растворителя использовался циклогексан.

Оптимизация геометрии молекул проводилась в 3 этапа. На первом этапе геометрия молекул оптимизировалась методом AM1 (Austin model) (пакет программ Chem Office 10.0). На втором и третьем этапах структура молекул рассчитывалась в рамках метода TDDFT (time-dependent density functional theory) [16] (пакет программ GAMESS US) [17]. Используемые алгоритмы: квадратичная аппроксимация QA (второй этап) и прямой метод Ньютона – Рафсона NR (третий этап) (пакет программ GAMESS US) [17]. Геометрия возбуждённого состояния молекул также рассчитывалась на основе TDDFT-метода с алгоритмами QA и NR.

Имитация молекулярных движений молекул исследовалась методом молекулярной динамики (МД) (пакет программ ChemOffice Ultra v.10.0). Длина молекулярно-динамической траектории – 70000 шагов.

Учет растворителя производился в рамках модели поляризационного континуума IEFPCM (polarizable continuum model in its integral equation formalism version [18]) (пакет программ GAMESS US) [17].

Все *ab initio* расчеты в газовой фазе и в циклогексане выполнялись на базе вычислительного кластера СКИФ Cyberia Томского госуниверситета [19], в рамках метода TDDFT с гибридным функционалом B3LYP и базисом атомных орбиталей TZV [20].

Обсуждение результатов

На начальном этапе исследования были определены геометрические структуры молекул продана и промена в основном состоянии. Геометрия молекул продана и промена в основном состоянии, соответствующая глобальному минимуму энергии, – плоская (рис. 1). Рассчитанная геометрия молекул была подтверждена частотным анализом (все вычисленные колебательные частоты – действительные). Полученная плоская геометрическая структура продана (рис. 1, *a*) удовлетворительно согласуется с ренгеноструктурными данными из [20]. Для промена такие данные в литературе отсутствуют.

Рис. 1. Структура молекул продана (*a*) и промена (*б*), соответствующая глобальному минимуму энергии. На рисунке приведена используемая авторами нумерация молекул

Исследование динамического поведения молекулы продана в S_0 -состоянии показало, что максимальное отклонение метильных групп в диметиламиногруппе зонда от плоскости молекулы – ±48°. Также наблюдаются повороты связи $C_{12}C_{13}$ на углы ±180°. Максимальные углы поворота пропионильной группы зонда относительно плоскости молекулы – ±89°. Результаты расчета методом МД молекулы промена в основном состоянии также показали повороты связи $C_{13}C_{14}$ на углы ±180°. При этом наблюдаются вращения связи O_1C_{12} на углы ±180°. Максимальные углы поворота пропионильной группы промена – ±90°. Кроме того, для обеих молекул метод МД показал деформацию ароматического скелета.

В ходе исследования для продана и промена были получены устойчивые геометрические структуры молекул, соответствующие локальным минимумам энергии (рис. 2). Обе структуры неплоские. По величине полной энергии системы плоская и неплоская структуры продана различа-

ются на 548 см⁻¹. Для промена это значение составило 500 см⁻¹. Устойчивая неплоская структура продана имеет отклонения метильных групп в диметиламиногруппе от плоскости молекулы на углы -1° и -38° и связи $C_{12}C_{13}$ на угол 83°. В неплоской геометрической структуре промена связь $C_{13}C_{14}$ отклоняется от плоскости молекулы на угол 92°. Частотный спектр, рассчитанный для этих структур продана и промена, не имеет мнимых частот.

Рис. 2. Структуры молекул продана (a) и промена (δ), соответствующие локальным минимумам энергии

Устойчивых геометрических структур продана и промена, связанных только с вращением метильных групп в диметиламиногруппе (или OCH₃ группы) или пропионильной группы, в основном состоянии не обнаружено. На основании этих данных, наряду с плоскими геометрическими структурами молекул, следует говорить о наличии в основном состоянии продана только конформации, связанной с поворотами связи $C_{12}C_{13}$ и N_1C_{14} (N_1C_{15})-связей в диметиламиногруппе, а в S_0 -состоянии промена только конформации, связанной с поворотами связи $C_{12}C_{13}$ и N_1C_{14} (N_1C_{15})-связей в диметиламиногруппе, а в S_0 -состоянии промена только конформации, связанной с поворотами связи $C_{13}C_{14}$.

Приведем экспериментальные данные по поглощению продана и промена в неполярном растворителе (циклогексан). Экспериментальный спектр поглощения продана в циклогексане в области 25000–35000 см⁻¹ имеет сложную полосу, сформированную несколькими электронными переходами (рис. 3). Полуширина полосы поглощения молекулы составляет 4480 см⁻¹. Максимум поглощения промена в циклогексане 33140 см⁻¹ [15]. На основании данных работы [15] длинноволновая полоса поглощения промена в циклогексане лежит в области 30000–35500 см⁻¹.

Рис. 3. Экспериментальный спектр поглощения молекулы продана в циклогексане

Сопоставим имеющиеся экспериментальные данные для исследуемых объектов с результатами квантово-химического расчета молекул. Положения энергетических уровней и силы осциллятора, вычисленные в рамках метода TDDFT/B3LYP для геометрических структур продана и промена, соответствующих глобальным и локальным минимумам энергии, приведены в табл. 1. Представленные результаты получены для расчета молекул с учетом и без учета растворителя. Учет растворителя (циклогексан) смещает разрешенные переходы в красную сторону (на величину 500– 1000 см⁻¹), а запрещенные – в синюю (на величину 100–500 см⁻¹). Согласно полученным данным, в длинноволновую полосу поглощения продана (рис. 3, табл. 1) и промена попадают по три перехода, причем S₁-состояние продана – разрешенное ($\pi\pi^*$), а промена – запрещенное ($n\pi^*$). Это наблюдается как для плоских, так и для неплоских геометрических структур молекул. Таким образом, присутствие диметиламиногруппы приводит к возникновению в спектрах поглощения нижнего состояния $\pi\pi^*$ -типа, а также к росту (примерно в 2 раза) силы осциллятора нижнего $\pi\pi^*$ -состояния и смещения его в красную сторону на 4300 и 3110 см⁻¹, для плоских и неплоских геометрических структур молекул соответственно. Вращение метильных групп и углеводородной цепочки продана приводит к смещению в красную сторону состояния $n\pi^*$ -типа на 1170 см⁻¹. Смещение состояний $\pi\pi^*$ -типа в синюю сторону при этом мало: 430 и 90 см⁻¹ для более и менее разрешенных $\pi\pi^*$ -состояний соответственно (табл. 1). Вращение связи $C_{13}C_{14}$ углеводородной цепочки промена приводит к смещению в красную сторону состояния $n\pi^*$ -типа на 1050 см⁻¹, а $\pi\pi^*$ -состояния на 770 и 310 см⁻¹ для S_2 - и S_3 -состояния соответственно (табл. 1).

Таблица 1

Результаты расчета энергетических уровней (*E*, см⁻¹) и сил осциллятора (*f*) молекул продана и промена (структуры соответствующие глобальному и локальному минимуму энергии) методом TDDFT/B3LYP в газовой фазе и с учетом растворителя (циклогексан)

	Продан (глобальный)				Промен (глобальный)				
S	Газовая ф	Газовая фаза Ц		Циклогексан		Газовая фаза		Циклогексан	
	E	f	Ε	f	Ε	f	Ε	f	
S_1	27930 (ππ [*])	0,286	26820 (ππ [*])	0,430	$30320 (n\pi^*)$	0,000	$30820 (n\pi^*)$	0,000	
S_2	30470 (ππ [*])	0,068	29930 (ππ [*])	0,091	31760 (ππ [*])	0,120	31120 (ππ [*])	0,232	
S_3	$30510 (n\pi^*)$	0,011	$31080 (n\pi^*)$	0,000	32760 (ππ [*])	0,071	32520 (ππ [*])	0,068	
	Продан (локальный)			Промен (локальный)					
S_1	28360 (ππ*)	0,307	27240 (ππ [*])	0,458	29220 (<i>n</i> π [*])	0,000	29770 (<i>n</i> π [*])	0,006	
S_2	29340 (<i>n</i> π [*])	0,001	29950 (<i>n</i> π [*])	0,001	31170 (ππ [*])	0,168	30350 (ππ [*])	0,251	
S_3	30560 (ππ*)	0,036	30170 (ππ [*])	0,032	32410 (ππ [*])	0,023	32210 (ππ [*])	0,034	

Интерпретация спектра поглощения продана ранее проводилась в [22] неэмпирическими (DFT) и полуэмпирическими (AM1 и ZNDO) методами, а в [11–13] – полуэмпирическими (INDO). Согласно [22], в длинноволновой области спектра продана также наблюдаются два $\pi\pi^*$ -и один $n\pi^*$ переход. По положению состояние $S_1(\pi\pi^*)$ близко к первому длинноволновому излому в экспериментальном спектре, а $S_2(\pi\pi^*)$ отличается от максимума полосы более чем на 1000 см⁻¹. По силе осциллятора эти переходы отличаются в 1,7 раза (0,267 и 0,151) [22]. Отметим, что в [22] оптимизация продана проводилась в рамках метода AM1, а DFT-расчеты выполнены без учета растворителя. Результаты расчета методами ZNDO [22] и INDO [11–13] показывают два $\pi\pi^*$ - и один $n\pi^*$ переход, причем нижнее состояние $n\pi^*$ -типа. В [7] приведены результаты расчета энергетических уровней молекулы продана, полученные методом TDDFT для оптимизированной на более высоком уровне геометрии молекулы. Согласно им, полоса поглощения продана в циклогексане в области 25000–34000 см⁻¹ сформирована тремя электронными переходами (27020 см⁻¹ (f = 0,447), 29840 см⁻¹ (f = 0,061) (30490 см⁻¹ (f = 0,000)). Эти данные близки к нашим результатам, представленным в табл. 1 для плоской конфигурации продана. Конфигурация продана, связанная с вращением пропионильной группы продана и углеводородной цепочки зонда, в этой работе не рассматривалась. Расчет N-TICT-конформации продана в этой работе выполнен только для геометрии возбужденного состояния зонда и дает далекие от эксперимента результаты. Интерпретация спектра поглощения промена ранее не проводилась.

Таким образом, в спектр поглощения продана вносят вклад устойчивые конформации молекулы, соответствующие плоской структуре зонда и структуре с отклонением связи $C_{12}C_{13}$ на угол 83° и связи N_1C_{14} на угол –38°. Вклад в поглощение промена вносят устойчивые конформации молекулы, соответствующие его плоской структуре и структуре с отклонением связи $C_{13}C_{14}$ на угол 92°.

Проанализируем распределение эффективных зарядов в исследуемых молекулах в основном состоянии (см. табл. 2). Для плоской структуры продана значительный отрицательный эффективный заряд локализован на атомах азота и кислорода, причем на атоме азота его величина немного выше. Для неплоской структуры продана отрицательный эффективный заряд атома кислорода немного превышает соответствующее значение на атоме азота. У молекулы промена как для плоской, так и для неплоской структуры отрицательный эффективный заряд на атоме кислорода пропионильной группы немного выше, чем заряд кислорода ОСН₃-группы. При этом для обеих молекул наблюдаются значительные по величине отрицательные эффективные заряды, локализованные на атомах углерода ароматического скелета, что позволяет говорить о сильной деформации ароматических колец.

Таблица 2

№ Продан (плоская структура) Продан (неплоская структура) Промен (плоская структура) Промен (неплоская структура) C1 0,143 0,159 -0,193 -0,201 C2 -0,213 -0,207 0,053 0,049 C3 0,032 0,049 -0,213 -0,201 C4 -0,185 -0,203 0,196 0,161 C5 -0,248 -0,247 0,217 0,229 C6 0,261 0,239 -0,243 -0,242 C7 -0,377 -0,325 -0,247 -0,213 C8 0,370 0,350 -0,197 -0,213 C9 -0,285 -0,267 0,191 0,194 C10 -0,239 -0,264 -0,340 -0,339 C11 0,145 0,136 0,141 0,141 N1 -0,295 -0,260 - - O1 -0,273 -0,268 -0,218 -0,217 O2 - - - <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	№ атома	Продан (плоская структура)	Продан (неплоская структура)	Промен (плоская структура)	Промен (неплоская структура)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁	0,143	0,159	-0,193	-0,201
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C_2	-0,213	-0,207	0,053	0,049
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C ₃	0,032	0,049	-0,213	-0,201
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C_4	-0,185	-0,203	0,196	0,161
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C ₅	-0,248	-0,247	0,217	0,229
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C_6	0,261	0,239	-0,243	-0,242
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C ₇	-0,377	-0,325	-0,247	-0,213
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C ₈	0,370	0,350	-0,197	-0,192
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C ₉	-0,285	-0,267	0,191	0,194
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₀	-0,239	-0,264	-0,340	-0,339
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₁	0,145	0,136	0,141	0,141
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N_1	-0,295	-0,250	-	-
O ₂ – – – – – – – 0,263 – – 0,264	O ₁	-0,273	-0,268	-0,218	-0,217
	O_2	_	_	-0,263	-0,264

Распределение эффективных зарядов (по Малликену) в молекулах продана и промена в основном состоянии

Дипольный момент μ основного состояния продана, рассчитанный в рамках TDDFT/B3LYPметода, для плоской и неплоской структур молекулы – 5,9 и 5,3 D соответственно (табл. 3). В работах [13, 14, 22–29] значение μ продана в S_0 -состоянии варьируется в интервале от 4,0 до 7,0 D. Учет растворителя увеличивает величину дипольного момента зонда на 15–20 % (табл. 3). При переходе в нижнее возбужденное $\pi\pi^*$ -состояние дипольный момент продана увеличивается примерно в 2 раза. Дипольный момент возбужденного $\pi\pi^*$ -состояния продана по разным оценкам варьируется в интервале от 9,2 до 16,0 D [13, 14, 22–29]. Значение дипольного момента молекулы промена в основном состоянии по сравнению с молекулой продана уменьшается в 1,5 раза (табл. 3). При переходе в нижнее возбужденное $\pi\pi^*$ -состояние дипольный момент промена увеличивается в 2–2,5 раза.

Таблица 3

Дипольные моменты (µ, D) основного и возбужденных состояний, рассчитанные для плоских и неплоских структур молекул продана и промена методом TDDFT/B3LYP в газовой фазе и с учетом растворителя (циклогексан)

Продан								
	Газова	ия фаза	Циклогексан					
Состояние	Плоская структура	Неплоская структура	Плоская структура	Неплоская структура				
S_0	5,93	5,3	6,85	6,14				
$S_{n\pi^*}$	2,07	2,14	2,32	2,37				
$S_{\pi\pi^*}$ (нижнее)	12,66	12,68	14,7	14,79				
Промен								
	Газова	ия фаза	Циклогексан					
Состояние	Плоская структура	Неплоская структура	Плоская структура	Неплоская структура				
S_0	S ₀ 3,67 4,61		4,19	4,61				
$S_{n\pi^*}$	0,98	3,38	1,025	3,89				
$S_{\pi\pi^*}$ (нижнее)	9,42	9,8	11,32	11,75				

Следующим этапом работы было установление геометрической структуры возбужденного состояния продана и промена. Для молекул продана и промена в возбужденном состоянии обна-

ружены по две устойчивые геометрические конфигурации. Оптимизация продана и промена в нижнее $S_{\pi\pi^*}$ -состояние проводилась для геометрических структур основного состояния молекул, соответствующих устойчивым конфигурациям. Конфигурации, соответствующие глобальным минимумам энергии молекул, – плоские. Конфигурация продана, соответствующая локальному минимуму энергии, имеет отклонение от плоскости молекулы связи $C_{12}C_{13}$ на угол 108° и связи N_1C_{14} на угол 7°. Для структуры промена, соответствующей локальному минимуму энергии, наблюдается отклонение связи $C_{13}C_{14}$ на угол 99° от плоскости молекулы.

Исследование динамического поведения продана в рамках метода МД показало, что в возбужденном состоянии зонда возможны повороты метильных групп диметиламиногруппы на углы не более $\pm 42^{\circ}$, а пропионильной группы – на углы не более $\pm 68^{\circ}$. Вращение связи $C_{12}C_{13}$ на углы $\pm 180^{\circ}$ также имеет место. Динамическое поведение молекулы промена в основном и в возбужденном состояниях практически не меняется. Устойчивых геометрических структур продана и промена, связанных только с вращением метильных групп в диметиламиногруппе (или OCH₃ группе), или пропионильной группы в возбужденном состоянии, не обнаружено. Таким образом, во флуоресцентном состоянии молекула продана не может существовать ни в O-TICT-, ни в N-TICT-конформациях.

Экспериментальный спектр флуоресценции продана в циклогексане приведен на рис. 4. Максимум флуоресценции зонда в неполярном растворителе соответствует 25000 см⁻¹. Результаты метода второй производной показали, что в спектре флуоресценции продана наблюдается два электронных перехода. Расстояние между этими переходами составляет 1000 см⁻¹. В [4] с помощью временных методов показано, что спектр флуоресценции продана в гексане сформирован двумя электронными переходами, расстояние между которыми составляет 900 см⁻¹. Экспериментальные данные по спектрам флуоресценции молекулы промена в литературе отсутствуют.

Рис. 4. Экспериментальный спектр флуоресценции молекул продана в циклогексане

В табл. 4 приведены результаты расчета энергетических уровней и сил осциллятора продана и промена, соответствующих устойчивым геометрическим структурам молекул в возбужденном состоянии. Данные получены в рамках TDDFT/B3LYP-метода в газовой фазе и с учетом растворителя (циклогексан). Согласно им, нижнее состояние продана – $\pi\pi^*$ -типа, как для плоской, так и для неплоской структуры зонда (см. табл. 4). При сопоставлении экспериментальных (рис. 4) и теоретических (см. табл. 4) результатов видно, что спектр флуоресценции продана в циклогексане сформирован $S_1 \rightarrow S_0$ -переходами, которые соответствуют устойчивым конформациям молекулы с глобальным и локальным минимумами энергии. Расстояние между этими переходами 500 см⁻¹.

Полученные данные для плоской структуры продана в возбужденном состоянии можно сопоставить с данными работы [7], в которой также был проведен расчет методом TDDFT для оптимизированной на более высоком уровне геометрии продана. Согласно им, положение S_1 -состояния продана соответствует 25730 см⁻¹ (газовая фаза) и 24920 см⁻¹ (циклогексан).

Для молекулы промена результаты расчета в газовой фазе как для плоской, так и для неплоской конформации молекулы в возбужденном состоянии дают два близколежащих состояния $n\pi^*$ и $\pi\pi^*$ -типа, причем $n\pi^*$ -состояние – нижнее (см. табл. 4). Учет растворителя приводит к инверсии этих состояний. Расстояние между переходами, соответствующими устойчивым конформациям промена с глобальным и локальным минимумами энергии в циклогексане, – 820 см⁻¹ (табл. 4). Таким образом, полагаем, что спектр флуоресценции промена в циклогексане сформирован $S_1 \rightarrow S_0$ переходами, принадлежащими плоской и неплоской конформациям молекулы. На основании экспериментальных данных по спектрам поглощения промена в циклогексане ($\lambda_{max} = 33140 \text{ см}^{-1}$) [15] и результатов теоретического расчета молекулы (табл. 4) величина стоксова сдвига ~ 5500 см⁻¹.

Таблица 4

Результаты расчета энергетических уровней (*E*, см⁻¹) и сил осциллятора (*f*) молекул продана (структуры соответствующие глобальному и локальному минимумам энергии в возбужденном состоянии) методом TDDFT/B3LYP в газовой фазе и с учетом растворителя (циклогексан)

	Продан (плоская структура)				Продан (неплоская структура)			
S	Газовая фаза		Циклогексан		Газовая фаза		Циклогексан	
	Ε	f	Ε	f	Ε	f	Ε	F
S_1	25720 (ππ [*])	0,226	24690 (ππ [*])	0,335	25290 (ππ [*])	0,236	24190 (ππ [*])	0,346
S_2	29280 $(n\pi^*)$	0,000	28960 (ππ [*])	0,081	$28130 (n\pi^*)$	0,000	28840 $(n\pi^*)$	0,001
S_3	29490 (ππ [*])	0,058	29900 $(n\pi^*)$	0,000	29490 (ππ [*])	0,036	28980 (ππ [*])	0,051
	Промен (плоская структура)			Промен (неплоская структура)				
S_1	$28600 (n\pi^*)$	0,000	27880 (ππ [*])	0,204	27440 $(n\pi^*)$	0,000	27060 (ππ [*])	0,217
S_2	28600 (ππ [*])	0,127	29180 $(n\pi^*)$	0,000	27920 (ππ [*])	0,15	$28080 (n\pi^*)$	0,000
S_3	31260 (ππ [*])	0,031	31070 (ππ [*])	0,041	31030 (ππ [*])	0,006	30850 (ππ [*])	0,012

Проанализируем распределение эффективных зарядов в возбужденном $\pi\pi^*$ -состоянии молекул продана и промена (табл. 5). Для плоской структуры продана в $S_{\pi\pi^*}$ -состоянии, по сравнению с основным, наблюдается перенос заряда с атома азота диметиламиногруппы на атом кислорода пропионильной группы молекулы и атомы углерода ароматических колец зонда. Для неплоской структуры продана в возбужденном состоянии эффективный заряд перераспределяется с атомов углерода ароматического скелета на атом кислорода молекулы. Изменение эффективного заряда на атоме азота N(CH₃)₂-группы продана при переходе из S₀- в S_{$\pi\pi^*}-состояние при этом мало. Рас-</sub>$

Таблица 5

Распределение эффективных зарядов (по Малликену) в молекулах продана и промена в возбужденном ππ^{*}-состоянии

№ атома	Продан (плоская структура)	Продан (неплоская структура)	Промен (плоская структура)	Промен (неплоская структура)
C ₁	0,160	0,159	-0,188	-0,163
C ₂	-0,306	-0,287	0,052	0,077
C ₃	0,051	0,084	-0,220	-0,270
C ₄	-0,161	-0,179	0,195	0,164
C ₅	-0,269	-0,277	0,216	0,212
C ₆	0,245	0,241	-0,239	-0,240
C ₇	-0,311	-0,306	-0,229	-0,200
C ₈	0,369	0,365	-0,203	-0,193
C ₉	-0,323	-0,316	0,200	0,200
C ₁₀	-0,259	-0,252	-0,350	-0,294
C ₁₁	0,118	0,107	0,141	0,096
N ₁	-0,246	-0,245	-	—
O ₁	-0,302	-0,307	-0,218	-0,195
O ₂	_	_	-0,278	-0,321

пределение эффективных зарядов на атомах кислорода пропионильной и OCH₃-групп в молекуле промена (плоская структура) в $\pi\pi^*$ -состоянии изменяется мало по сравнению с основным. Для неплоской структуры промена при переходе из S₀- в S_{$\pi\pi^*$}-состояние наблюдается перераспределение заряда с атома кислорода OCH₃-группы на атом кислорода пропионильной группы и атомы угле-

рода ароматического скелета молекулы. При этом, как и в основном состоянии, для обеих молекул наблюдаются значительные по величине отрицательные эффективные заряды, локализованные на атомах углерода ароматического скелета, что позволяет говорить о сильной деформации ароматических колец.

На последнем этапе работы была проведена попытка разделить вклады универсальных и специфических межмолекулярных взаимодействий (MMB) в смещение полосы флуоресценции продана при смене полярности продана. В качестве неполярного растворителя мы использовали циклогексан, а в качестве полярного растворителя – воду. Экспериментальное значение величины смещения максимума полосы флуоресценции продана при переходе от циклогексана в воде составило 6110 см⁻¹ [23]. Результаты проведенного расчета показали, что в рамках модели IEFPCM вклад универсальных MMB в сдвиг полосы флуоресценции при переходе от циклогексана к воде – 740 см⁻¹: $E(S_1) = 24690$ см⁻¹ (продан в циклогексане (см. табл. 5)), $E(S_1) = 23950$ см⁻¹ (продан в воде). В модели IEFPCM растворитель описывается только поляризационным континуумом с диэлектрической постоянной ε [18] и не учитывается влияние ряда параметров растворителя (кислотность, основность, полярность и др.) кислотных свойств растворителя. Для воды необходим учет параметра кислотности.

Заключение

В ходе работы было проведено квантово-химическое исследование спектральных свойств молекул продана и промена. Изучены проявления конформаций продана и промена в спектрах поглощения и флуоресценции молекул. Полученные результаты показали:

1. Спектр поглощения продана в длинноволновой области сформирован устойчивыми конформациями молекулы, соответствующими плоской структуре зонда и структуре с отклонением связи $C_{12}C_{13}$ на угол 83° и связи N_1C_{14} на угол -38°.

2. Спектр флуоресценции продана сформирован устойчивыми конформациями молекулы, соответствующими плоской структуре зонда и структуре с отклонением связи $C_{12}C_{13}$ на угол 108° и связи N_1C_{14} на угол -7° .

3. Спектр поглощения промена сформирован устойчивыми конформациями молекулы, соответствующими его плоской структуре и структуре с отклонением связи C₁₂C₁₃ на угол 92°.

4. Спектр флуоресценции промена сформирован устойчивыми конформациями молекулы, соответствующими его плоской структуре и структуре с отклонением связи C₁₂C₁₃ на угол 99°.

5. Согласно результатам нашего расчета, во флуоресцентном состоянии молекула продана не может существовать ни в О-ТІСТ-, ни в N-ТІСТ-конформациях.

6. В молекулах продана и промена в основном и возбужденном состояниях наблюдается сильная деформация ароматических колец.

6. В рамках модели IEFPCM вклад универсальных ММВ в смещение полосы флуоресценции продана при переходе от циклогексана к воде составил ~ 12 %.

СПИСОК ЛИТЕРАТУРЫ

- Добрецов Г.Е. Флуоресцентные зонды в исследовании клеток, мембран и липопротеинов. М.: Мир, 1989. – 500 с.
- 2. Parusel A.B.J., Schamschule R., and Kohler G. // J. Mol. Structure (Theoch). 2001. V. 544. P. 253-263.
- Parasassi T, Krasnowska E.K., Bagatolli L., and Gratton E. // J. Fluoresc. 1998. No. 4. - P. 365-373.
- 4. Rowe B.A., Roach C.A., Lin J., et al. // J. Phys. Chem. A. 2008. V. 112. P. 13402-13412.
- 5. Moyano F., Biasutti M.A., Silber J.J., and Correa N.M. // J. Phys. Chem. B. 2006. V. 10. P. 11838-11846.
- 6. Novaira M., Biasutti M.A., Silber J.J., and Correa N.M. // J. Phys. Chem. B. 2007. V. 111. P. 748-759.
- 7. Mennucci B., Caricato M., Ingrosso F., et al. // J. Phys. Chem. B. 2008. V. 112. P. 414-423.
- 8. Adhikary R., Barnes C.A., and Petrich J.W. // J. Chem. B. 2009. V. 113. P. 11999–12004.
- 9. Everett R.K., Nguyen H.A.A., and Abelt C.J. // J. Phys. Chem. A. 2010. V. 114. No. 14. P. 4946–4950.
- 10. Kutsenko O.K., Trusova V.M., Gorbenko G.P., et al. // J. Fluoresc. 2011. V. 21. P. 1689-1695.
- Морозова Ю.П. Жаркова О.М., Балакина Т.Ю. и др. // Журн. прикл. спектр. 2009. Т. 76. – № 3. – С. 334–341.

- 12. Титова Т.Ю., Морозова Ю.П., Жаркова О.М. и др. // Изв. вузов. Физика. 2012. Т. 55. № 4. С. 369–377.
- Жаркова О.М., Морозова Ю.П., Лукашевская А.А. и др. // Изв. вузов. Физика. 2008. Т. 51. – № 1. – С. 10–17.
- 14. Weber G. and Farris F.G. // Biochemistry. 1979. V. 18. No. 14. P. 3075-3078.
- 15. Catalan, J., Perez P., Laynez J., et al. // J. Fluoresc. 1991. No. 1. P. 215-225.
- 16. Rosenthal J., Young E.R., and Nocera D.G. // Inorg. Chem. 2007. V. 46. P. 8668-8675.
- 17. Schmidt M.W., Baldridge K.K., Boatz J.A., et al. // J. Comput. Chem. 1993. V. 14. P. 1347-1363.
- 18. Li H., Pomelli C.S., and Jensen J.H. // Theor. Chem. Acc. 2003. V. 109. P. 71-84.
- 19. http://skif.tsu.ru/
- 20. Grimme S. and Neese F. // J. Chem. Phys. 2007. V. 127. P. 154116-154128.
- 21. Ilich P. and Prendergas F.G. // J. Phys. Chem. 1989. V. 93. P. 4441-4447.
- 22. Parusel A.B.J., Nowak W., Grimme S., and Köhler G. // J. Phys. Chem. A. 1998. V. 102. P. 7149-7156.
- 23. Лакович Дж. Основы флуоресцентной спектроскопии. М.: Мир, 1986. 496 с.
- 24. Lakowicz J.R. Principles of fluorescence spectroscopy. New York: Kluwer Academic Plenum Publishers, 2nd ed., 1999. 698 p.
- 25. Артюхов В.Я., Морозова Ю.П. Жаркова О.М. // Журн. прикл. спектр. 2005. Т. 72. № 3. С. 330–336.
- 26. Artukhov V.Ya., Zharkova O.M., and Morozova Ju.P. // Spectrochim. Acta A. 2007. V. 68. P. 36-42.
- 27. Kawski A., Kuklinski B., and Bojarski P. // Z. Naturforsch. 2000. V. 55a. P. 500–509.
- 28. Nemkovich N.A. and Baumann W. // J. Photochemi. Photobiol. A. 2007. V. 185. P. 26–35.
- 29. Zurawsky W.P. and Scarlata S.F. // J. Phys. Chem. 1992. V. 96. P. 6012-6021.
 - *Национальный исследовательский Томский государственный университет, г. Томск, Россия Поступила в редакцию 02.11.12, после доработки – 27.03.13.
 - **Самаркандский государственный университет им. Алишера Навои,

г. Самарканд, Узбекистан

E-mail: morj69@mail.ru

Жаркова Оксана Михайловна, к.ф.-м.н., доцент каф. оптики и спектроскопии;

Рахимов Шерзод Исмоилович, к.ф.-м.н.;

Морозова Юлия Петровна, к.ф.-м.н., доцент каф. оптики и спектроскопии.