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ABSTRACT
Bachelor’s thesis 90 pages, 10 pictures, 9 tables, 7 appendices.

Key words: Edible oils, Raman spectroscopy, fluorescence spectroscopy, ultraviolet-

visible spectroscopy, principal component analysis.
The object of the study is photooxidation effect on edible oils.

The subject of the work is the ability of spectroscopic techniques paired with principal

component analysis to identify photooxidation effect on different edible oils.

The purpose of the study is to identify the best spectroscopic technique able to
differentiate oils exposed to light from ones kept properly with the help of principle component

analysis.
Work results:
1)The measurements were analyzed using principal component analysis;
2)The results were compared using the validation score;
3) The best spectroscopic method for each oil was identified.
Brief description.

Studies of real food shelf life are not often applied in scientific studies, mainly because of
the time and budget required for such analyses. However, such studies are very useful for
understanding the quality changes that edible oils, including Almond oil, group of olive oils
(Olive oil France, Olive oil Poland, olive oil Kenya, EVOO Greek, EVOO lItaly), vegetable oils
(Fortune oil, Gingerly oil, Mustard delhi oil, Sesame oil), and some other oils (Assam oil, Oelh
oil, White bottle oil), undergo during the often very long periods of light exposure in the market.
With this in mind, we conducted a study where all the above-mentioned oils underwent the
photooxidation effect for a year. Spectroscopic techniques used in the current study, including
ultraviolet-visible spectroscopy, fluorescence spectroscopy, and Raman spectroscopy, do not
need a special sample preparation, which significantly lower the price and time consumed on the
study. Principal component analysis (PCA) is a statistical technique used to reduce the
dimensionality of large datasets while preserving as much information as possible, is commonly
used for identifying patterns and relationships between variables and provides a better
understanding of the data by creating a lower-dimensional representation of the dataset that
retains most of the relevant information. This allows comparing these techniques in terms of

ability to separate photooxidized samples from those kept properly.



CONTENT

GO S S ARY ettt E et e e b bt e e e b b e e e e e aba e e e e anraeeas 3
INTODUGCTION ...ttt e et e e e e bbb e e e e e st bt e e e e e nbbe e e e s anbbe e e e e annbeeas 4
1. Background information on photooxidation and its effects on edible 0ilS .............ccccceviinn, 5
1.1 Brief overview of different spectroscopic methods used for analysis.............ccccocvvriernnene 5
1.2 Statement of the research problem and purpose of the Study .........c.cccooviiiiiiiiicieee, 6
2 LITEIALUIE TEVIBW ...tttk ekttt ettt s ettt et et e et e be e e i 8
2.1 In-depth analysis of existing research on the tOPIC .........cccveivieiiiiiieiie e 8
2.2 Detailed description of spectroscopic teChNIQUES USEU .........c.ccoveiriieriieiiiiniieiiee e 9
2.2.1 UV-VIS SPECIIOSCOPY ... .vveenvreenteeaiteesteeasteeasteeatsaesteeaste e st e e beessbeessbeeabeeebeeanbeenbeeenbeeanne e 10
2.2.2 FIUOIESCENCE SPECLIOSCOPY ..uvvesrietreanteesnteestteesteeasteessbeesteeabeessbeesbeeebeeanbeesbbeenbeeanaee e 12
2.2.3 RAMAN SPECIIOSCOPY ...veeuvteeenitreetteee sttt e sttt ettt ettt et e e st et e et e et e e et eennnee e 14
2.2.4 CONCIUSION. ...ttt ettt ettt h bttt et asb e srb e e b e b 16
2.3 Machine learning and principal component analysis............cccccevviveiiiies e 16
2.3. 1 PriINCIPIES OF PCA ... ettt e et e e et eenntaeeaneee s 17
2.4 Applications of PCA in food SCIENCE reSEArCh ..........ccvveviiieeiiiie e 18
3 Materials and MEtNOUS ..........cooiiiiiiiiii s 20
UL MALETIAIS ... 20
3.2 EXPEIIMENTAL SELUD ...eeieviee ittt e e e et e et e e et a e et e e e sntaeeanneeas 20
3.3 Explanation of the principal component analysiS ProCESS ..........ccvvvevrvreiiiveeeiieeesiieesiieeens 21
3.4 ValIdALION SCOTE.......eiiiiiiiieiti ettt ettt b ettt e bbbt e ne e 23
4 RESUILS ...t h bbbt bbbttt n e 25
4.1 Ultraviolet-ViSiDIe data ..........ccveiiiiiiiei e 25
4.2 FIUOIESCENCE TALA ... etttk ettt ettt nneas 27
4.3 RAMAN GALA.....c.eeeeteiie ettt ettt e bt e bt ettt e e 39
4.4 Comparison of all spectroscopic techniques coupled with PCA............ccoovveiiiiiiiieeiiinn, 41
5. CONCIUSION ...ttt et b ettt ettt 42

REFERENGCES ... 43



APPEND X A 48

APPENDIX B e o4
APPENDIX C. .ttt 60
APPENDIEX Dttt 66
APPEND X E L. 72
APPEND DX F e 78
APPENDIX Gttt 84



GLOSSARY

EVOO - extra virgin olive oil. High-quality, unrefined olive oil that is made from the fruit

of the olive tree.

PC — principal component. Linear combination of the original variables in a dataset that

captures the maximum amount of variation in the data.

PCA — principal component analysis. Statistical technique used to reduce the
dimensionality of a dataset by identifying the most important patterns or trends in the data through

the extraction of principal components.

STD - standard deviation. Statistical measure that quantifies the amount of variation or

dispersion in a set of data

UV-Vis spectroscopy — ultraviolet-visible spectroscopy. Type of analytical technique that
uses light in the ultraviolet and visible regions of the electromagnetic spectrum to study the

electronic transitions of molecules



INTODUCTION

Edible oils are commonly used in food production and are crucial in providing essential
nutrients in people’s daily diet [1]. However, they are susceptible to oxidative degradation, which
can lead to the formation of harmful compounds, such as free radicals and peroxides, that adversely
affect the oil's quality, nutritional value, and safety. Therefore, it is important to monitor the extent
of oxidation in edible oils to ensure their quality and safety.

Spectroscopic techniques have been extensively used for the detection and monitoring of
oxidation in edible oils due to their high sensitivity, rapid analysis time, and non-destructive
nature. Among these techniques, UV-Vis spectroscopy, fluorescence spectroscopy, and Raman
spectroscopy have shown promising results in detecting and monitoring the photooxidation of
edible oils.

UV-Vis spectroscopy has been widely used to monitor the changes in the absorbance
spectra of edible oils during photooxidation. Fluorescence spectroscopy has also shown great
potential in detecting the changes in the fluorescence signal of edible oils during oxidation. Raman
spectroscopy, on the other hand, has been used to detect the changes in the Raman signal of edible

oils induced by photooxidation.

In addition, multivariate analysis techniques, such as principal component analysis (PCA),
have been used to analyze the spectroscopic data obtained from the different spectroscopic
techniques to identify key spectral features that contribute to the differentiation of oils undergoing

photooxidation.

This diploma work aims to investigate the ability of UV-Vis spectroscopy, fluorescence
spectroscopy, and Raman spectroscopy to differentiate oils underwent photooxidation effect with
the use of PCA. The research will review existing literature on the application of spectroscopic
techniques in monitoring the photooxidation of edible oils and provide an in-depth analysis of the
advantages and limitations of each spectroscopic technique. Furthermore, this research will utilize
PCA to analyze the spectroscopic data obtained from different spectroscopic techniques to

ascertain which spectroscopic method differs spoiled oils from those kept properly.

Through this research, we hope to contribute to the development of more effective methods
for monitoring the photooxidation of edible oils and provide a better understanding of the potential

of spectroscopic techniques and PCA in food science research.



1. Background information on photooxidation and its effects on edible oils

Photooxidation is a process that occurs when a substance is exposed to light and oxygen,
leading to the formation of free radicals and other reactive oxygen species (ROS) [2]. This process
is known to cause significant changes in the chemical composition and physical properties of oils,
which can have implications for their shelf life, sensory quality, and nutritional value [3].

Spectroscopic methods are commonly used in food science research to analyze the
chemical composition and physical properties of different food components. These methods
include ultraviolet (UV-Vis) spectrophotometry, Raman spectroscopy, and fluorescence
spectroscopy. UV-Vis spectrophotometry is a technique that measures the absorbance of light by
a substance in the ultraviolet and visible regions of the electromagnetic spectrum [4]. Raman
spectroscopy is a technique that measures the scattering of light by a sample. Raman spectroscopy
is particularly useful for studying the vibrational modes of molecules, and can provide information
about the functional groups and chemical bonds present in a sample [5]. Fluorescence spectroscopy
measures the emission of light by a substance after excitation by a light source, providing

information about the presence of specific compounds or functional groups [6].

Principal component analysis (PCA) is a multivariate statistical technique used to analyze
large data sets and identify patterns or relationships between variables [7]. This technique has been
used in food science research to analyze spectroscopic data and identify differences between

samples based on their chemical composition.
1.1 Brief overview of different spectroscopic methods used for analysis
Ultraviolet-visible spectroscopy.

UV-Vis spectroscopy is a technique used to study the interaction of light with matter in the
ultraviolet (UV) and visible (Vis) regions of the electromagnetic spectrum. The basic principle of
UV-Vis spectroscopy is based on the Beer-Lambert law [8], which states that the amount of light
absorbed by a substance is directly proportional to the concentration of the absorbing species in

the sample.

UV-Vis spectroscopy has been used to study the photooxidation of edible oils, which
indicated the presence of free radicals and secondary oxidation products [9]. It is a powerful tool
for the analysis of edible oils and can provide important insights into the chemical and structural

changes that occur during processing, storage, and oxidation.



Fluorescence spectroscopy.

Fluorescence spectroscopy is a technique used to study the interaction of light with matter.
It involves an exciting of a sample with light of a certain wavelength, and then measuring the light
emitted by the sample as it relaxes back to its ground state. This emitted light, or fluorescence, can
provide information about the chemical and structural properties of the sample.

The study of fluorescence characteristics of edible oils subjected to thermal and photo-
oxidation processes showed a general reduction of fluorescence intensity, which may result from
decomposition of the fluorophores. For photooxidised oils together with qualitative changes
different for every oil the analysis showed a decrease of the tocopherol and chlorophyll
fluorescence [10], as well as the oxidation of lipids [11]. It is considered to be a powerful tool for
the analysis of edible oils and can provide important insights into the chemical and structural
changes that occur during storage and oxidation.

Raman spectroscopy.

Raman spectroscopy is a non-destructive technique used to study the vibrational modes of
molecules in a sample. It involves shining a laser onto the sample, and then measuring the scattered
light that results. This scattered light contains information about the molecular vibrations in the

sample and can be used to conduct both qualitative and quantitative analysis.

The basic principle of Raman spectroscopy is based on the Raman effect, which occurs
when the laser light interacts with the sample, causing a shift in the energy of the light. This shift
in energy is known as Raman scattering, named after its discoverer, Indian physicist Sir C. V.
Raman, who first observed it in 1928 [12].

Raman spectroscopy has been used to study the composition and structure of edible oils
[13], as well as to monitor the lipid oxidation of oils [14]. It is a powerful tool for the analysis of
edible oils and can provide important insights into the chemical and structural changes that occur

during storage, and oxidation.
1.2 Statement of the research problem and purpose of the study

The aim of this diploma work is to investigate different spectrophotometry methods in
terms of differentiation of edible oils which underwent the photooxidation process from oils ones
kept in the darkness. Specifically, UV-Vis spectrophotometry, Raman spectroscopy, and

fluorescence spectroscopy were used in the current study. The principal component analysis (PCA)



will be used to identify the ability of spectroscopic techniques to differ oils exposed to light from
oils kept in dark conditions.



2 Literature review

2.1 In-depth analysis of existing research on the topic

The photooxidation of edible oils is a complex process that can result in the formation of
oxidative products and changes in the chemical and physical properties of the oils, including the
development of off-flavors, discoloration, and a decrease in nutritional value. The understanding
of the photooxidation process is important for the food industry, as it can help to develop strategies
to prevent or minimize the damage caused by light exposure. Spectroscopic techniques have been
widely used to study the photooxidation process in edible oils. PCA is a multivariate statistical

technique that can be used to analyze spectroscopic data and extract useful information.
UV-Vis spectroscopy.

UV-Vis spectroscopy is a powerful tool that has been widely used to study the
photooxidation of edible oils. UV-Vis spectroscopy measures the absorption of light in the UV
and visible regions of the electromagnetic spectrum, providing information on the electronic
transitions of the molecules in the sample. UV-Vis spectroscopy coupled with chemometrics was
used effectively to study the impact of heating on edible oils and determine their acid value. The

peak at 370 nm is confirmed to be an indicator of the heated oil [15].
Fluorescence spectroscopy:

Fluorescence spectroscopy is another spectroscopic technique that has been used to study
the photooxidation of edible oils. Fluorescence spectroscopy measures the emission of light by
molecules that have been excited by light of a certain wavelength, providing information on the

structural and chemical changes of the molecules in the sample.

The study of fluorescence signal of light and dark samples of extra virgin olive oil (EVOO)
showed the significant lower tocopherol, carotenoid and chlorophyll contents, higher values of
triglyceride oligopolymers and contained products of secondary oxidation. Therefore, it was made
a conclusion that after only 2 months of exposure to light the oils examined could no longer be
considered as extra virgin [16], while the official storage period of EVOO is 2 years. The study of
fluorescence characteristics of edible oils subjected to thermal and photooxidation processes
showed a general reduction of fluorescence intensity, which may result from decomposition of the
fluorophores. The study of the total luminescence spectroscopy proved the ability of the technique

to characterize the effect of thermal and photo-oxidation on vegetable oils [17]. For photooxidised



oils together with qualitative changes different for every oil the analysis showed a decrease of the
tocopherol and chlorophyll fluorescence [10].

Raman spectroscopy.

Raman spectroscopy is a non-destructive spectroscopic technique that has been used to
study the photooxidation of edible oils. Raman spectroscopy measures the scattering of light by

molecules in the sample, providing information on the vibrational modes of the molecules.

In the research aimed at the study of the thermal degradation of edible oils surface enhanced
Raman spectroscopy was used [18]. The comparative study of Raman and visible spectroscopy in
terms of adulteration detection with the use of partial linear square (PLS) analysis [19]. The
combination of spectroscopic data with PLS regression allowed quantitative measurement of
adulterants in EVOO. Specifically, using a validation set of five samples, the root mean square
error (MSE) of prediction was 3.3 and 3.2% for Raman and visible spectroscopy, respectively [20].

Conclusion.

Spectroscopic techniques, such as UV-Vis spectroscopy, fluorescence spectroscopy, and
Raman spectroscopy, have been widely used to study the photooxidation of edible oils. These
techniques provide valuable information on the chemical and physical changes that occur during
the photooxidation process. Moreover, these methods are considered to be relatively inexpensive
and do not require special sample preparation. PCA has been used to analyze spectroscopic data
and extract useful information. The results of these studies have shown that the changes in the
spectroscopic parameters are correlated with the degree of photooxidation, indicating the potential
use of spectroscopic techniques for monitoring the photooxidation process in edible oils. The
combination of PCA with spectrophotometry methods and different statistical approaches allows
to clusterize samples based on their features, differentiate groups of samples from each other with
high assurance, and determine degradation effects with a minimum sample preparation. The goal
of the present work was to investigate the sensitivity of different spectroscopic techniques (Raman
spectroscopy, UV-Vis spectroscopy and fluorescence spectroscopy) on the photooxidation effect

of various edible oils with the help of PCA.
2.2 Detailed description of spectroscopic techniques used

Spectroscopic methods are powerful analytical tools that can provide valuable information
about the chemical and physical properties of a sample. However, each spectroscopic method has

its own advantages and limitations. In this section, we will compare the advantages and limitations



of three commonly used spectroscopic methods: UV-Vis spectroscopy, fluorescence spectroscopy,
and Raman spectroscopy.

2.2.1 UV-Vis spectroscopy

UV-Vis spectroscopy is a technique for the analysis of organic and inorganic compounds.
This technique is based on the absorption of ultraviolet and visible part of the electromagnetic
spectrum by the molecules, which results in the promotion of electrons from the ground state to
the excited state. The UV-Vis absorption signal provide information about the electronic structure
of a molecule, such as the presence of double bonds, conjugated systems, and functional groups.
The UV-Vis spectra are also sensitive to the chemical environment of the molecule, such as solvent
polarity, pH, and temperature, which makes this technique useful for studying the stability and
reactivity of compounds. The basic principle of UV-Vis spectroscopy is based on the Beer-
Lambert law (1), which states that the amount of light absorbed by a substance is directly

proportional to the concentration of the absorbing species in the sample.

A = ecl, 1)

where A — absorbance;

e-molar absorption coefficient [M~1cm™1];
¢ — molar concentration;

| — optical path length.

In UV-Vis spectroscopy, a beam of light with a broad range of wavelengths is passed
through a sample. The intensity of the light passing through the sample is measured using a
detector, and the data is analyzed to determine the absorbance spectrum of the sample. The
schematic illustration is presented in the Figure 1. Absorbance spectrum can provide information
on electronic transitions of molecules in the sample, which can be used to study the chemical and

structural properties of the sample.

10



/1N

g

i

Monochromator  Sample  Dotoctor Recordor

holder

Light
source

Figure 1 - The schematic representation of the main principle of an UV-Vis spectrometer.

Just like any other spectroscopic technique UV-Vis spectroscopy has its own advantages

and limitations. Among advantages the most important are:

The technique is non destructive, allowing the sample to be reused or proceed to

further processing or analyses.

Measurements can be made quickly, allowing easy integration into experimental

protocols.
Instruments are easy to use, requiring little user training prior to use.

Data analysis generally requires minimal processing, again meaning little user

training is required.

The instrument is generally inexpensive to acquire and operate, making it

accessible for many laboratories [21,22].

However, some of limitations make the technique imperfect. Among them such

disadvantages as:

Stray light. In a real instrument, wavelength selectors are not perfect and a small
amount of light from a wide wavelength range may still be transmitted from the
light source, possibly causing serious measurement errors. Stray light may also

come from the environment or a loosely fitted compartment in the instrument.

Light scattering. Light scattering is often caused by suspended solids in liquid
samples, which may cause serious measurement errors. The presence of bubbles in

the cuvette or sample will scatter light, resulting in irreproducible results.

11



e Interference from multiple absorbing species. A sample may, for example, have
multiple types of the green pigment chlorophyll. The different chlorophylls will
have overlapping spectra when examined together in the same sample. For a proper
quantitative analysis, each chemical species should be separated from the sample

and examined individually.

e Geometrical considerations. Misaligned positioning of any one of the instrument's
components, especially the cuvette holding the sample, may yield irreproducible
and inaccurate results. Therefore, it is important that every component in the
instrument is aligned in the same orientation and is placed in the same position for
every measurement. Some basic user training is therefore generally recommended

to avoid misuse [21,22].
2.2.2 Fluorescence spectroscopy

Fluorescence spectroscopy is a sensitive and selective technique for the analysis of organic
and biological samples. Fluorescence spectroscopy is based on the emission of light by the
molecules that have been excited by absorption of light. The fluorescence spectra provide
information about the electronic structure, energy levels, and molecular environment of the
compounds. The basic principle of fluorescence spectroscopy is based on the Jablonski diagram,
shown in the Figure 2, which illustrates energy levels of a molecule and transitions that occur
during excitation and relaxation. When a molecule absorbs light, it is excited to a higher energy
state, and then quickly relaxes back to its ground state by emitting a photon of light. The energy
difference between the absorbed and emitted light is characteristic of the molecule and can be used
to identify and quantify it.

12
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Figure 2 - Jablonski diagram.

Despite all the advantages of fluorescence spectroscopy it has its pros and cons. Among

advantages the following can be noted:

Its high sensitivity is the main advantage of fluorimetry.
Due to the unique optical properties of the component, it has high specificity.

You can determine the fluorescence intensity, decay time, and component

concentration.
May be insensitive to light scatter.

Emitted light is read at the correct angle to the exciting light, reducing background

signal

These types of methods have a wide range of linearity [23].

The limitations of fluorescence spectroscopy include:

The main disadvantage of fluorescence spectroscopy is that not all molecules

fluoresce.
It has limitations related to loss of recognition ability and photostability.

Sensitive to interference from changes in sample pH and oxygen levels.

13



e |t is sensitive to sample autofluorescence.

e Problem related to potential toxicity, due to foreign bodies in biological media.

e The short life of fluorophores is another disadvantage of fluorometry [23].
2.2.3 Raman spectroscopy

Raman spectroscopy is a vibrational spectroscopic technique that provides information
about molecular structure and chemical bonds of samples. Raman spectroscopy is based on the
scattering of light by molecules, which results in a shift in frequency of scattered photons due to
interaction with the molecular vibrations. The Raman signal provide information about the

functional groups, symmetry, and molecular vibrations of compounds.

In Raman scattering, when a photon interacts with a molecule, the energy of the photon is
either absorbed or scattered in a new direction. Most of the scattered light has the same energy as
the incident light (which is called Rayleigh scattering), but a small fraction of the scattered light
has a different energy due to energy transfer between the molecule and the photon [24]. This shift
in energy is known as the Raman shift, and it provides information about the vibrational and
rotational modes of the molecule. The scattered light contains a spectrum of frequencies, which
corresponds to the vibrational modes of molecules in a sample. A vibrational mode that changes
the molecular polarizability (dipole moment induced by the electric field) results in a change in
the energy of the incident photon. The difference in energy between incident photons and
inelastically scattered photons is called the Raman shift. Graph of the dependence of the intensity

of inelastically scattered light on the change in energy is called the Raman spectrum [25].
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Figure 3 - The schematical representation of the Raman effect.

Despite that fast that Raman spectroscopy is seem to be a promising tool for any kind of

studies, it has advantages and disadvantages. The advantages are:

e Many organic and inorganic materials are suitable for Raman analysis. These can

be solids, liquids, polymers or vapors.
e No sample preparation needed.
e Not interfered by water.
e Non-destructive.
e Highly specific like a chemical fingerprint of a material.
e Raman spectra are acquired quickly within seconds.
e Samples can be analyzed through glass or a polymer packaging.

e Laser light and Raman scattered light can be transmitted by optical fibers over long

distances for remote analysis.

¢ In Raman spectroscopy, the region from 4000 cm-1 to 50 cm-1 can be covered by

a single recording.
e Raman spectra can be collected from a very small volume (< 1 pm in diameter).
¢ Inorganic materials are easy to analyze with Raman spectroscopy [26].
The disadvantages are:
e Can not be used for metals or alloys.

e The Raman effect is very weak. The detection needs a sensitive and highly

optimized instrumentation.

e Fluorescence of impurities or of the sample itself can hide the Raman spectrum.

Some compounds fluoresce when irradiated by the laser beam.

e Sample heating through the intense laser radiation can destroy the sample or cover
the Raman spectrum [26].

15



2.2.4 Conclusion

In summary, UV-Vis spectroscopy, Raman spectroscopy, and fluorescence spectroscopy
are considered to be powerful tools for the analysis of edible oils and the detection of
photooxidation and oxidative degradation products. Each technique has its pros and cons, and the
choice of the technique depends on the specific requirements of the analysis. UV-Vis spectroscopy
is a versatile and widely used method, but it may not be suitable for the analysis of complex
samples. Fluorescence spectroscopy is highly sensitive but can be affected by sample matrix
effects. Raman spectroscopy provides highly specific information on the chemical structure and
composition of a sample, but its sensitivity can be limited. The combination of these spectroscopic
techniques with multivariate analysis, such as principal component analysis (PCA), can provide a
more comprehensive and accurate analysis of the samples. Researchers should carefully consider
the advantages and limitations of each spectroscopic method when selecting a method for their

analysis.
2.3 Machine learning and principal component analysis

Machine learning (ML) is a branch of artificial intelligence that enables computer systems
to learn from data and improve their performance on a given task over time. Machine learning
(ML) is a field devoted to understanding and building methods that let machines "learn” — that is,

methods that leverage data to improve computer performance on some set of tasks [27].

Machine learning algorithms build a model based on sample data, known as training data,
in order to make predictions or decisions without being explicitly programmed to do so [28].
Machine learning algorithms are used in a wide variety of applications, such as in medicine, email
filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible

to develop conventional algorithms to perform the needed tasks [29,30].

A subset of machine learning is closely related to computational statistics, which focuses
on making predictions using computers, but not all machine learning is statistical learning. The
study of mathematical optimization delivers methods, theory and application domains to the field

of machine learning [31].

Machine learning algorithms can be further classified into various categories based on their

learning approach [28], such as:

e Supervised Learning. Uses labeled data to train a model to make predictions on

new, unseen data.

16



e Unsupervised Learning. Identifies patterns and relationships within the data itself,

without the need for explicit guidance or supervision from a teacher.

e Reinforcement Learning. Learns by interacting with an environment and receiving

rewards or penalties based on its actions.

e Semi-supervised Learning. Uses a combination of labeled and unlabeled data to

train a model.

Principal Component Analysis (PCA) is an unsupervised learning technique for reducing
the dimensionality of high-dimensional data. It involves transforming a set of correlated variables
into a new set of uncorrelated variables, known as principal components, while retaining as much

of the original variance as possible [32,33].

PCA can be used for a variety of applications, including data visualization, feature
selection, and anomaly detection. It can also be used as a preprocessing step prior to using other

machine learning techniques such as clustering, classification, or regression [33-37].

Principal component analysis (PCA) is a powerful multivariate data analysis tool that has
been widely used in food science research for pattern recognition, data visualization, and data
reduction. PCA is a mathematical technique that transforms the original variables in a dataset into
a smaller number of uncorrelated variables called principal components (PCs), which capture the
most important variations in the data. In this section, we will review the principles and applications

of PCA in food science research.
2.3.1 Principles of PCA

PCA is based on the linear algebraic technique of eigenvalue decomposition, which is used
to extract the PCs from the original dataset. The first PC is chosen to maximize the variance in the
dataset, and each subsequent PC is chosen to maximize the remaining variance in the dataset,
subject to the constraint that it is uncorrelated with the previous PCs. The PCs are ordered in
decreasing order of variance, and the first few PCs capture most of the variation in the data. The
PCs can be plotted in order to visualize the data and identify patterns and relationships among the

variables [7].

PCA has many practical applications, such as image compression, noise reduction, feature

extraction, and data visualization. In machine learning, PCA is often used as a preprocessing step

17



to reduce the number of features in a dataset before training a model, which can improve the

model's performance and reduce overfitting.

PCA is based on linear algebra and involves several mathematical concepts, including
matrix multiplication, eigenvalues, eigenvectors, and singular value decomposition. Here is a brief

overview of the mathematical mechanism behind PCA:

o Data standardization is the first step in PCA is to standardize the data by subtracting
the mean and dividing by the standard deviation of each variable. This ensures that

all variables have the same scale and are centered around zero.

e Covariance matrix. PCA then calculates the covariance matrix of the standardized
data. The covariance matrix represents the pairwise correlations between variables

in the data.

e Eigenvalues and eigenvectors are the next step. It is aimed at finding the
eigenvectors and eigenvalues of the covariance matrix. The eigenvectors are the
directions along which the data varies the most, and the corresponding eigenvalues

represent the amount of variability along each eigenvector.

e Principal components are the step where the eigenvectors are arranged in
descending order of their corresponding eigenvalues to obtain the principal
components. The first principal component is the direction that captures the most
variability in the data, and each subsequent principal component captures the

remaining variability in an orthogonal direction.

e Dimensionality reduction. Finally, PCA projects the data onto the principal
components to obtain a lower-dimensional representation of the data. This is
achieved by multiplying the standardized data matrix by the matrix of eigenvectors,
which results in a new matrix with the same number of rows as the original data but

fewer columns corresponding to the chosen number of principal components.

The result is a transformed dataset that retains most of the important information in the
original data but with a lower dimensionality. This can be useful for data visualization, feature

selection, and other applications where high-dimensional data is a challenge [38—43].
2.4 Applications of PCA in food science research

PCA has been widely used in food science research for a variety of applications, including:
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e Sensory analysis. PCA can be used to analyze sensory data from trained panels or
consumers, to identify the key sensory attributes that contribute to the overall liking
or disliking of a product [44].

e Quality control. PCA can be used to analyze chemical or physical data from food
samples, to detect outliers, trends, or differences among samples or batches [45].

e Food authentication. PCA can be used to analyze spectral or chromatographic data
from food samples, to identify patterns and markers that can be used for food

authentication or traceability [46].

e Nutritional analysis. PCA can be used to analyze nutrient data from food samples,

to identify patterns and relationships among the nutrients and the food matrix [47].

PCA has been applied in a wide range of food science research areas, such as food
chemistry, food microbiology, food processing, and food sensory analysis. To summarize it can
be said, that PCA is a powerful multivariate data analysis tool that has been widely used in food
science research for pattern recognition, data visualization, and data reduction. PCA can provide
valuable insights into the relationships among the variables in a dataset, and can help to identify
patterns and trends that may not be apparent from simple univariate analysis. PCA can be used in
a wide range of food science research areas, and can help to improve the understanding of food

composition, quality, and sensory attributes.
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3 Materials and methods

3.1 Materials

The studied sample consists of 13 oils divided into 2 groups. Oil samples included almond
oil, assam oil, extra virgin olive oil (EVOO) Greek, EVOO Italy, fortune oil, oelh oil, olive oil
France, olive oil Kenya, olive oil Poland, sesame oil, white oil. One of the groups was kept in
darkness (“dark’). Oils of the second group were kept in the presence of light (‘light’). The study
was carried out in order to identify the most informative spectroscopic technique in identifying the
photooxidation effect on edible oils with the help of PCA. The samples were investigated by three

various optical spectroscopic methods.

3.2 Experimental setup

Different spectroscopic techniques were used in this study to evaluate oils. A portable near-
IR Raman spectrometer AvaRaman-785 TEC (Avantes BV, The Netherlands) was used to record
and analyze Raman spectra of oils. The system is equipped with a diode laser (wavelength and
bandwidth are 785 nm and < 0.2 nm, resolution 7 cm—1 respectively), spectrometer (AvaSpec-
ULS2048LTEC, Avantes BV, The Netherlands) with grating (785-1080 nm), Raman probe, and
sample holder. The samples were loaded (200 pL in each well) in a 96-well plate (Microplate 96/F,
Eppendorf, Germany), and the laser was focused using a Raman probe, placed perpendicular to
the plate at a focal length of ~ 1 cm for spectrum acquisition. A Raman spectrum was recorded
from the blank wall for the background vibrational spectrum subtraction. The baseline correction,
spectral smoothing, and spike removal from the Raman spectrum were performed with
Spectragryph spectral analysis software (version 1.2.14). Further, the pre-processed Raman
spectrum of oil samples were plotted using OriginPro software (version 2020) (OriginLab
Corporation, USA) by considering intensity along Y -axis and wavenumber along X-axis. UV-Vis
absorbance and fluorescence spectroscopic measurements were acquired using a Varioskan Flash
spectrophotometer (Thermo Scientific, USA). To record the spectrum, samples (200 pL in each
well) were loaded in triplicates in a 96-well plate. The absorbance spectra were recorded using the
Skanlt™ Software 2.4.3 RE software over the spectral range of 250-700 nm, having a scanning
wavelength of step size 2 nm with the bandwidth being 5 nm and measurement time of 100 ms.
For fluorescence signal measurements, a series of excitation wavelengths and collect the
fluorescence signals respectively. The emission was measured up to 750 nm, with a step size of 2
nm. Skanlt™ Software 2.4.3 RE was used for the spectral acquisition with a measurement time of

100 ms. Each of the samples has 10 replicate readings.
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All the measured signals were analyzed with the help of PCA in order to identify which
spectrophotometry method can provide the most reliable information about the photooxidation
effect. All the PCA results were analyzed using the validation score in order to determine the best
separation of light and dark samples in the principal components’ (PCs’) space. Firstly, the results
show that a model that uses only the first component of the transformed space in the calculations
shows a significantly better quality than a model that uses all features of the original space with
the highest dispersion. That is, under certain conditions, the principal component method can
transform the source space so that the first component “absorbs” information that explains the
values of the target variable well. Secondly, the quality of a model trained on three components
appeared to be less informative compared to model of two components.

3.3 Explanation of the principal component analysis process

Principal Component Analysis (PCA) is a multivariate statistical technique that is used in
data analysis to identify patterns and relationships in high-dimensional datasets. PCA works by
transforming the original variables into a new set of variables called principal components, which
are linear combinations of the original variables that explain the maximum amount of variation in
the dataset.

The first principal component (PC1) is the linear combination that explains the largest
amount of variation in the dataset, followed by the second principal component (PC2), which
explains the second largest amount of variation, and so on. By projecting the original data onto the
principal components, PCA reduces the dimensionality of the dataset and allows for easier

visualization and interpretation of the data [32,33].

PCA can be used for a variety of applications, such as clustering and classification of
samples based on their similarity, identification of outliers, and identification of the most important
variables that contribute to the variation in the dataset. The latter is particularly useful in fields
such as food science, where it can be used to identify the sensory attributes or chemical

components that contribute to the overall quality or acceptability of a food product.

The PCA process involves several steps, including data pre-processing, standardization of
data, computation of covariance matrix to identify correlations, Computation of the eigenvectors
and eigenvalues of the covariance matrix to identify the PCs, creation of a feature vector to decide
the PCs, recasting of the data along the PCs’ axes and interpretation of the results [32,34-37,48].
There are also various techniques and software packages available for performing PCA, such as
MATLAB, R, and Python.
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Step 1. Standardization.

The range of variables is calculated and standardized in this process to analyze the
contribution of each variable equally. Calculating the initial variables will helps to categorize the
variables that are dominating the other variables of small ranges. In order to transform the variables

of the same standard, the following formula is to be used:

X—H (2)

Xi

where u = ZT — the mean;

—11)2 .. . -
o= /Z(’C‘T“) - standard deviation, where x — value in a data set, n — number of values in a data

set.
Step 2. Covariance matrix computation.

A covariance matrix is a N x N symmetrical matrix that contains the covariances of all
possible data sets. In this step it is possible to know how the variables of the given data are varying
with the mean value calculated. The covariance matrix of two-dimensional data is, given as

follows:

_(COV (x,x) COV(x,y) (3)
= (COV(y,x) CcovV(y, y)>

. 2(x—px)*(y—
where Covariance = M,

where u,, — mean of x;
y, — mean of y;
n — number of data points.

It is worth mentioning that, the covariance of a number with itself is its variance as
COV (x,x) = VAR(x).

Step 3. Eigenvectors and eigenvalues.
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In order to determine the PCS of variables, it is necessary to define eigen value and eigen

vectors for the same. Let A be any square matrix. A non-zero vector v is an eigenvector of A if:
Av = v, 4)

for some number A, called the corresponding eigenvalue.

After the computation of the eigen vector components, we have to define eigen values in

descending order (for all variables) and it is a list of principal components.
Step 4. Feature vector.

The eigen values represent the principal components and these components represent the
data direction. These PCs form a line of new axes for easier evaluation of data and also the
differences between the observations can also be easily monitored.

Step 5. Recast the data along the PCs’ axes.

Still no changes made to the original data, only PCs are selected and feature vector is
formed. This step aims at the reorientation of data from their original axes to the ones calculated

from the PCs. This can be done by the following formula:

Final data set = Standardized original data set * Feature vecor (5)

3.4 Validation score

For the comparison of PCA performance and ability of different spectroscopic techniques

to differentiate between light and dark samples of oils the following validation method was used:

Let's assume that we have a set of points {p1,p2,...,pn}, where each point pi has
coordinates (xi, yi) in two-dimensional space. Then the formula for calculating the average of all

pairwise distances between these points will look like this:

1 _ .
Avg = * Y5 Xz dist (i, p)), ©
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where dist(pi,pj) is a function that calculates the distance between the points pi and pj in two-

dimensional space.

The formula for calculating the distance between two points in two-dimensional space can

be written as follows:

dist(pi,p;) = \[(xi — %)%+ (i —y)? )

The average pairwise distance was calculated for points belonging to one group (light or
dark) of oils samples. After that, the sum of average distances of two groups was divided into the

interclusteral distance:

AvgiighttAvGdark | (8)
Centre dictance ’

Score =

where Centre dictance - the distance between two centres of clusters in Euclidian dimension;

Avgiigne and Avgaq, are the average pairwise distance between cluster’s point of light and dark

samples respectively.

The probability of intersection of two normal distributions was calculated and appeared to
be equal to ~0.54 (~54%). In order to do that ~770 pairs of normal distributions were created
and the probability of their intersection calculated. It is worth mentioning, that the calculations
were performed on the data that have no outliers and presents a perfect normal distribution.
Therefore, if Score < 1 groups are considered to be separated in PCs’ space, if Score = 1 groups
‘touch’ each other and can not be defined as separated, if Score > 1 groups are not separated in

PCs’ space. The smaller the Score the better is the separation of oils’ groups.

24



4 Results

4.1 Ultraviolet-visible data

All the samples were investigated using UV-Vis spectroscopy. The average signal of all
the studied samples are presented in the Application A together with the PCA results visualization.
The most interesting results are shown in the Figure 4. The rest of the analysis’s results of UV-Vis
spectroscopy samples are presented in the Appendix A. The average signals of Olive oil Kenya
light and dark samples are presented in the Figure 4 (a). It can be seen in the figure, that the signal
of light and dark samples are very similar to each other and therefore it can be concluded, that
there is no possibility to understand which oil was kept properly and which of them was kept in
the presence of light. The PCA results are presented in the Figure 4 (d) it can be seen that the
standard deviation (STD) of the average distance between all points of clusters and the centres of
clusters, presented in the forms of the ovals, overlap with each other. From this it can be concluded,
that the samples are not separated in the PCs’ space. On the other hand, figure 4 (c) presents the
average spectra of EVOO Greek, which can be considered as good example of spectra separation,
as light and dark samples have different spectra and could be recognized ‘visually’. In the Figure
4 (d) the PCA visualization for EVOO Greek samples is presented. It can be seen, that oil samples

are good separated in the PCs’ space, as STD of groups do not overlap.
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Figure 4 - The results of analysis of UV-Vis oils data analysis: (a) the average spectra of Olive oil Kenya; (b) the PCA visualization for Olive oil

Kenya samples; (c) the average spectra of EVOO Greek; (b) the PCA visualization for EVOO Greek



The validation score was calculated for the results of PCA performance for UV-Vis spectra
of oils is presented in the Table 1. From the information presented it can be concluded that the best
performance in terms of group separation is shown for EVOO Greek samples, while the worst is
shown for Olive oil Kenya, as the validation score is the smallest and the largest respectively.
Moreover, the validation score for Olive oil Kenya is greater than 1, and it can be seen in the Figure
4 (b) that STD of clusters’ centres overlap, and this sample’s groups can not be defined as separated

in the PCs’ space.

Table 1 - The validation score calculated for all oils absorption samples.

Oil name Validation score
Almond oil 0,913
Assam oil 0,763
Evoo Greek 0,655
Evoo Italy 0,730
Fortune 0,680
Gingerly oil 0,786
Mustard Delhi 0,672
Oelh 0,980
Olive oil France 0,663
Olive oil Kenya 1,090
Olive oil Poland 0,671
Sesame oil 0,916
White bottle 0,926

4.2 Fluorescence data

For fluorescence signal measurements a series of excitation and emission wavelengths was
investigated. The average fluorescence signal with 340 nm of excitation wavelength and emission
wavelength in the range of 370-750 nm of light and dark oil samples are to be discussed in this
section. The results of data analysis for Almond oil and EVOO Greek oils are presented in the
Figure 5. The rest of the analysis’s results of fluorescence spectroscopy (340 nm (ex); 370-750 nm
(em)) samples are presented in the Appendix B. The average fluorescence signal of light and dark
samples of Almond oil, presented in the Figure 5 (a), are considered to be identical and it is
therefore believed, that the groups of oil are impossible to separate taking into the consideration
only spectroscopic data. The PCA results visualization for Almond oil groups, presented in the
Figure 5 (b), presents that groups are possible to separate in the PCs’ space, the centres’ STD do
not overlap each other. The average fluorescence signal of light and dark sample of EVOO Greek
oil, presented in the Figure 5 (c), show absolutely different intensity patterns. The average spectra

of dark samples have a peak in the approximate 650-700 nm of excitation wavelength, which can



be a sign of inability of some molecules to luminescence because of long light exposure. The

groups are successfully separated in the PCs’ space, as can be seen in the Figure 5 (c).

The validation score was calculated for the results of PCA performance for Fluorescence
with 340 nm of excitation wavelength spectra of oils is presented in the Table 2. The best
performance in terms of group separation the PCs’ space is presented for EVOO Greek oils. As
the validation score is the smallest among all oils. While the worst separation result is shown for
Almond oil samples, as the validation score is the largest among all oils. However, it is worth
mentioning, that despite the extreme similarity of groups’ spectra for Almond oil samples, the

PCA is still able to separate these groups successfully.

Table 2 - The validation score calculated for all fluorescence (340 nm (ex)) results.

Oil name Validation score
Almond oil 0,942
Assam oil 0,672
Evoo Greek 0,666
Evoo Italy 0,674
Fortune 0,676
Gingerly oil 0,781
Mustard Delhi 0,667
Oelh 0,940
Olive oil France 0,666
Olive oil Kenya 0,668
Olive oil Poland 0,667
Sesame oil 0,668
White bottle 0,668
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Figure 5 - The results of analysis of Fluorescence (340 nm (ex), 370-750 nm (em)) oils data analysis: (a) the average signal of Almond; (b) the
PCA visualization for Almond oil samples; (c) the average signal of EVOO Greek; (b) the PCA visualization for EVOO Greek.



The average fluorescence signal with 360 nm of the excitation wavelength and emission
wavelength in the range of 390-750 nm in general show the pattern of light group spectra’s
flattening. The results of analysis of Oelh and Assam oil are shown in the Figure 6. The rest of the
analysis’s results of fluorescence spectroscopy (360 nm (ex); 390-750 nm (em)) samples are
presented in the Appendix C. From the average signal of light and dark samples of Oelh oil,
presented in the Figure 6 (a) it can be seen that their signals are similar to each other and it is
considered to be impossible to separate samples of oil kept in the presence of light from oil samples
kept properly. Despite this fact PCA visualization, presented in the Figure 6 (b), shows that groups
can be separated in the PCs’ space. The average signals of two group of Assam oil, Figure 6 (c),
show the significant difference. The average signals of light oil group show a higher peak in
intensity in the region from 400-450 nm. The groups of the oil samples were successfully separated
the PCs’ space in the Figure 6 (d).

The validation score was calculated for the results of PCA performance for Fluorescence
with 360 nm of excitation wavelength spectra of oils is presented in the Table 3. The best
performance in terms of group separation the PCs’ space is presented for Assam oils. As the
validation score is the smallest among all oils. While the worst separation result is shown for Oelh
oil samples, as the validation score is the largest among all oils. However, these groups were still

well separated from each other in the PCs’ space.

Table 3 - The validation score calculated for all fluorescence (360 nm (ex)) results.

Oil name Validation score
Almond oil 0,854
Assam oil 0,662
Evoo Greek 0,673
Evoo Italy 0,673
Fortune 0,667
Gingerly oil 0,775
Mustard Delhi 0,667
Oelh 0,873
Olive oil France 0,665
Olive oil Kenya 0,665
Olive oil Poland 0,664
Sesame oil 0,666
White bottle 0,673
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The average fluorescence signals with 380 nm of the excitation wavelength and emission
wavelength in the range of 410-750 nm in general follows the same pattern of light group spectra
flattering. The results of EVOO Italy oil and Sesame oil samples analysis are shown in the Figure
7. The rest of the analysis’s results of fluorescence spectroscopy (380 nm (ex); 410-750 nm (em))
samples are presented in the Appendix D. The average signals of light and dark samples of Sesame
oil, shown in the Figure 7 (a), repeat each other, meaning, they have peaks in the same regions,
with the small difference in intensity. The PCA visualization for Sesame oil groups, presented in
the Figure 7 (b), however, shows good separation. For the average signals of EVOO lItaly oil,
shown in the Figure 7(c), it is an obvious difference of light and dark oil samples. In average dark
samples have a distinctive peak in intensity in the region from 650 to 700 nm of excitation
wavelength, while the average light samples remain flat. It is worth mentioning that PCA result
shows different group distribution, as dark samples are situated more accurate in the PCs’ space

compared to light samples as can be seen in the Figure 7 (d).

The validation score was calculated for the results of PCA performance for Fluorescence
with 380 nm of excitation wavelength spectra of oils is presented in the Table 4. The best
performance in terms of group separation the PCs’ space is presented for EVOO Italy oil. As the
validation score is the smallest among all oils. While the worst separation result is shown for
Sesame oil samples, as the validation score is the largest among all oils. However, these groups

were still well separated from each other in the PCs’ space.

Table 4 - The validation score calculated for all fluorescence (380 nm (ex)) results.

Oil name Validation score
Almond oil 0,717
Assam oil 0,648
Evoo Greek 0,728
Evoo Italy 0,738
Fortune 0,669
Gingerly oil 0,646
Mustard Delhi 0,657
Oelh 0,704
Olive oil France 0,666
Olive oil Kenya 0,668
Olive oil Poland 0,663
Sesame oil 0,641
White bottle 0,704
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Figure 7 - The results of analysis of Fluorescence (380 nm (ex), 410-750 nm (em)) oils data analysis: (a) the average signal of EVOO lItaly oil; (b)
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The average fluorescence signals with 420 nm of the excitation wavelength and emission
wavelength in the range of 450-750 nm in general continues to follow the same pattern of light
group spectra flattering. The result of Assam oil and Fortune oil samples analysis are shown in the
Figure 8. The rest of the analysis’s results of fluorescence spectroscopy (420 nm (ex); 450-750 nm
(em)) samples are presented in the Appendix E. The average signals of light and dark samples of
Assam oil, presented in the Figure 8 (a), show identical patterns in terms of peaks with the
difference in intensity. The PCA visualization in the Figure 8 (b) shows good separation of light
and dark samples. The average signals of dark samples of Fortune oil, shown in the Figure 8 (c),
has a peak in the region from 650 to 700 nm, while the light does not have it. The two groups of

these oil are separated in the PCs’ space in the Figure 8 (d).

The validation score was calculated for the results of PCA performance for Fluorescence
with 420 nm of excitation wavelength spectra of oils is presented in the Table 5. The best
performance in terms of group separation the PCs’ space is presented for Fortune oil. As the
validation score is the smallest among all oils. While the worst separation result is shown for
Assam oil samples, as the validation score is the largest among all oils. However, these groups

were still well separated from each other in the PCs’ space.

Table 5 - The validation score calculated for all fluorescence (420 nm (ex)) results.

Oil name Validation score
Almond oil 0,670
Assam oil 0,702
Evoo Greek 0,666
Evoo Italy 0,666
Fortune 0,639
Gingerly oil 0,668
Mustard Delhi 0,675
Oelh 0,666
Olive oil France 0,660
Olive oil Kenya 0,667
Olive oil Poland 0,693
Sesame oil 0,664
White bottle 0,667
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The average fluorescence signals with 460 nm of the excitation wavelength and emission
wavelength in the range of 490-750 nm in general continues to follow the same pattern of light
group spectra flattering. The result of Assam oil and Fortune oil samples analysis are shown in the
Figure 9. The rest of the analysis’s results of fluorescence spectroscopy (460 nm (ex); 490-750 nm
(em)) samples are presented in the Appendix F. The average signals of light and dark samples of
Assam oil, presented in the Figure 9 (a), show the light samples’ signal continues to degrade. The
PCA visualization in the Figure 9 (b) shows good separation of light and dark samples. The average
signals of dark samples of Fortune oil, shown in the Figure 9 (c), has a peak in the region from
650 to 700 nm, while the light does not have it. The two groups of these oil are separated in the
PCs’ space in the Figure 9 (d).

The conclusions made based on the Figure 9 are the same as based on the Figure 8. The
validation score was calculated for the results of PCA performance for Fluorescence with 420 nm
of excitation wavelength spectra of oils is presented in the Table 6. The best performance in terms
of group separation the PCs’ space is presented for Fortune oil. As the validation score is the
smallest among all oils. While the worst separation result is shown for Assam oil samples, as the
validation score is the largest among all oils. However, these groups were still well separated from

each other in the PCs’ space.

Table 6 - The validation score calculated for all fluorescence (460 nm (ex)) results.

Oil name Validation score
Almond oil 0,666
Assam oil 0,678
Evoo Greek 0,659
Evoo Italy 0,678
Fortune 0,634
Gingerly oil 0,667
Mustard Delhi 0,672
Oelh 0,674
Olive oil France 0,670
Olive oil Kenya 0,667
Olive oil Poland 0,654
Sesame oil 0,666
White bottle 0,671
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Figure 9 - The results of analysis of Fluorescence (460 nm (ex), 490-750 nm (em)) oils data analysis: (a) the average signals of Assam oil samples;

(b) the PCA visualization for Assam oil samples; (c) the average signals of Fortune oil samples; (b) the PCA visualization for Fortune oil.



Considering everything shown above, it becomes clear that signals of light oils degrade
dramatically with the increase in excitation and emission wavelengths in comparison with the
spectra of dark oils, which can lead to conclusion that some of molecules either were destroyed by
long light exposure or lost ability to luminescence.

Different measurement methods correspond to different PCA performance, however, all of
them are considered to be reliable. Nevertheless, the fluorescence data for the highest emission
wavelength (460 nm) differs dramatically from the fluorescence data for the lowest wavelength
(340 nm).

From this, the conclusion can be made that measurement for the fluorescence with 460 nm
of excitation wavelength shows the best data differentiation and therefore, can measure the
photooxidation effect with a higher accuracy. It is also worth mentioning that the performance of
PCA with data given by fluorescence 460 nm (ex); 490 - 750nm (em) is considered to be more
effective in comparison with the PCA performance with data given by fluorescence 340 nm (ex);
370 - 750nm (em), i.e. the validation scores are the smallest for the majority of oils as can be seen
in the Table 7.

Table 7 - The validation score calculated for all oils fluorescence samples.

Excitation

wavelength (nm) 340 360 380 420 460
Almond oil 0,942 0,854 0,717 0,670 0,666
Assam oil 0,672 0,662 0,648 0,702 0,678
Evoo Greek 0,666 0,673 0,728 0,666 0,659
Evoo Italy 0,674 0,673 0,738 0,666 0,678
Fortune 0,676 0,667 0,669 0,639 0,634
Gingerly oil 0,781 0,775 0,646 0,668 0,667
Mustard Delhi 0,667 0,667 0,657 0,675 0,672
Oelh 0,940 0,873 0,704 0,666 0,674

Olive oil France | 0,666 0,665 0,666 0,667 0,670
Olive oil Kenya | 0,668 0,665 0,668 0,660 0,654
Olive oil Poland | 0,667 0,664 0,663 0,693 0,667
Sesame oil 0,668 0,666 0,641 0,664 0,666
White bottle 0,668 0,673 0,704 0,667 0,671




4.3 Raman data

All the samples were investigated using Raman spectroscopy. The average Raman signal
for Assam oil and Sesame oil are presented in the Figure 10. The rest of the analysis’s results of
Raman spectroscopy samples are presented in the Appendix G. Based on the average signals of
Assam oil, shown in the Figure 10 (a), it can be said, that the signals of light and dark samples are
almost identical as their STD overlap through all the spectra. However, the groups are separated
in the PCs’ space as can be seen in the Figure 10 (b). It is worth mentioning, that the STD of
clusters’ centres are situated extremely close to each other, however, they still do not overlap with
each other. The average signals of light and dark groups of Sesame oil, presented in the Figure 10
(c), also overlap each other, however have some difference. The PCA visualization in the Figure

10 (d) seem to be a better performance as the groups are situated further away from each other.

In the Table 8 the validation scores for Raman samples are presented. The best performance
in terms of group separation the PCs’ space is presented for Sesame oil. As the validation score is
the smallest among all oils. While the worst separation result is shown for Assam oil samples, as
the validation score is the largest among all oils. It is also worth mentioning, that the validation
score calculated for Assam oil groups is significantly close to 1, meaning, the groups are located
extremely close to each other. However, these groups were still well separated from each other in

the PCs’ space.

Table 8 - The validation score calculated for all Raman samples.

Oil name Validation score
Almond oil 0,689
Assam oil 0,989
Evoo Greek 0,678
Evoo Italy 0,690
Fortune 0,694
Gingerly oil 0,734
Mustard Delhi 0,673
Oelh 0,723
Olive oil France 0,719
Olive oil Kenya 0,832
Olive oil Poland 0,695
Sesame oil 0,667
White bottle 0,684
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4.4 Comparison of all spectroscopic techniques coupled with PCA

In order to determine the most informative spectroscopic method in combination with PCA

it makes sense to compare the validation scores calculated for all PCA results in the Table 9.

Table 9 - The validation score for all PCA results.

Fluorescence excitation wavelength (nm)
Oil name 340 360 380 420 460 UV-Vis Raman Min
A'rgi‘l’”d 0942 | 0,854 0,717 0,670 0,666 0,913 0,689 0,666
Assam oil | 0,672 | 0,662 0,648 0702 | 0678 0,763 0989 | 0,648
g;’:eok 0666 | 0,673 0,728 0,666 0,659 0,655 0,678 0,655
Evoo Italy | 0,674 | 0,673 0,738 0,666 | 0678 0,730 0690 | 0,666
Fortune | 0,676 | 0,667 0,669 0,639 | 0,634 0,680 0,694 | 0,634
G'”o%f”y 0781 | 0,775 0,646 0,668 0,667 0,786 0734 | 0,646
M[‘)“';tﬁird 0667 | 0,667 0,657 0,675 0,672 0,672 0,673 0,657
Oelh | 0,940 0,873 0,704 0666 | 0674 0,980 0723 | 0666
Olive oil 1 566 | 0,665 0,666 0,667 0,670 0,663 0,719 0,663
France
Olive oil 1, gea | 0,665 0,668 0,660 0,654 1,090 0,832 0,654
Kenya
Olive oil 1 567 | 0,664 0,663 0,693 0,667 0,671 0,695 0,663
Poland
Sef‘)"’i‘lme 0,668 | 0,666 0,641 0,664 0,666 0,916 0,667 0,641
\t’)\g;t'ltg 0668 | 0,673 0,704 0,667 0,671 0,926 0684 | 0,667

As there is no universal spectroscopic method for all the oils that shows the minimum
validation score for all the oils, every oil has its own optimal technique coupled with PCA.
Therefore, for Assam oil, Gingerly oil, Mustard Delhi oil, Olive oil Poland, Sesame oil the best
spectroscopic technique coupled with PCA appeared to be Fluorescence with 380 nm of excitation
wavelength. For EVOO Italy oil, Oelh oil and White bottle oil Fluorescence with excitation
wavelength of 420 nm showed the best result of separation in the PCs’ space. Fluorescence with
460 nm of excitation appeared to be the best spectroscopic method for Almond oil, Fortune oil and
Olive oil Kenya. Only for two oils UV-Vis spectroscopy showed the best separation compared
with all other techniques, for EVOO Greek and Olive oil France. Raman spectroscopy together
with Fluorescence with 340 and 360 nm of excitation wavelength did not show any significant
results and therefore, considered to be the least informative spectroscopic methods coupled with

PCA in the studies of photooxidation effect of edible oils.



5. Conclusion

The current work investigated the ability of different spectroscopic techniques coupled
with PCA to identify the photooxidation effect on edible oils. Different spectroscopic techniques
were used in order to identify the best method for identifying the photooxidation effect on edible
oils. During the work 2 groups of 13 edible oils were investigated with the help of UV-Vis
spectroscopy, fluorescence spectroscopy and Raman spectroscopy. The groups included light
samples (oils that were kept in the presence of light for 1 year) and dark samples (oils kept in the
darkness). The spectra of samples were analyzed with the help of PCA and the division of two
groups of oils in PCs’ space were analyzed using validation score, presenting the relation of sum

of average distances of samples inside the clusters to the distance between centres of two clusters.

As the result of the work, it can be stated that UV-Vis spectroscopy and fluorescence
spectroscopy coupled with PCA showed good sample separation, however, the Raman spectra did
not show any significant results to be considered the best method to identify photooxidation effect
for any of the investigated oils.

It is worth mentioning that such unsupervised machine learning technique as PCA is
appeared to be good tool for identifying photooxidized oils, as it separated all the samples despite

the spectroscopic method.
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APPENDIX A.

Figure A.1 - The results of analysis UV-Vis spectroscopy oils analysis and PCA visualization.
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APPENDIX B

Figure B.1 - The results of analysis of Fluorescence (340 nm (ex), 370-750 nm (em)) oils data analysis and PCA visualization.
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Average fluorescence spectra of light and dark Evoo_ltaly {340 nm {ex); 370-750 nm (em})}
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Average fluorescence spectra of light and dark Gingerly_oil (340 nm (ex); 370-750 nm {em]))
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Average fluorescence spectra of light and dark Olive_oil_France (340 nm (ex); 370-750 nm (em)}
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Average flucrescence spectra of light and dark Sesame_oil {340 nm (ex); 370-750 nm {em}}

175-

150

125-

Intensity
i
o
=

-
w

50

Average fluorescence spectra of light and dark White_bottle (340 nm (ex); 370-750 nm {em})

300

250

200

=
un
(=]

Intensity

100

50

— Light

Standard dewviatich light oils
— Dark

Standard deviation dark olls

400 450 500 550 600 850 700 750
Wavelength (n)

—— Light

Standard deviation light oils
— Dark

standard deviation dark alls

400 450 500 550 600 650 J00 750
Wavelength {nim)

59

FC 2, explained variance 2.6%
[y

-4

PC 2. cxplained variance 3.4%

=10

~i0

Light vs Dark Scsamc ail

-5 0 5
PC 1. explained wariance 78.2%

Light vs Dark VWhite_bottle

-5 a 5
FC L, explained variance 65.5%

= Darlk
= Light
+  Contre

1 Standard deviation

T,
| F
. |
\‘./
.
10 15
=  Dark
= Lighl

+  Cenlre
[ Stancard deviation

i



APPENDIX C.

Figure C.1 - The results of analysis of Fluorescence (360 nm (ex), 390-750 nm (em)) oils data analysis and PCA visualization.
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Average fluorescence spectra of light and dark Evoo_Greek {360 nm (ex); 390-750 nm {em}}

-
430 —— Light
— Dark
300 Standard deviaticn light oils
Standard deviation dark oils
[
250 I| |
f \
= 200 | ||
|
£ 150 |
= | \
100 I|I
30
o E—

550 600 650 700 750

400 450 500
Wavelength {nm)

Average fluorescence spectra of light and dark Evoo_taly (360 nm (ex); 390-750 nm (em))
700
—— Light
—— Dark
Standard deviation light oils
Standard dewviation dark oils
[

5004 |

600

400 |

Intersity

w

=]

[=]
——

200 |
IIII
100 )."
—_— _/
0 -
400 450 500 550 600 50 700 750

Wavelength inm}

61

Light vs Dark Evon_Greek

+  Dark v
12.5 T light
+ LCentre
o 1 Stardard deviation
&
—
™75
o
u
a
T 50
=
o -
£ T e
g 7.5 . / - ‘v\
- i B \
S0 Iy * |
2 g
i
-
25 L
-5.0 .
-15 -10 -5 o 5 1% 13
PC 1, cuplained variance 89.7%
Light vs Dark Evoo_ltaly
" +  Dark
»  Light
g +  Contro
T | Standard deviatian
o
o
a
E 4 -
=
=
3 T
= 2 rd ,
= I g .
=3 5 b
i i 1 .
] | - %)
o | . ! N
Y \ aw
. -
_2z-
-4 * .
) o 15

=5 0
PC 1, explained variance 91.0%



Average fluorescence spectra of light and dark Fortune (360 nm (ex); 390-750 nm (em))
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Average fluorescence spectra of light and dark Mustard_Delhi (360 nm (ex); 390-750 nm {em))
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Average fluorescence spectra of light and dark Olive_oil_Kenya (360 nm (ex); 390-750 nm (em)}

a0

@
[=]

Intensity

=
(=]

20

—— Light
- — Dark
Standard deviation light oils
Standard deviation dark cils

400 450 500 550 600 650 700 750
Wavelength (nm}

Average fluorescence spectra of light and dark Olive_oil_Poland (360 nm (ex); 390-750 nm (em}}

500

A00-

Intensity
w
[=)
o

[
o
(=]

100

Light
Dark
Standard deviation light ails
Standard deviation dark oils

400 450 500 550 600 650 700 750
Wawelength (nm)

64

Pz 2, explained varance 2.0%

PC 2, explained variance 2,2%

-2

=15

—14

Dark
Light
Cenlre

Standard deviatian

—1o

Dark

Light

Centre

Standard dowviation

=10

Light vs Dark Qlive_oil_Kenya

4
PL 1, explained variance 82.6%

Light ws Dark Olive_cil_Paland

- i 5
PC 1. explained variance 95.5%

4 \'\,'
|'I [
> ]
I.I .
s ;
4 s
kN S
- i
"
¥
10 15
B
Ve . ™,
4 k
I|I I|I
Lo
! B
\ v
% . F
;
S
.
10 1y



Average fluorescence spectra of light and dark Sesame_oil {360 nm (ex); 390-750 nm (em))
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APPENDIX D

Figure D.1 - The results of analysis of Fluorescence (380 nm (ex), 410-750 nm (em)) oils data analysis and PCA visualization.
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Average fluorescence spectra of light and dark Mustrard-Delhi (280 nm (ex); 410-750 nm {em]})

— Light
60+ — Dark
Standard deviation light oils
50 Standard deviation dark oils
40
e
=
2]
& 30
=
204
104
= ——— e
i) T — — e, -
400 450 500 550 600 650 700 T50

Wavelength (nm)

Average fluorescence spectra of light and dark Oelh {380 nm {ex]); 410-750 nm {em))
—— Light
120 —— Dark

Standard deviation light oils
Standard deviation dark oils

1004

o
=

Intensity
@
k=]

40

20

400 450 500 550 G600 650 700 750
Wavelength (nm)

Lighl ws Dark Mustrard-Delhi
a3 = Thark .
= Lighl
«  Centrs
Stardarc deviation

PC 2, explained variznce 1,6%

1= 14a =1 4] =3 jRH 15
PC 1, explained variance 96.2%

Light ve Dark Oelh

- =+ Dark
+  Light
+  Cantre
— Slandard devialion

PC 2, ewplained variance F20%
~J
\\
B
i

-1n =& 11 15

1) 5
PC 1, explained variance 57.7%

69



Average fluorescence spectra of light and dark Olive_oil_france (380 nm (ex); 410-750 nm (em))

1000

800

o
=1
[=1

Intensity

.
o
=]

Average fluorescence spectra of light and dark Olive_oil_Kenya (380 nm {ex); 410-750 nm (em))

Intensity

200

160

140

120

=
=1
[=]

2]
=1

=]
[=]

B
o

20

400

—— Light

—— Dark
Standard deviation light oils
Standard deviation dark ails

550 600 650 700 750
Wavelength (nm)

— Light

—— Dark
Ry o
iy ) Standard deviation light cils

Standard deviation dark oils

400

450 500 550 600 650 700 750
Wavelength (nm)

Light vs Dark Olive_ail_france

v + Dark
+  Light
ES +  Lenlre
[ Standard deviation
.
#
=+
rl
o 2 .
o v +
=
]
3 N
= i
U |
z 0 |
o \
9 \
B ;
ri
= .
o v
-2
.
.
-
—4 . .
-15 =10 =5 0 10 1%
P L, explained variance 93.9%
Light vs Dark Olive_oil_Kenya
»  Dark T
4. ¢ Lignt
+  Centre
| Slendard daviation
-
£
™
LI
g .. .
5 ™,
‘= K
m 5\
= R i
B | |
a +
£ M ! h
| ; ;
= . ;
) h, 5
i R
9 -
-2
" . v
v
—_4-
o mn %

a ]
PC 1, explained variance B3.3%

70



Average fluorescence spectra of light and dark Olive_oil_Poland {380 nm (ex); 410-750 nm {em))
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APPENDIX E

Figure E.1 - The results of analysis of Fluorescence (420 nm (ex), 450-750 nm (em)) oils data analysis and PCA visualization.

Light vs Dark Almond_oil

Average fluorescence spectra of light and dark Almond_oil (420 nm (ex); 450-750 nm (em)) . = Dark
140 —— Light 4 « lighl
Dark + Centre
120 Standard dewviation light ails 3 [ Standard deviation
Standard deviation dark olls # "
B
oL
100 2-
= Vi
.- 1 T .
5 = o | \
g g P I L
£ 60 g 0 L* .'I . | * .
E i, | !
i1 : :,'
40 0 o, )
a 5, K
ey
—7- . -
20 T
.
— -3
0 — -
450 500 550 00 650 700 750 -10 -5 o 5 10 15
Wavelength (nm) PC 1, cxplained variznce §2.0%

72



Light vs Dark Evoo_Greek
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Average fluorescence spectra of light and dark Gingerly_oil (420 nm (ex); 450-750 nm {em}}
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lﬁé\terage fluorescence spectra of light and dark Oelh {420 nm {(ex); 4530-750 nm {em))
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Light vs Dark Sesame_oil
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APPENDIX F

Figure F.1 - The results of analysis of Fluorescence (460 nm (ex), 490-750 nm (em)) oils data analysis and PCA visualization.

Light vs Dark Almond_oail

Average fluorescence spectra of light and dark Almond_oil (460 nm (ex); 430-750 nm (em))} 3- «  Dark
v Light
IS-Itghtd d devistion liht oil * +  Centra
30. Dairl':< arl eviation lig alls 5. Slandarg devialian
Standard deviation datk oils z _
a5 e . P
g1
s ; -
a o Y
20+ & LAY | 1 -
> ! |
o
2 3o Ty e
215 = W !
= = o= L Il
o '1'
il .
10+ g . -
. .
5 e \_\\ -2
T T *
a e 1.
v x v . =110 =5 o] i 11 15
500 550 600 650 700 750 PC L, explained variance 35.4%

Wavelenath (nm)

78



Average fluorescence spectra of light and dark Evoo_Greek (460 nm (ex); 490-7530 nm (em)}
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Average fluorescence spectra of light and dark Gingerly oil (460 nm (ex); 490-750 nm {em))
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Average fluorescence spectra of light and dark Qelh (460 nm (ex); 490-750 nm {em))
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Average fluorescence spectra of light and dark Qilve_oil_Poland (460 nm (ex); 490-750 nm (em]))
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APPENDIX G

Figure G.1 - The results of analysis of Raman oils data analysis and PCA visualization.
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