




ABSTRACT 

Bachelor’s thesis 90 pages, 10 pictures, 9 tables, 7 appendices. 

Key words: Edible oils, Raman spectroscopy, fluorescence spectroscopy, ultraviolet-

visible spectroscopy, principal component analysis. 

The object of the study is photooxidation effect on edible oils. 

The subject of the work is the ability of spectroscopic techniques paired with principal 

component analysis to identify photooxidation effect on different edible oils. 

The purpose of the study is to identify the best spectroscopic technique able to 

differentiate oils exposed to light from ones kept properly with the help of principle component 

analysis. 

Work results:  

1)The measurements were analyzed using principal component analysis; 

2)The results were compared using the validation score; 

3)The best spectroscopic method for each oil was identified. 

Brief description. 

Studies of real food shelf life are not often applied in scientific studies, mainly because of 

the time and budget required for such analyses. However, such studies are very useful for 

understanding the quality changes that edible oils, including Almond oil, group of olive oils 

(Olive oil France, Olive oil Poland, olive oil Kenya, EVOO Greek, EVOO Italy), vegetable oils 

(Fortune oil, Gingerly oil, Mustard delhi oil, Sesame oil), and some other oils (Assam oil, Oelh 

oil, White bottle oil), undergo during the often very long periods of light exposure in the market. 

With this in mind, we conducted a study where all the above-mentioned oils underwent the 

photooxidation effect for a year. Spectroscopic techniques used in the current study, including 

ultraviolet-visible spectroscopy, fluorescence spectroscopy, and Raman spectroscopy, do not 

need a special sample preparation, which significantly lower the price and time consumed on the 

study. Principal component analysis (PCA) is a statistical technique used to reduce the 

dimensionality of large datasets while preserving as much information as possible, is commonly 

used for identifying patterns and relationships between variables and provides a better 

understanding of the data by creating a lower-dimensional representation of the dataset that 

retains most of the relevant information. This allows comparing these techniques in terms of 

ability to separate photooxidized samples from those kept properly. 
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GLOSSARY 

EVOO – extra virgin olive oil. High-quality, unrefined olive oil that is made from the fruit 

of the olive tree. 

PC – principal component. Linear combination of the original variables in a dataset that 

captures the maximum amount of variation in the data. 

PCA – principal component analysis. Statistical technique used to reduce the 

dimensionality of a dataset by identifying the most important patterns or trends in the data through 

the extraction of principal components. 

STD – standard deviation. Statistical measure that quantifies the amount of variation or 

dispersion in a set of data 

UV-Vis spectroscopy – ultraviolet-visible spectroscopy. Type of analytical technique that 

uses light in the ultraviolet and visible regions of the electromagnetic spectrum to study the 

electronic transitions of molecules 
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INTODUCTION 

Edible oils are commonly used in food production and are crucial in providing essential 

nutrients in people’s daily diet [1]. However, they are susceptible to oxidative degradation, which 

can lead to the formation of harmful compounds, such as free radicals and peroxides, that adversely 

affect the oil's quality, nutritional value, and safety. Therefore, it is important to monitor the extent 

of oxidation in edible oils to ensure their quality and safety. 

Spectroscopic techniques have been extensively used for the detection and monitoring of 

oxidation in edible oils due to their high sensitivity, rapid analysis time, and non-destructive 

nature. Among these techniques, UV-Vis spectroscopy, fluorescence spectroscopy, and Raman 

spectroscopy have shown promising results in detecting and monitoring the photooxidation of 

edible oils. 

UV-Vis spectroscopy has been widely used to monitor the changes in the absorbance 

spectra of edible oils during photooxidation. Fluorescence spectroscopy has also shown great 

potential in detecting the changes in the fluorescence signal of edible oils during oxidation. Raman 

spectroscopy, on the other hand, has been used to detect the changes in the Raman signal of edible 

oils induced by photooxidation. 

In addition, multivariate analysis techniques, such as principal component analysis (PCA), 

have been used to analyze the spectroscopic data obtained from the different spectroscopic 

techniques to identify key spectral features that contribute to the differentiation of oils undergoing 

photooxidation. 

This diploma work aims to investigate the ability of UV-Vis spectroscopy, fluorescence 

spectroscopy, and Raman spectroscopy to differentiate oils underwent photooxidation effect with 

the use of PCA. The research will review existing literature on the application of spectroscopic 

techniques in monitoring the photooxidation of edible oils and provide an in-depth analysis of the 

advantages and limitations of each spectroscopic technique. Furthermore, this research will utilize 

PCA to analyze the spectroscopic data obtained from different spectroscopic techniques to 

ascertain which spectroscopic method differs spoiled oils from those kept properly. 

Through this research, we hope to contribute to the development of more effective methods 

for monitoring the photooxidation of edible oils and provide a better understanding of the potential 

of spectroscopic techniques and PCA in food science research. 
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1. Background information on photooxidation and its effects on edible oils 

Photooxidation is a process that occurs when a substance is exposed to light and oxygen, 

leading to the formation of free radicals and other reactive oxygen species (ROS) [2]. This process 

is known to cause significant changes in the chemical composition and physical properties of oils, 

which can have implications for their shelf life, sensory quality, and nutritional value [3]. 

Spectroscopic methods are commonly used in food science research to analyze the 

chemical composition and physical properties of different food components. These methods 

include ultraviolet (UV-Vis) spectrophotometry, Raman spectroscopy, and fluorescence 

spectroscopy. UV-Vis spectrophotometry is a technique that measures the absorbance of light by 

a substance in the ultraviolet and visible regions of the electromagnetic spectrum [4]. Raman 

spectroscopy is a technique that measures the scattering of light by a sample. Raman spectroscopy 

is particularly useful for studying the vibrational modes of molecules, and can provide information 

about the functional groups and chemical bonds present in a sample [5]. Fluorescence spectroscopy 

measures the emission of light by a substance after excitation by a light source, providing 

information about the presence of specific compounds or functional groups [6]. 

Principal component analysis (PCA) is a multivariate statistical technique used to analyze 

large data sets and identify patterns or relationships between variables [7]. This technique has been 

used in food science research to analyze spectroscopic data and identify differences between 

samples based on their chemical composition. 

1.1 Brief overview of different spectroscopic methods used for analysis  

Ultraviolet-visible spectroscopy. 

UV-Vis spectroscopy is a technique used to study the interaction of light with matter in the 

ultraviolet (UV) and visible (Vis) regions of the electromagnetic spectrum. The basic principle of 

UV-Vis spectroscopy is based on the Beer-Lambert law [8], which states that the amount of light 

absorbed by a substance is directly proportional to the concentration of the absorbing species in 

the sample. 

UV-Vis spectroscopy has been used to study the photooxidation of edible oils, which 

indicated the presence of free radicals and secondary oxidation products [9]. It is a powerful tool 

for the analysis of edible oils and can provide important insights into the chemical and structural 

changes that occur during processing, storage, and oxidation. 
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Fluorescence spectroscopy. 

Fluorescence spectroscopy is a technique used to study the interaction of light with matter. 

It involves an exciting of a sample with light of a certain wavelength, and then measuring the light 

emitted by the sample as it relaxes back to its ground state. This emitted light, or fluorescence, can 

provide information about the chemical and structural properties of the sample. 

The study of fluorescence characteristics of edible oils subjected to thermal and photo-

oxidation processes showed a general reduction of fluorescence intensity, which may result from 

decomposition of the fluorophores. For photooxidised oils together with qualitative changes 

different for every oil the analysis showed a decrease of the tocopherol and chlorophyll 

fluorescence [10], as well as the oxidation of lipids [11]. It is considered to be a powerful tool for 

the analysis of edible oils and can provide important insights into the chemical and structural 

changes that occur during storage and oxidation. 

Raman spectroscopy. 

Raman spectroscopy is a non-destructive technique used to study the vibrational modes of 

molecules in a sample. It involves shining a laser onto the sample, and then measuring the scattered 

light that results. This scattered light contains information about the molecular vibrations in the 

sample and can be used to conduct both qualitative and quantitative analysis. 

The basic principle of Raman spectroscopy is based on the Raman effect, which occurs 

when the laser light interacts with the sample, causing a shift in the energy of the light. This shift 

in energy is known as Raman scattering, named after its discoverer, Indian physicist Sir C. V. 

Raman, who first observed it in 1928 [12].  

Raman spectroscopy has been used to study the composition and structure of edible oils 

[13], as well as to monitor the lipid oxidation of oils [14]. It is a powerful tool for the analysis of 

edible oils and can provide important insights into the chemical and structural changes that occur 

during storage, and oxidation. 

1.2 Statement of the research problem and purpose of the study  

The aim of this diploma work is to investigate different spectrophotometry methods in 

terms of differentiation of edible oils which underwent the photooxidation process from oils ones 

kept in the darkness. Specifically, UV-Vis spectrophotometry, Raman spectroscopy, and 

fluorescence spectroscopy were used in the current study. The principal component analysis (PCA) 
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will be used to identify the ability of spectroscopic techniques to differ oils exposed to light from 

oils kept in dark conditions. 
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2 Literature review 

2.1 In-depth analysis of existing research on the topic 

The photooxidation of edible oils is a complex process that can result in the formation of 

oxidative products and changes in the chemical and physical properties of the oils, including the 

development of off-flavors, discoloration, and a decrease in nutritional value. The understanding 

of the photooxidation process is important for the food industry, as it can help to develop strategies 

to prevent or minimize the damage caused by light exposure. Spectroscopic techniques have been 

widely used to study the photooxidation process in edible oils. PCA is a multivariate statistical 

technique that can be used to analyze spectroscopic data and extract useful information. 

UV-Vis spectroscopy. 

UV-Vis spectroscopy is a powerful tool that has been widely used to study the 

photooxidation of edible oils. UV-Vis spectroscopy measures the absorption of light in the UV 

and visible regions of the electromagnetic spectrum, providing information on the electronic 

transitions of the molecules in the sample. UV–Vis spectroscopy coupled with chemometrics was 

used effectively to study the impact of heating on edible oils and determine their acid value. The 

peak at 370 nm is confirmed to be an indicator of the heated oil [15]. 

Fluorescence spectroscopy: 

Fluorescence spectroscopy is another spectroscopic technique that has been used to study 

the photooxidation of edible oils. Fluorescence spectroscopy measures the emission of light by 

molecules that have been excited by light of a certain wavelength, providing information on the 

structural and chemical changes of the molecules in the sample. 

The study of fluorescence signal of light and dark samples of extra virgin olive oil (EVOO) 

showed the significant lower tocopherol, carotenoid and chlorophyll contents, higher values of 

triglyceride oligopolymers and contained products of secondary oxidation. Therefore, it was made 

a conclusion that after only 2 months of exposure to light the oils examined could no longer be 

considered as extra virgin [16], while the official storage period of EVOO is 2 years. The study of 

fluorescence characteristics of edible oils subjected to thermal and photooxidation processes 

showed a general reduction of fluorescence intensity, which may result from decomposition of the 

fluorophores. The study of the total luminescence spectroscopy proved the ability of the technique 

to characterize the effect of thermal and photo-oxidation on vegetable oils [17]. For photooxidised 
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oils together with qualitative changes different for every oil the analysis showed a decrease of the 

tocopherol and chlorophyll fluorescence [10]. 

Raman spectroscopy. 

Raman spectroscopy is a non-destructive spectroscopic technique that has been used to 

study the photooxidation of edible oils. Raman spectroscopy measures the scattering of light by 

molecules in the sample, providing information on the vibrational modes of the molecules.  

In the research aimed at the study of the thermal degradation of edible oils surface enhanced 

Raman spectroscopy was used [18]. The comparative study of Raman and visible spectroscopy in 

terms of adulteration detection with the use of partial linear square (PLS) analysis [19]. The 

combination of spectroscopic data with PLS regression allowed quantitative measurement of 

adulterants in EVOO. Specifically, using a validation set of five samples, the root mean square 

error (MSE) of prediction was 3.3 and 3.2% for Raman and visible spectroscopy, respectively [20]. 

Conclusion. 

Spectroscopic techniques, such as UV-Vis spectroscopy, fluorescence spectroscopy, and 

Raman spectroscopy, have been widely used to study the photooxidation of edible oils. These 

techniques provide valuable information on the chemical and physical changes that occur during 

the photooxidation process. Moreover, these methods are considered to be relatively inexpensive 

and do not require special sample preparation. PCA has been used to analyze spectroscopic data 

and extract useful information. The results of these studies have shown that the changes in the 

spectroscopic parameters are correlated with the degree of photooxidation, indicating the potential 

use of spectroscopic techniques for monitoring the photooxidation process in edible oils. The 

combination of PCA with spectrophotometry methods and different statistical approaches allows 

to clusterize samples based on their features, differentiate groups of samples from each other with 

high assurance, and determine degradation effects with a minimum sample preparation. The goal 

of the present work was to investigate the sensitivity of different spectroscopic techniques (Raman 

spectroscopy, UV-Vis spectroscopy and fluorescence spectroscopy) on the photooxidation effect 

of various edible oils with the help of PCA. 

2.2 Detailed description of spectroscopic techniques used  

Spectroscopic methods are powerful analytical tools that can provide valuable information 

about the chemical and physical properties of a sample. However, each spectroscopic method has 

its own advantages and limitations. In this section, we will compare the advantages and limitations 
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of three commonly used spectroscopic methods: UV-Vis spectroscopy, fluorescence spectroscopy, 

and Raman spectroscopy. 

2.2.1 UV-Vis spectroscopy 

UV-Vis spectroscopy is a technique for the analysis of organic and inorganic compounds. 

This technique is based on the absorption of ultraviolet and visible part of the electromagnetic 

spectrum by the molecules, which results in the promotion of electrons from the ground state to 

the excited state. The UV-Vis absorption signal provide information about the electronic structure 

of a molecule, such as the presence of double bonds, conjugated systems, and functional groups. 

The UV-Vis spectra are also sensitive to the chemical environment of the molecule, such as solvent 

polarity, pH, and temperature, which makes this technique useful for studying the stability and 

reactivity of compounds. The basic principle of UV-Vis spectroscopy is based on the Beer-

Lambert law (1), which states that the amount of light absorbed by a substance is directly 

proportional to the concentration of the absorbing species in the sample. 

𝐴 = 𝜀𝑐𝑙, (1) 

where A – absorbance; 

𝜀-molar absorption coefficient [𝑀−1𝑐𝑚−1]; 

c – molar concentration; 

l – optical path length. 

In UV-Vis spectroscopy, a beam of light with a broad range of wavelengths is passed 

through a sample. The intensity of the light passing through the sample is measured using a 

detector, and the data is analyzed to determine the absorbance spectrum of the sample. The 

schematic illustration is presented in the Figure 1. Absorbance spectrum can provide information 

on electronic transitions of molecules in the sample, which can be used to study the chemical and 

structural properties of the sample. 
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Figure 1 - The schematic representation of the main principle of an UV-Vis spectrometer. 

Just like any other spectroscopic technique UV-Vis spectroscopy has its own advantages 

and limitations. Among advantages the most important are: 

• The technique is non destructive, allowing the sample to be reused or proceed to 

further processing or analyses. 

• Measurements can be made quickly, allowing easy integration into experimental 

protocols. 

• Instruments are easy to use, requiring little user training prior to use. 

• Data analysis generally requires minimal processing, again meaning little user 

training is required. 

• The instrument is generally inexpensive to acquire and operate, making it 

accessible for many laboratories [21,22]. 

However, some of limitations make the technique imperfect. Among them such 

disadvantages as: 

• Stray light. In a real instrument, wavelength selectors are not perfect and a small 

amount of light from a wide wavelength range may still be transmitted from the 

light source, possibly causing serious measurement errors. Stray light may also 

come from the environment or a loosely fitted compartment in the instrument. 

• Light scattering. Light scattering is often caused by suspended solids in liquid 

samples, which may cause serious measurement errors. The presence of bubbles in 

the cuvette or sample will scatter light, resulting in irreproducible results. 
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• Interference from multiple absorbing species. A sample may, for example, have 

multiple types of the green pigment chlorophyll. The different chlorophylls will 

have overlapping spectra when examined together in the same sample. For a proper 

quantitative analysis, each chemical species should be separated from the sample 

and examined individually. 

• Geometrical considerations. Misaligned positioning of any one of the instrument's 

components, especially the cuvette holding the sample, may yield irreproducible 

and inaccurate results. Therefore, it is important that every component in the 

instrument is aligned in the same orientation and is placed in the same position for 

every measurement. Some basic user training is therefore generally recommended 

to avoid misuse [21,22]. 

2.2.2 Fluorescence spectroscopy 

Fluorescence spectroscopy is a sensitive and selective technique for the analysis of organic 

and biological samples. Fluorescence spectroscopy is based on the emission of light by the 

molecules that have been excited by absorption of light. The fluorescence spectra provide 

information about the electronic structure, energy levels, and molecular environment of the 

compounds. The basic principle of fluorescence spectroscopy is based on the Jablonski diagram, 

shown in the Figure 2, which illustrates energy levels of a molecule and transitions that occur 

during excitation and relaxation. When a molecule absorbs light, it is excited to a higher energy 

state, and then quickly relaxes back to its ground state by emitting a photon of light. The energy 

difference between the absorbed and emitted light is characteristic of the molecule and can be used 

to identify and quantify it. 
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Figure 2 - Jablonski diagram. 

Despite all the advantages of fluorescence spectroscopy it has its pros and cons. Among 

advantages the following can be noted: 

• Its high sensitivity is the main advantage of fluorimetry. 

• Due to the unique optical properties of the component, it has high specificity. 

• You can determine the fluorescence intensity, decay time, and component 

concentration. 

• May be insensitive to light scatter. 

• Emitted light is read at the correct angle to the exciting light, reducing background 

signal 

• These types of methods have a wide range of linearity [23]. 

The limitations of fluorescence spectroscopy include: 

• The main disadvantage of fluorescence spectroscopy is that not all molecules 

fluoresce. 

• It has limitations related to loss of recognition ability and photostability. 

• Sensitive to interference from changes in sample pH and oxygen levels. 
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• It is sensitive to sample autofluorescence. 

• Problem related to potential toxicity, due to foreign bodies in biological media. 

• The short life of fluorophores is another disadvantage of fluorometry [23]. 

2.2.3 Raman spectroscopy 

Raman spectroscopy is a vibrational spectroscopic technique that provides information 

about molecular structure and chemical bonds of samples. Raman spectroscopy is based on the 

scattering of light by molecules, which results in a shift in frequency of scattered photons due to 

interaction with the molecular vibrations. The Raman signal provide information about the 

functional groups, symmetry, and molecular vibrations of compounds. 

In Raman scattering, when a photon interacts with a molecule, the energy of the photon is 

either absorbed or scattered in a new direction. Most of the scattered light has the same energy as 

the incident light (which is called Rayleigh scattering), but a small fraction of the scattered light 

has a different energy due to energy transfer between the molecule and the photon [24]. This shift 

in energy is known as the Raman shift, and it provides information about the vibrational and 

rotational modes of the molecule. The scattered light contains a spectrum of frequencies, which 

corresponds to the vibrational modes of molecules in a sample. A vibrational mode that changes 

the molecular polarizability (dipole moment induced by the electric field) results in a change in 

the energy of the incident photon. The difference in energy between incident photons and 

inelastically scattered photons is called the Raman shift. Graph of the dependence of the intensity 

of inelastically scattered light on the change in energy is called the Raman spectrum [25]. 
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Figure 3 - The schematical representation of the Raman effect. 

Despite that fast that Raman spectroscopy is seem to be a promising tool for any kind of 

studies, it has advantages and disadvantages. The advantages are: 

• Many organic and inorganic materials are suitable for Raman analysis. These can 

be solids, liquids, polymers or vapors. 

• No sample preparation needed. 

• Not interfered by water. 

• Non-destructive. 

• Highly specific like a chemical fingerprint of a material. 

• Raman spectra are acquired quickly within seconds. 

• Samples can be analyzed through glass or a polymer packaging. 

• Laser light and Raman scattered light can be transmitted by optical fibers over long 

distances for remote analysis. 

• In Raman spectroscopy, the region from 4000 cm-1 to 50 cm-1 can be covered by 

a single recording. 

• Raman spectra can be collected from a very small volume (< 1 μm in diameter). 

• Inorganic materials are easy to analyze with Raman spectroscopy [26]. 

The disadvantages are: 

• Can not be used for metals or alloys. 

• The Raman effect is very weak. The detection needs a sensitive and highly 

optimized instrumentation. 

• Fluorescence of impurities or of the sample itself can hide the Raman spectrum. 

Some compounds fluoresce when irradiated by the laser beam. 

• Sample heating through the intense laser radiation can destroy the sample or cover 

the Raman spectrum [26]. 



 16 

 2.2.4 Conclusion 

In summary, UV-Vis spectroscopy, Raman spectroscopy, and fluorescence spectroscopy 

are considered to be powerful tools for the analysis of edible oils and the detection of 

photooxidation and oxidative degradation products. Each technique has its pros and cons, and the 

choice of the technique depends on the specific requirements of the analysis. UV-Vis spectroscopy 

is a versatile and widely used method, but it may not be suitable for the analysis of complex 

samples. Fluorescence spectroscopy is highly sensitive but can be affected by sample matrix 

effects. Raman spectroscopy provides highly specific information on the chemical structure and 

composition of a sample, but its sensitivity can be limited. The combination of these spectroscopic 

techniques with multivariate analysis, such as principal component analysis (PCA), can provide a 

more comprehensive and accurate analysis of the samples. Researchers should carefully consider 

the advantages and limitations of each spectroscopic method when selecting a method for their 

analysis. 

2.3  Machine learning and principal component analysis  

Machine learning (ML) is a branch of artificial intelligence that enables computer systems 

to learn from data and improve their performance on a given task over time. Machine learning 

(ML) is a field devoted to understanding and building methods that let machines "learn" – that is, 

methods that leverage data to improve computer performance on some set of tasks [27]. 

Machine learning algorithms build a model based on sample data, known as training data, 

in order to make predictions or decisions without being explicitly programmed to do so [28]. 

Machine learning algorithms are used in a wide variety of applications, such as in medicine, email 

filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible 

to develop conventional algorithms to perform the needed tasks [29,30]. 

A subset of machine learning is closely related to computational statistics, which focuses 

on making predictions using computers, but not all machine learning is statistical learning. The 

study of mathematical optimization delivers methods, theory and application domains to the field 

of machine learning [31]. 

Machine learning algorithms can be further classified into various categories based on their 

learning approach [28], such as: 

• Supervised Learning. Uses labeled data to train a model to make predictions on 

new, unseen data. 
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• Unsupervised Learning. Identifies patterns and relationships within the data itself, 

without the need for explicit guidance or supervision from a teacher. 

• Reinforcement Learning. Learns by interacting with an environment and receiving 

rewards or penalties based on its actions. 

• Semi-supervised Learning. Uses a combination of labeled and unlabeled data to 

train a model. 

Principal Component Analysis (PCA) is an unsupervised learning technique for reducing 

the dimensionality of high-dimensional data. It involves transforming a set of correlated variables 

into a new set of uncorrelated variables, known as principal components, while retaining as much 

of the original variance as possible [32,33]. 

PCA can be used for a variety of applications, including data visualization, feature 

selection, and anomaly detection. It can also be used as a preprocessing step prior to using other 

machine learning techniques such as clustering, classification, or regression [33–37]. 

Principal component analysis (PCA) is a powerful multivariate data analysis tool that has 

been widely used in food science research for pattern recognition, data visualization, and data 

reduction. PCA is a mathematical technique that transforms the original variables in a dataset into 

a smaller number of uncorrelated variables called principal components (PCs), which capture the 

most important variations in the data. In this section, we will review the principles and applications 

of PCA in food science research. 

2.3.1 Principles of PCA 

 PCA is based on the linear algebraic technique of eigenvalue decomposition, which is used 

to extract the PCs from the original dataset. The first PC is chosen to maximize the variance in the 

dataset, and each subsequent PC is chosen to maximize the remaining variance in the dataset, 

subject to the constraint that it is uncorrelated with the previous PCs. The PCs are ordered in 

decreasing order of variance, and the first few PCs capture most of the variation in the data. The 

PCs can be plotted in order to visualize the data and identify patterns and relationships among the 

variables [7]. 

PCA has many practical applications, such as image compression, noise reduction, feature 

extraction, and data visualization. In machine learning, PCA is often used as a preprocessing step 
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to reduce the number of features in a dataset before training a model, which can improve the 

model's performance and reduce overfitting. 

PCA is based on linear algebra and involves several mathematical concepts, including 

matrix multiplication, eigenvalues, eigenvectors, and singular value decomposition. Here is a brief 

overview of the mathematical mechanism behind PCA: 

• Data standardization is the first step in PCA is to standardize the data by subtracting 

the mean and dividing by the standard deviation of each variable. This ensures that 

all variables have the same scale and are centered around zero. 

• Covariance matrix. PCA then calculates the covariance matrix of the standardized 

data. The covariance matrix represents the pairwise correlations between variables 

in the data. 

• Eigenvalues and eigenvectors are the next step. It is aimed at finding the 

eigenvectors and eigenvalues of the covariance matrix. The eigenvectors are the 

directions along which the data varies the most, and the corresponding eigenvalues 

represent the amount of variability along each eigenvector. 

• Principal components are the step where the eigenvectors are arranged in 

descending order of their corresponding eigenvalues to obtain the principal 

components. The first principal component is the direction that captures the most 

variability in the data, and each subsequent principal component captures the 

remaining variability in an orthogonal direction. 

• Dimensionality reduction. Finally, PCA projects the data onto the principal 

components to obtain a lower-dimensional representation of the data. This is 

achieved by multiplying the standardized data matrix by the matrix of eigenvectors, 

which results in a new matrix with the same number of rows as the original data but 

fewer columns corresponding to the chosen number of principal components. 

The result is a transformed dataset that retains most of the important information in the 

original data but with a lower dimensionality. This can be useful for data visualization, feature 

selection, and other applications where high-dimensional data is a challenge [38–43]. 

2.4 Applications of PCA in food science research 

 PCA has been widely used in food science research for a variety of applications, including: 
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• Sensory analysis. PCA can be used to analyze sensory data from trained panels or 

consumers, to identify the key sensory attributes that contribute to the overall liking 

or disliking of a product [44]. 

• Quality control. PCA can be used to analyze chemical or physical data from food 

samples, to detect outliers, trends, or differences among samples or batches [45]. 

• Food authentication. PCA can be used to analyze spectral or chromatographic data 

from food samples, to identify patterns and markers that can be used for food 

authentication or traceability [46]. 

• Nutritional analysis. PCA can be used to analyze nutrient data from food samples, 

to identify patterns and relationships among the nutrients and the food matrix [47]. 

PCA has been applied in a wide range of food science research areas, such as food 

chemistry, food microbiology, food processing, and food sensory analysis. To summarize it can 

be said, that PCA is a powerful multivariate data analysis tool that has been widely used in food 

science research for pattern recognition, data visualization, and data reduction. PCA can provide 

valuable insights into the relationships among the variables in a dataset, and can help to identify 

patterns and trends that may not be apparent from simple univariate analysis. PCA can be used in 

a wide range of food science research areas, and can help to improve the understanding of food 

composition, quality, and sensory attributes. 
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3 Materials and methods 

3.1 Materials 

The studied sample consists of 13 oils divided into 2 groups. Oil samples included almond 

oil, assam oil, extra virgin olive oil (EVOO) Greek, EVOO Italy, fortune oil, oelh oil, olive oil 

France, olive oil Kenya, olive oil Poland, sesame oil, white oil. One of the groups was kept in 

darkness (‘dark’). Oils of the second group were kept in the presence of light (‘light’). The study 

was carried out in order to identify the most informative spectroscopic technique in identifying the 

photooxidation effect on edible oils with the help of PCA. The samples were investigated by three 

various optical spectroscopic methods. 

3.2 Experimental setup 

Different spectroscopic techniques were used in this study to evaluate oils. A portable near-

IR Raman spectrometer AvaRaman-785 TEC (Avantes BV, The Netherlands) was used to record 

and analyze Raman spectra of oils. The system is equipped with a diode laser (wavelength and 

bandwidth are 785 nm and < 0.2 nm, resolution 7 cm−1 respectively), spectrometer (AvaSpec-

ULS2048LTEC, Avantes BV, The Netherlands) with grating (785–1080 nm), Raman probe, and 

sample holder. The samples were loaded (200 μL in each well) in a 96-well plate (Microplate 96/F, 

Eppendorf, Germany), and the laser was focused using a Raman probe, placed perpendicular to 

the plate at a focal length of ~ 1 cm for spectrum acquisition. A Raman spectrum was recorded 

from the blank wall for the background vibrational spectrum subtraction. The baseline correction, 

spectral smoothing, and spike removal from the Raman spectrum were performed with 

Spectragryph spectral analysis software (version 1.2.14). Further, the pre-processed Raman 

spectrum of oil samples were plotted using OriginPro software (version 2020) (OriginLab 

Corporation, USA) by considering intensity along Y-axis and wavenumber along X-axis. UV–Vis 

absorbance and fluorescence spectroscopic measurements were acquired using a Varioskan Flash 

spectrophotometer (Thermo Scientific, USA). To record the spectrum, samples (200 μL in each 

well) were loaded in triplicates in a 96-well plate. The absorbance spectra were recorded using the 

SkanIt™ Software 2.4.3 RE software over the spectral range of 250–700 nm, having a scanning 

wavelength of step size 2 nm with the bandwidth being 5 nm and measurement time of 100 ms. 

For fluorescence signal measurements, a series of excitation wavelengths and collect the 

fluorescence signals respectively. The emission was measured up to 750 nm, with a step size of 2 

nm. SkanIt™ Software 2.4.3 RE was used for the spectral acquisition with a measurement time of 

100 ms. Each of the samples has 10 replicate readings. 
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All the measured signals were analyzed with the help of PCA in order to identify which 

spectrophotometry method can provide the most reliable information about the photooxidation 

effect. All the PCA results were analyzed using the validation score in order to determine the best 

separation of light and dark samples in the principal components’ (PCs’) space. Firstly, the results 

show that a model that uses only the first component of the transformed space in the calculations 

shows a significantly better quality than a model that uses all features of the original space with 

the highest dispersion. That is, under certain conditions, the principal component method can 

transform the source space so that the first component “absorbs” information that explains the 

values of the target variable well. Secondly, the quality of a model trained on three components 

appeared to be less informative compared to model of two components. 

 

3.3 Explanation of the principal component analysis process  

Principal Component Analysis (PCA) is a multivariate statistical technique that is used in 

data analysis to identify patterns and relationships in high-dimensional datasets. PCA works by 

transforming the original variables into a new set of variables called principal components, which 

are linear combinations of the original variables that explain the maximum amount of variation in 

the dataset. 

The first principal component (PC1) is the linear combination that explains the largest 

amount of variation in the dataset, followed by the second principal component (PC2), which 

explains the second largest amount of variation, and so on. By projecting the original data onto the 

principal components, PCA reduces the dimensionality of the dataset and allows for easier 

visualization and interpretation of the data [32,33]. 

PCA can be used for a variety of applications, such as clustering and classification of 

samples based on their similarity, identification of outliers, and identification of the most important 

variables that contribute to the variation in the dataset. The latter is particularly useful in fields 

such as food science, where it can be used to identify the sensory attributes or chemical 

components that contribute to the overall quality or acceptability of a food product. 

The PCA process involves several steps, including data pre-processing, standardization of 

data, computation of covariance matrix to identify correlations, Computation of the eigenvectors 

and eigenvalues of the covariance matrix to identify the PCs, creation of a feature vector to decide 

the PCs, recasting of the data along the PCs’ axes and interpretation of the results [32,34–37,48]. 

There are also various techniques and software packages available for performing PCA, such as 

MATLAB, R, and Python. 
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Step 1. Standardization. 

The range of variables is calculated and standardized in this process to analyze the 

contribution of each variable equally. Calculating the initial variables will helps to categorize the 

variables that are dominating the other variables of small ranges. In order to transform the variables 

of the same standard, the following formula is to be used: 

𝑍 =
𝑥 − 𝜇

𝜎
 (2) 

where 𝜇 =
∑ 𝑥𝑖

𝑛
 – the mean; 

𝜎 = √
∑(𝑥𝑖−𝜇)2

𝑛
  - standard deviation, where 𝑥 – value in a data set, 𝑛 – number of values in a data 

set. 

Step 2. Covariance matrix computation. 

A covariance matrix is a 𝑁 𝑥 𝑁 symmetrical matrix that contains the covariances of all 

possible data sets. In this step it is possible to know how the variables of the given data are varying 

with the mean value calculated. The covariance matrix of two-dimensional data is, given as 

follows: 

𝐶𝑉 = (
𝐶𝑂𝑉 (𝑥, 𝑥)  𝐶𝑂𝑉(𝑥, 𝑦)

𝐶𝑂𝑉(𝑦, 𝑥)  𝐶𝑂𝑉(𝑦, 𝑦)
) 

(3) 

where 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑(𝑥−𝜇𝑥)∗(𝑦−𝜇𝑦)

𝑛
, 

where 𝜇𝑥 – mean of x; 

𝜇𝑦  – mean of y; 

𝑛 – number of data points. 

It is worth mentioning that, the covariance of a number with itself is its variance as 

𝐶𝑂𝑉 (𝑥, 𝑥) = 𝑉𝐴𝑅(𝑥).  

Step 3. Eigenvectors and eigenvalues. 
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In order to determine the PCS of variables, it is necessary to define eigen value and eigen 

vectors for the same. Let 𝐴 be any square matrix. A non-zero vector 𝑣 is an eigenvector of 𝐴 if: 

𝐴𝑣 = 𝜆𝑣, (4) 

for some number 𝜆, called the corresponding eigenvalue.  

After the computation of the eigen vector components, we have to define eigen values in 

descending order (for all variables) and it is a list of principal components. 

Step 4. Feature vector. 

The eigen values represent the principal components and these components represent the 

data direction. These PCs form a line of new axes for easier evaluation of data and also the 

differences between the observations can also be easily monitored. 

Step 5. Recast the data along the PCs’ axes. 

Still no changes made to the original data, only PCs are selected and feature vector is 

formed. This step aims at the reorientation of data from their original axes to the ones calculated 

from the PCs. This can be done by the following formula: 

𝐹𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 ∗ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑜𝑟 (5) 

 

3.4 Validation score 

For the comparison of PCA performance and ability of different spectroscopic techniques 

to differentiate between light and dark samples of oils the following validation method was used: 

Let's assume that we have a set of points {𝑝1, 𝑝2, . . . , 𝑝𝑛}, where each point 𝑝𝑖 has 

coordinates (𝑥𝑖, 𝑦𝑖) in two-dimensional space. Then the formula for calculating the average of all 

pairwise distances between these points will look like this: 

𝐴𝑣𝑔 =
1

𝑛
∗ ∑ ∑ 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑝𝑗)𝑛

𝑗=𝑗+1
𝑛−1
𝑖=1 , (6) 
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where 𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑝𝑗) is a function that calculates the distance between the points 𝑝𝑖 and 𝑝𝑗 in two-

dimensional space. 

The formula for calculating the distance between two points in two-dimensional space can 

be written as follows: 

𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑝𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 
(7) 

The average pairwise distance was calculated for points belonging to one group (light or 

dark) of oils samples. After that, the sum of average distances of two groups was divided into the 

interclusteral distance: 

𝑆𝑐𝑜𝑟𝑒 =
𝐴𝑣𝑔𝑙𝑖𝑔ℎ𝑡+𝐴𝑣𝑔𝑑𝑎𝑟𝑘

𝐶𝑒𝑛𝑡𝑟𝑒 𝑑𝑖𝑐𝑡𝑎𝑛𝑐𝑒
; (8) 

where 𝐶𝑒𝑛𝑡𝑟𝑒 𝑑𝑖𝑐𝑡𝑎𝑛𝑐𝑒 - the distance between two centres of clusters in Euclidian dimension; 

𝐴𝑣𝑔𝑙𝑖𝑔ℎ𝑡  and 𝐴𝑣𝑔𝑑𝑎𝑟𝑘  are the average pairwise distance between cluster’s point of light and dark 

samples respectively. 

The probability of intersection of two normal distributions was calculated and appeared to 

be equal to ~0.54 (~54%). In order to do that ~770 pairs of normal distributions were created 

and the probability of their intersection calculated. It is worth mentioning, that the calculations 

were performed on the data that have no outliers and presents a perfect normal distribution. 

Therefore, if 𝑆𝑐𝑜𝑟𝑒 < 1 groups are considered to be separated in PCs’ space, if 𝑆𝑐𝑜𝑟𝑒 = 1 groups 

‘touch’ each other and can not be defined as separated, if 𝑆𝑐𝑜𝑟𝑒 > 1 groups are not separated in 

PCs’ space. The smaller the Score the better is the separation of oils’ groups. 
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4 Results 

4.1 Ultraviolet-visible data 

All the samples were investigated using UV-Vis spectroscopy. The average signal of all 

the studied samples are presented in the Application A together with the PCA results visualization. 

The most interesting results are shown in the Figure 4. The rest of the analysis’s results of UV-Vis 

spectroscopy samples are presented in the Appendix A. The average signals of Olive oil Kenya 

light and dark samples are presented in the Figure 4 (a). It can be seen in the figure, that the signal 

of light and dark samples are very similar to each other and therefore it can be concluded, that 

there is no possibility to understand which oil was kept properly and which of them was kept in 

the presence of light. The PCA results are presented in the Figure 4 (d) it can be seen that the 

standard deviation (STD) of the average distance between all points of clusters and the centres of 

clusters, presented in the forms of the ovals, overlap with each other. From this it can be concluded, 

that the samples are not separated in the PCs’ space. On the other hand, figure 4 (c) presents the 

average spectra of EVOO Greek, which can be considered as good example of spectra separation, 

as light and dark samples have different spectra and could be recognized ‘visually’. In the Figure 

4 (d) the PCA visualization for EVOO Greek samples is presented. It can be seen, that oil samples 

are good separated in the PCs’ space, as STD of groups do not overlap. 

 



 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4 - The results of analysis of UV-Vis oils data analysis: (a) the average spectra of Olive oil Kenya; (b) the PCA visualization for Olive oil 

Kenya samples; (c) the average spectra of EVOO Greek; (b) the PCA visualization for EVOO Greek



The validation score was calculated for the results of PCA performance for UV-Vis spectra 

of oils is presented in the Table 1. From the information presented it can be concluded that the best 

performance in terms of group separation is shown for EVOO Greek samples, while the worst is 

shown for Olive oil Kenya, as the validation score is the smallest and the largest respectively. 

Moreover, the validation score for Olive oil Kenya is greater than 1, and it can be seen in the Figure 

4 (b) that STD of clusters’ centres overlap, and this sample’s groups can not be defined as separated 

in the PCs’ space. 

Table 1 - The validation score calculated for all oils absorption samples. 

Oil name Validation score 

Almond oil 0,913 

Assam oil 0,763 

Evoo Greek 0,655 

Evoo Italy 0,730 

Fortune 0,680 

Gingerly oil 0,786 

Mustard Delhi 0,672 

Oelh 0,980 

Olive oil France 0,663 

Olive oil Kenya 1,090 

Olive oil Poland 0,671 

Sesame oil 0,916 

White bottle 0,926 

4.2 Fluorescence data 

For fluorescence signal measurements a series of excitation and emission wavelengths was 

investigated. The average fluorescence signal with 340 nm of excitation wavelength and emission 

wavelength in the range of 370-750 nm of light and dark oil samples are to be discussed in this 

section. The results of data analysis for Almond oil and EVOO Greek oils are presented in the 

Figure 5. The rest of the analysis’s results of fluorescence spectroscopy (340 nm (ex); 370-750 nm 

(em)) samples are presented in the Appendix B.  The average fluorescence signal of light and dark 

samples of Almond oil, presented in the Figure 5 (a), are considered to be identical and it is 

therefore believed, that the groups of oil are impossible to separate taking into the consideration 

only spectroscopic data. The PCA results visualization for Almond oil groups, presented in the 

Figure 5 (b), presents that groups are possible to separate in the PCs’ space, the centres’ STD do 

not overlap each other. The average fluorescence signal of light and dark sample of EVOO Greek 

oil, presented in the Figure 5 (c), show absolutely different intensity patterns. The average spectra 

of dark samples have a peak in the approximate 650-700 nm of excitation wavelength, which can 
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be a sign of inability of some molecules to luminescence because of long light exposure. The 

groups are successfully separated in the PCs’ space, as can be seen in the Figure 5 (c). 

The validation score was calculated for the results of PCA performance for Fluorescence 

with 340 nm of excitation wavelength spectra of oils is presented in the Table 2. The best 

performance in terms of group separation the PCs’ space is presented for EVOO Greek oils. As 

the validation score is the smallest among all oils. While the worst separation result is shown for 

Almond oil samples, as the validation score is the largest among all oils. However, it is worth 

mentioning, that despite the extreme similarity of groups’ spectra for Almond oil samples, the 

PCA is still able to separate these groups successfully.  

Table 2 - The validation score calculated for all fluorescence (340 nm (ex)) results. 

Oil name Validation score 

Almond oil 0,942 

Assam oil 0,672 

Evoo Greek 0,666 

Evoo Italy 0,674 

Fortune 0,676 

Gingerly oil 0,781 

Mustard Delhi 0,667 

Oelh 0,940 

Olive oil France 0,666 

Olive oil Kenya 0,668 

Olive oil Poland 0,667 

Sesame oil 0,668 

White bottle 0,668 



 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5 - The results of analysis of Fluorescence (340 nm (ex), 370-750 nm (em)) oils data analysis: (a) the average signal of Almond; (b) the 

PCA visualization for Almond oil samples; (c) the average signal of EVOO Greek; (b) the PCA visualization for EVOO Greek. 



The average fluorescence signal with 360 nm of the excitation wavelength and emission 

wavelength in the range of 390-750 nm in general show the pattern of light group spectra’s 

flattening. The results of analysis of Oelh and Assam oil are shown in the Figure 6. The rest of the 

analysis’s results of fluorescence spectroscopy (360 nm (ex); 390-750 nm (em)) samples are 

presented in the Appendix C. From the average signal of light and dark samples of Oelh oil, 

presented in the Figure 6 (a) it can be seen that their signals are similar to each other and it is 

considered to be impossible to separate samples of oil kept in the presence of light from oil samples 

kept properly. Despite this fact PCA visualization, presented in the Figure 6 (b), shows that groups 

can be separated in the PCs’ space. The average signals of two group of Assam oil, Figure 6 (c), 

show the significant difference. The average signals of light oil group show a higher peak in 

intensity in the region from 400-450 nm. The groups of the oil samples were successfully separated 

the PCs’ space in the Figure 6 (d).  

The validation score was calculated for the results of PCA performance for Fluorescence 

with 360 nm of excitation wavelength spectra of oils is presented in the Table 3. The best 

performance in terms of group separation the PCs’ space is presented for Assam oils. As the 

validation score is the smallest among all oils. While the worst separation result is shown for Oelh 

oil samples, as the validation score is the largest among all oils. However, these groups were still 

well separated from each other in the PCs’ space. 

Table 3 - The validation score calculated for all fluorescence (360 nm (ex)) results. 

Oil name Validation score 

Almond oil 0,854 

Assam oil 0,662 

Evoo Greek 0,673 

Evoo Italy 0,673 

Fortune 0,667 

Gingerly oil 0,775 

Mustard Delhi 0,667 

Oelh 0,873 

Olive oil France 0,665 

Olive oil Kenya 0,665 

Olive oil Poland 0,664 

Sesame oil 0,666 

White bottle 0,673 

 



 

(a) 
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(c) 

 

(d) 

Figure 6 - The results of analysis of Fluorescence (360 nm (ex), 390-750 nm (em)) oils data analysis: (a) the average signal of Oelh oil; (b) the 

PCA visualization for Oelh oil samples; (c) the average signal of Assam oil; (b) the PCA visualization for Assam oil



The average fluorescence signals with 380 nm of the excitation wavelength and emission 

wavelength in the range of 410-750 nm in general follows the same pattern of light group spectra 

flattering. The results of EVOO Italy oil and Sesame oil samples analysis are shown in the Figure 

7. The rest of the analysis’s results of fluorescence spectroscopy (380 nm (ex); 410-750 nm (em)) 

samples are presented in the Appendix D. The average signals of light and dark samples of Sesame 

oil, shown in the Figure 7 (a), repeat each other, meaning, they have peaks in the same regions, 

with the small difference in intensity. The PCA visualization for Sesame oil groups, presented in 

the Figure 7 (b), however, shows good separation. For the average signals of EVOO Italy oil, 

shown in the Figure 7(c), it is an obvious difference of light and dark oil samples. In average dark 

samples have a distinctive peak in intensity in the region from 650 to 700 nm of excitation 

wavelength, while the average light samples remain flat. It is worth mentioning that PCA result 

shows different group distribution, as dark samples are situated more accurate in the PCs’ space 

compared to light samples as can be seen in the Figure 7 (d). 

The validation score was calculated for the results of PCA performance for Fluorescence 

with 380 nm of excitation wavelength spectra of oils is presented in the Table 4. The best 

performance in terms of group separation the PCs’ space is presented for EVOO Italy oil. As the 

validation score is the smallest among all oils. While the worst separation result is shown for 

Sesame oil samples, as the validation score is the largest among all oils. However, these groups 

were still well separated from each other in the PCs’ space. 

Table 4 - The validation score calculated for all fluorescence (380 nm (ex)) results. 

Oil name Validation score 

Almond oil 0,717 

Assam oil 0,648 

Evoo Greek 0,728 

Evoo Italy 0,738 

Fortune 0,669 

Gingerly oil 0,646 

Mustard Delhi 0,657 

Oelh 0,704 

Olive oil France 0,666 

Olive oil Kenya 0,668 

Olive oil Poland 0,663 

Sesame oil 0,641 

White bottle 0,704 



 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7 - The results of analysis of Fluorescence (380 nm (ex), 410-750 nm (em)) oils data analysis: (a) the average signal of EVOO Italy oil; (b) 

the PCA visualization for EVOO Italy samples; (c) the average signal of Sesame oil; (b) the PCA visualization for Sesame oil. 



The average fluorescence signals with 420 nm of the excitation wavelength and emission 

wavelength in the range of 450-750 nm in general continues to follow the same pattern of light 

group spectra flattering. The result of Assam oil and Fortune oil samples analysis are shown in the 

Figure 8. The rest of the analysis’s results of fluorescence spectroscopy (420 nm (ex); 450-750 nm 

(em)) samples are presented in the Appendix E. The average signals of light and dark samples of 

Assam oil, presented in the Figure 8 (a), show identical patterns in terms of peaks with the 

difference in intensity. The PCA visualization in the Figure 8 (b) shows good separation of light 

and dark samples. The average signals of dark samples of Fortune oil, shown in the Figure 8 (c), 

has a peak in the region from 650 to 700 nm, while the light does not have it. The two groups of 

these oil are separated in the PCs’ space in the Figure 8 (d). 

The validation score was calculated for the results of PCA performance for Fluorescence 

with 420 nm of excitation wavelength spectra of oils is presented in the Table 5. The best 

performance in terms of group separation the PCs’ space is presented for Fortune oil. As the 

validation score is the smallest among all oils. While the worst separation result is shown for 

Assam oil samples, as the validation score is the largest among all oils. However, these groups 

were still well separated from each other in the PCs’ space. 

Table 5 - The validation score calculated for all fluorescence (420 nm (ex)) results. 

Oil name Validation score 

Almond oil 0,670 

Assam oil 0,702 

Evoo Greek 0,666 

Evoo Italy 0,666 

Fortune 0,639 

Gingerly oil 0,668 

Mustard Delhi 0,675 

Oelh 0,666 

Olive oil France 0,660 

Olive oil Kenya 0,667 

Olive oil Poland 0,693 

Sesame oil 0,664 

White bottle 0,667 



 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8 - The results of analysis of Fluorescence (420 nm (ex), 450-750 nm (em)) oils data analysis: (a) the average signals of Assam oil samples; 

(b) the PCA visualization for Assam oil samples; (c) the average signals of Fortune oil samples; (b) the PCA visualization for Fortune oil. 



The average fluorescence signals with 460 nm of the excitation wavelength and emission 

wavelength in the range of 490-750 nm in general continues to follow the same pattern of light 

group spectra flattering. The result of Assam oil and Fortune oil samples analysis are shown in the 

Figure 9. The rest of the analysis’s results of fluorescence spectroscopy (460 nm (ex); 490-750 nm 

(em)) samples are presented in the Appendix F. The average signals of light and dark samples of 

Assam oil, presented in the Figure 9 (a), show the light samples’ signal continues to degrade. The 

PCA visualization in the Figure 9 (b) shows good separation of light and dark samples. The average 

signals of dark samples of Fortune oil, shown in the Figure 9 (c), has a peak in the region from 

650 to 700 nm, while the light does not have it. The two groups of these oil are separated in the 

PCs’ space in the Figure 9 (d).  

The conclusions made based on the Figure 9 are the same as based on the Figure 8. The 

validation score was calculated for the results of PCA performance for Fluorescence with 420 nm 

of excitation wavelength spectra of oils is presented in the Table 6. The best performance in terms 

of group separation the PCs’ space is presented for Fortune oil. As the validation score is the 

smallest among all oils. While the worst separation result is shown for Assam oil samples, as the 

validation score is the largest among all oils. However, these groups were still well separated from 

each other in the PCs’ space. 

Table 6 - The validation score calculated for all fluorescence (460 nm (ex)) results. 

Oil name Validation score 

Almond oil 0,666 

Assam oil 0,678 

Evoo Greek 0,659 

Evoo Italy 0,678 

Fortune 0,634 

Gingerly oil 0,667 

Mustard Delhi 0,672 

Oelh 0,674 

Olive oil France 0,670 

Olive oil Kenya 0,667 

Olive oil Poland 0,654 

Sesame oil 0,666 

White bottle 0,671 



 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9 - The results of analysis of Fluorescence (460 nm (ex), 490-750 nm (em)) oils data analysis: (a) the average signals of Assam oil samples; 

(b) the PCA visualization for Assam oil samples; (c) the average signals of Fortune oil samples; (b) the PCA visualization for Fortune oil. 



 

Considering everything shown above, it becomes clear that signals of light oils degrade 

dramatically with the increase in excitation and emission wavelengths in comparison with the 

spectra of dark oils, which can lead to conclusion that some of molecules either were destroyed by 

long light exposure or lost ability to luminescence. 

Different measurement methods correspond to different PCA performance, however, all of 

them are considered to be reliable. Nevertheless, the fluorescence data for the highest emission 

wavelength (460 nm) differs dramatically from the fluorescence data for the lowest wavelength 

(340 nm).  

From this, the conclusion can be made that measurement for the fluorescence with 460 nm 

of excitation wavelength shows the best data differentiation and therefore, can measure the 

photooxidation effect with a higher accuracy. It is also worth mentioning that the performance of 

PCA with data given by fluorescence 460 nm (ex); 490 - 750nm (em) is considered to be more 

effective in comparison with the PCA performance with data given by fluorescence 340 nm (ex); 

370 - 750nm (em), i.e. the validation scores are the smallest for the majority of oils as can be seen 

in the Table 7. 

Table 7 - The validation score calculated for all oils fluorescence samples. 

Excitation 

wavelength (nm) 
340 360 380 420 460 

Almond oil 0,942 0,854 0,717 0,670 0,666 

Assam oil 0,672 0,662 0,648 0,702 0,678 

Evoo Greek 0,666 0,673 0,728 0,666 0,659 

Evoo Italy 0,674 0,673 0,738 0,666 0,678 

Fortune 0,676 0,667 0,669 0,639 0,634 

Gingerly oil 0,781 0,775 0,646 0,668 0,667 

Mustard Delhi 0,667 0,667 0,657 0,675 0,672 

Oelh 0,940 0,873 0,704 0,666 0,674 

Olive oil France 0,666 0,665 0,666 0,667 0,670 

Olive oil Kenya 0,668 0,665 0,668 0,660 0,654 

Olive oil Poland 0,667 0,664 0,663 0,693 0,667 

Sesame oil 0,668 0,666 0,641 0,664 0,666 

White bottle 0,668 0,673 0,704 0,667 0,671 
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4.3 Raman data 

All the samples were investigated using Raman spectroscopy. The average Raman signal 

for Assam oil and Sesame oil are presented in the Figure 10. The rest of the analysis’s results of 

Raman spectroscopy samples are presented in the Appendix G.  Based on the average signals of 

Assam oil, shown in the Figure 10 (a), it can be said, that the signals of light and dark samples are 

almost identical as their STD overlap through all the spectra. However, the groups are separated 

in the PCs’ space as can be seen in the Figure 10 (b). It is worth mentioning, that the STD of 

clusters’ centres are situated extremely close to each other, however, they still do not overlap with 

each other. The average signals of light and dark groups of Sesame oil, presented in the Figure 10 

(c), also overlap each other, however have some difference. The PCA visualization in the Figure 

10 (d) seem to be a better performance as the groups are situated further away from each other.  

In the Table 8 the validation scores for Raman samples are presented. The best performance 

in terms of group separation the PCs’ space is presented for Sesame oil. As the validation score is 

the smallest among all oils. While the worst separation result is shown for Assam oil samples, as 

the validation score is the largest among all oils. It is also worth mentioning, that the validation 

score calculated for Assam oil groups is significantly close to 1, meaning, the groups are located 

extremely close to each other. However, these groups were still well separated from each other in 

the PCs’ space. 

Table 8 - The validation score calculated for all Raman samples. 

Oil name Validation score 

Almond oil 0,689 

Assam oil 0,989 

Evoo Greek 0,678 

Evoo Italy 0,690 

Fortune 0,694 

Gingerly oil 0,734 

Mustard Delhi 0,673 

Oelh 0,723 

Olive oil France 0,719 

Olive oil Kenya 0,832 

Olive oil Poland 0,695 

Sesame oil 0,667 

White bottle 0,684 
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(d) 

Figure 10 - The results of analysis of Raman oils data analysis: (a) the average signals of Assam oil samples; (b) the PCA visualization for Assam 

oil samples; (c) the average signals of Sesame oil samples; (b) the PCA visualization for Sesame oil. 



4.4 Comparison of all spectroscopic techniques coupled with PCA 

In order to determine the most informative spectroscopic method in combination with PCA 

it makes sense to compare the validation scores calculated for all PCA results in the Table 9. 

Table 9 - The validation score for all PCA results. 

 Fluorescence excitation wavelength (nm)    

Oil name 340 360 380 420 460 UV-Vis Raman Min 

Almond 

oil 
0,942 0,854 0,717 0,670 0,666 0,913 0,689 0,666 

Assam oil 0,672 0,662 0,648 0,702 0,678 0,763 0,989 0,648 

Evoo 

Greek 
0,666 0,673 0,728 0,666 0,659 0,655 0,678 0,655 

Evoo Italy 0,674 0,673 0,738 0,666 0,678 0,730 0,690 0,666 

Fortune 0,676 0,667 0,669 0,639 0,634 0,680 0,694 0,634 

Gingerly 

oil 
0,781 0,775 0,646 0,668 0,667 0,786 0,734 0,646 

Mustard 

Delhi 
0,667 0,667 0,657 0,675 0,672 0,672 0,673 0,657 

Oelh 0,940 0,873 0,704 0,666 0,674 0,980 0,723 0,666 

Olive oil 

France 
0,666 0,665 0,666 0,667 0,670 0,663 0,719 0,663 

Olive oil 

Kenya 
0,668 0,665 0,668 0,660 0,654 1,090 0,832 0,654 

Olive oil 

Poland 
0,667 0,664 0,663 0,693 0,667 0,671 0,695 0,663 

Sesame 

oil 
0,668 0,666 0,641 0,664 0,666 0,916 0,667 0,641 

White 

bottle 
0,668 0,673 0,704 0,667 0,671 0,926 0,684 0,667 

 

As there is no universal spectroscopic method for all the oils that shows the minimum 

validation score for all the oils, every oil has its own optimal technique coupled with PCA. 

Therefore, for Assam oil, Gingerly oil, Mustard Delhi oil, Olive oil Poland, Sesame oil the best 

spectroscopic technique coupled with PCA appeared to be Fluorescence with 380 nm of excitation 

wavelength. For EVOO Italy oil, Oelh oil and White bottle oil Fluorescence with excitation 

wavelength of 420 nm showed the best result of separation in the PCs’ space. Fluorescence with 

460 nm of excitation appeared to be the best spectroscopic method for Almond oil, Fortune oil and 

Olive oil Kenya. Only for two oils UV-Vis spectroscopy showed the best separation compared 

with all other techniques, for EVOO Greek and Olive oil France. Raman spectroscopy together 

with Fluorescence with 340 and 360 nm of excitation wavelength did not show any significant 

results and therefore, considered to be the least informative spectroscopic methods coupled with 

PCA in the studies of photooxidation effect of edible oils. 
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5. Conclusion 

The current work investigated the ability of different spectroscopic techniques coupled 

with PCA to identify the photooxidation effect on edible oils. Different spectroscopic techniques 

were used in order to identify the best method for identifying the photooxidation effect on edible 

oils. During the work 2 groups of 13 edible oils were investigated with the help of UV-Vis 

spectroscopy, fluorescence spectroscopy and Raman spectroscopy. The groups included light 

samples (oils that were kept in the presence of light for 1 year) and dark samples (oils kept in the 

darkness). The spectra of samples were analyzed with the help of PCA and the division of two 

groups of oils in PCs’ space were analyzed using validation score, presenting the relation of sum 

of average distances of samples inside the clusters to the distance between centres of two clusters. 

As the result of the work, it can be stated that UV-Vis spectroscopy and fluorescence 

spectroscopy coupled with PCA showed good sample separation, however, the Raman spectra did 

not show any significant results to be considered the best method to identify photooxidation effect 

for any of the investigated oils. 

It is worth mentioning that such unsupervised machine learning technique as PCA is 

appeared to be good tool for identifying photooxidized oils, as it separated all the samples despite 

the spectroscopic method. 
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APPENDIX A. 

Figure A.1 - The results of analysis UV-Vis spectroscopy oils analysis and PCA visualization. 
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APPENDIX B 

Figure B.1 - The results of analysis of Fluorescence (340 nm (ex), 370-750 nm (em)) oils data analysis and PCA visualization. 
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APPENDIX C. 

Figure C.1 - The results of analysis of Fluorescence (360 nm (ex), 390-750 nm (em)) oils data analysis and PCA visualization. 
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APPENDIX D 

Figure D.1 - The results of analysis of Fluorescence (380 nm (ex), 410-750 nm (em)) oils data analysis and PCA visualization. 

  



 67 

  

  



 68 

  

  



 69 

 
 

  



 70 

  

  



 71 

  

 
 



 72 

 

APPENDIX E 

Figure E.1 - The results of analysis of Fluorescence (420 nm (ex), 450-750 nm (em)) oils data analysis and PCA visualization. 
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APPENDIX F 

Figure F.1 - The results of analysis of Fluorescence (460 nm (ex), 490-750 nm (em)) oils data analysis and PCA visualization. 
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APPENDIX G 

Figure G.1 - The results of analysis of Raman oils data analysis and PCA visualization. 
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