

ABSTRACT

Bachelor’s thesis 53 pages, 59 pictures, 15 code samples, 1 appendix.

The object of study is the development of the TSU student management system.

The purpose of the study is to develop a web application using ASP. NET Core MVC framework.

Research methods are theoretical research and practical implementation.

Work results: application requirements identified, the design is carried out, and the application is

implemented.

Key words: STUDENT MANAGEMENT SYSTEM DEVELOPMENT, ASP. NET CORE,

ENTITY FRAMEWORK CORE, BOOTSTRAP, MICROSOFT SQL SERVER, WEB

APPLICATION.

2

CONTENT

Glossary .. 4

Introduction .. 6

1 Design.. 7

1.1 Requirements .. 7

1.2 Use case diagram... 8

1.3 Activity diagrams .. 9

1.4 Problem domain model .. 11

1.5 Used technologies and tools .. 12

1.5.1 ASP. NET CORE ... 12

1.5.2 ASP. NET CORE MVC.. 13

1.5.3 Entity framework core .. 15

1.5.4 Bootstrap .. 16

1.5.5 jQuery .. 17

1.5.6 Microsoft SQL Server... 18

2 Implementations ... 19

2.1 Class diagram .. 19

2.2 Preparation .. 19

2.3 Model creation .. 20

2.4 ApplicationDbContext creation ... 20

2.5 Record creation ... 22

2.6 Localization .. 26

2.7 Login/register with social media .. 29

3

2.8 Real time public chat ... 33

Conclusion .. 40

References .. 41

Appendix A .. 42

4

GLOSSARY

TSU – (abbreviation) Tomsk State University.

SMS – (abbreviation) Student Management System.

Web Application – Application software that runs on a web server.

Full Stack – The development of both frontend and backend portions of web application.

Frontend – The practice of converting data to a graphical interface, through the use of HTML,

CSS, and JavaScript, so that users can view and interact with that data.

JavaScript – Often abbreviated as JS, is a programming language that conforms to the

ECMAScript specification.

DOM – (abbreviation) Document object model. When a page is created and loaded into the

browser, the DOM comes into being, which converts the web page document into a document

object, whose main function is to process the content of the web page. In this document object, all

elements present a hierarchical structure.

UI – (abbreviation) User interface design. This is the point of human-computer interaction and

communication in a device. This can include display screens, keyboards, a mouse and the

appearance of a desktop. It is also the way through which a user interacts with an application or a

website.

Backend – In the computer world, the “backend” refers to any part of a website or software

program that users do not see. In programming terminology, the backend is the “data access layer”.

CRUD – (abbreviation) Create, read, update, delete.

UML – (abbreviation) Unified Modelling Language.

IDE – (abbreviation) An integrated development environment (IDE) is a software for building

applications that incorporates commonly used developer tools into a single graphical user interface

(GUI).

DB – (abbreviation) Database.

DBMS – (abbreviation) Database Management System.

5

NuGet – A package manager designed to enable developers to share reusable code.

Plugin – A software add-on that is installed on a program, enhancing its capabilities.

HTTP – (abbreviation) Hyper Text Transfer Protocol. A simple request-response protocol.

ES – (abbreviation) ECMAScript.

API – (abbreviation) Application Programming Interface.

Cookie – A piece of data that website puts on the user’s local device when you visit. It usually

contains information about the website itself.

6

INTRODUCTION

Nowadays, the number of students in each department increases rapidly due to the social

development and the admission expansion of universities every year.

But in the student management part, a lot of universities are still using outdated tools like

Excel or similar applications. Some even work with papers, files and binders. No doubt, the

traditional way of managing student’s work and progress is a challenge for university’s employees.

Because of facing mass data, people will be more error prone. Then for solving those problems

and liberating people from complex and cumbersome work. A web application specific for

managing students is in demand. Imagining, all data is stored in the database, you don’t need to

worry about where to store those easily lost papers and security of those data is ensured. And a lot

of formatted templates are supported, you can easily create projects you need and record student’s

progress.

Student management system is a web application which can suit all your requirements

above. It allows teachers to create subjects and make records for student’s progress. More than

that, real time chat technology is built-in for simplifying the chatting between teachers and students.

And due to the echarts’s diagrams, all data in the site will be readable and manifest.

The project is considered to be a full-stack project as in the backend .NET Core framework

was chosen, and in the frontend bootstrap and jQuery was chosen.

7

1 Design

Before starting to create an application in the code, application design was conducted.

1.1 Requirements

After receiving requirements for this application from the university, functional and non-

functional requirements were formed. Below are all functionalities that a complete application

should be provided to the user.

Roles Introduction:

The website has three kinds of roles: Teacher, Student and Admin. Teachers are the main

users of the website. Have permission to use or view most of the resources but can’t change the

deep data of the website. Students are the users which have basic authorization. Admin is the

special role which can manage and control the whole site. Has permission to do all changes at the

website. Also, one person can have more than one role at the same time.

Functional Requirements:

Users:

Communicate with each other in the chat room.

Students:

Upload personal attachments directly in the project.

Teachers:

1. CRUD personal subjects, projects, attendances, notifications and records.

2. Mark student’s attachments.

Administrators:

Manage all users, subjects, projects, records, attachments and chat rooms.

Non-Functional Requirements:

1. The site supports at least two languages.

2. Users can login or register with social medias.

3. ASP. NET Core should be the development framework.

8

1.2 Use case diagram

For showing users’ possible interactions with a system, use case diagram was made (Figure

1).

Figure 1 – Use case diagram

Mange in the diagram means the CRUD actions. For the students and teachers, they can

only manage the personal data or those data which are related to them. Administrators have the

highest authority which allows them to access all data on the site.

9

1.3 Activity diagrams

To present the most necessary scenarios of how system’s logic work, two activity diagrams

were prepared (Figure 2, Figure 3):

Figure 2 – Admins manage users

Above is an example about how admins manage users. In the logic of how the system

works, it is supposed to have an authorization part which can check the current user’s roles. Due

to the check result, it will block or unlock resources of the system to this user. And also, a specific

page should be designed (access denied page). User will be returned to this page if he doesn’t have

enough permission.

10

For avoiding accidental deletion and also for protecting user’s data. Delete action in this

site is distinct compared to the traditional delete action. After the delete button is clicked, the

system will check whether still have resources exist in the site which belong to this user. If the

result is true, then this delete process will be paused. Admin must remove all resources which

belong to this user first and then he can delete this user.

Figure 3 – Record creation

Records are built based on the project, that’s why the user needs to visit the project’s detail

page first. And for helping teachers to create records for each week, a special service which can

11

split project’s start time and deadline into weeks is needed. So, teachers can see both the range of

dates and week numbers at the same time.

1.4 Problem domain model

To present the business domain corresponding. UML class diagram was made (Figure 4).

Figure 4 – Problem Domain Model

As can be seen from the diagram. In the system, almost all models are built based on the

subject. In the logic of how the system works, users are required to join some subjects and subjects

contain different roles’ users. That’s why the relationship between them is many to many. For

those users that join the subjects, teachers can specifically create attendance, records for them.

And sure, those users can create their own comments and upload personal attachments in the

projects like mentioned before in the functional requirements. Also, unlike some traditional chat

rooms. Users need to join the room first and then they can send messages. In SMS, a simple chat

room should be created. Which means users can directly send messages in different rooms instead

of needing to join them first. So, due to this reason, in the diagram, the relationship between user

and chat room is one to one. It means the creator and chat room.

12

1.5 Used technologies and tools

Follow the development of programming, there are a lot of frameworks that are very

powerful nowadays, each framework has its own pros and cons. ASP. NET Core was chosen to

develop the back-end of this web application for many reasons that is going to be demonstrated

below. Bootstrap and jQuery were chosen to develop the front-end of this project. Microsoft SQL

Server was chosen as the database.

1.5.1 ASP. NET CORE

ASP. NET Core is an application framework which is written in C# and C++. It is

developed by Microsoft and currently managed under the .NET Foundation (a non-profit open

source organization). Using ASP. NET Core, developers can build Web applications and services,

Internet of Things (IoT) applications, and mobile backends.

The major characteristics of ASP. NET Core:

 Cross-platform support

Applications built with ASP. NET Core can be run and its code can be reused instead of

thinking about platform target. It currently supports three operating systems which are

Windows, Linux and MacOS. The number of supported operating systems and scenarios

will increase overtime.

 Flexible deployment

Users can deploy a .NET Core application side by side with their application seamlessly.

It supplies two types of deployments for .NET Core applications which are framework-

dependent deployment and self-contained deployment. It is a general-purpose

development platform that consists of several components. These include the managed

compilers, the runtime, and the base class libraries. It also includes many application

models, such as the ASP. NET Core.

 Modular

.NET Core is composed of a set of modular components through NuGet. In other

13

words, .NET Framework is a large assembly that contains most of the core functionalities

and .NET Core is made available as smaller feature-centric packages. It enables users to

take advantage of the package users want to use rather than including the entire .NET Core

framework. It brings performance boost, tighter security and service reduction.

 Open-source

.NET Core is open source using MIT and Apache 2 licenses and is available in GitHub.

Open source enables speed and facilitates the exchange of human knowledge and skills. It

attracts a large group of users and continue to enable a great community. With it,

frameworks errors can be found quickly and improved.

1.5.2 ASP. NET CORE MVC

ASP. NET Core MVC is a rich framework for building web apps and APIs using the

Model-View-Controller design pattern. The Model-View-Controller (MVC) architectural pattern

separates an application into three main groups of components: Models, Views, and Controllers.

This pattern helps to achieve separation of concerns. Using this pattern, user requests are routed

to a Controller which is responsible for working with the Model to perform user actions and/or

retrieve results of queries. The Controller chooses the View to display to the user, and provides it

with any Model data it requires (Figure 5).

Figure 5 – MVC Architectural Diagram

14

ASP. NET Core MVC always works together with 3-tiers architecture. The purpose of

layering is to achieve the idea of "high cohesion and low coupling", which is conducive to the

maintenance, updating or porting of the system later on. From a personal point of view, MVC just

subdivides the UI layer into three more tiers (Figure 6).

Figure 6 – MVC and 3-tiers architecture

Model Responsibilities:

For the Model, the main thing is to save and export information. Data, behavior and

methods are the main elements of the Model. The Model is where the logic is most complex

because the business logic should be encapsulated in the model, along with any implementation

logic for persisting the state of the application. Strongly-typed views typically use ViewModel

types designed to contain the data to display on that view. The controller creates and populates

these ViewModel instances from the model.

View Responsibilities:

Views are responsible for presenting content through the user interface. They use the Razor

view engine to embed .NET code in HTML markup. Everything that is not relevant to the display

interface should not appear inside the view. In other words, complex judgement statements and

complex arithmetic procedures should generally not be present in the view. There can be simple

looping statements, formatting statements. View Component , ViewModel or view template can

also be used to simplify the view.

Controller Responsibilities:

15

Controller is the component that responds to user requests, decides what view to use and

what data needs to be prepared for display. It acts as a mediator between view and model. In an

MVC application, the view only displays information; the controller handles and responds to user

input and interaction. The Controller should be limited to fetching the user request data and should

not have any manipulation or pre-processing of the data

1.5.3 Entity framework core

Entity Framework Core (EF Core) is an object-oriented, lightweight, and extensible

technology from Microsoft for data access. EF Core is an object-relational mapping (ORM) tool.

That is, EF Core allows you to work with databases, but it represents a higher level of abstraction:

EF Core allows you to abstract from the database itself and its tables and work with data regardless

of the type of storage. If at the physical level we operate with tables, indexes, primary and foreign

keys, but at the conceptual level that Entity Framework offers us, we are already working with

objects.

Entity Framework Core supports many different database systems. Thus, we can work with

any DBMS through EF Core, if the required provider is available for it. For showing the logic how

EF core works, a simplified diagram was drawn (Figure 7).

Figure 7 – EF Core working logic

Main Reasons why Entity Framework core was used:

 The visual interface reduces the difficulty and time lost in creating entities.

16

 The database sync is easy for environments using migration. It is a really needed.

 Feature which makes it possible to upgrade or downgrade any change/commit.

 No more worrying about how the application connects to the database.

 Instead of requiring users have good knowledge in SQL scripts, users can easily control

database by LINQ queries even they are green hand with it.

1.5.4 Bootstrap

Bootstrap is a free and open-source framework for creating websites and web applications.

It's the most popular HTML, CSS, and JS framework for developing responsive, mobile first

projects on the web.

Main Reasons why Bootstrap was used:

 Fewer Cross browser bugs.

 A consistent framework that supports major of all browsers and CSS compatibility fixes.

 Good documentation and community support. The official documentation explains the use

of each component in detail.

 A large selection of free and professional templates. Developers can find and download a

lot of free and professional templates that suit their website which very helpful to confirm

the general style.

 Grid system. It is a pain for frontend developers to implement page adaption for different

sizes of screens. But the bootstrap grid system can automatically scale up to 12 columns as

the device or viewport size increases (Figure 8). Grid system has four pre-denied classes

for different viewports (Figure 9), the principle is to use media queries to obtain the

dimensions of the user's device. And the pages are automatically adapted to the different

devices.

17

Figure 8 – Bootstrap grid system

Figure 8 – Bootstrap grid options

1.5.5 jQuery

jQuery is a free and open-source JavaScript library. The motto of it is “write less, do

more”. It simplifies the Document Object Model (DOM) operations compare to the native

JavaScript code by encapsulation the common functionalities like elements acquisition, events

binding, styles modification and so forth.

Not just these, jQuery also make the operations like animation, ajax much simpler and

good cross browser support.

Main Reason why jQuery was used:

18

 Simple and clean code. Benefits from the excellent DOM operations encapsulation, jQuery

can easily complete various operations that were originally very complex, it reduces the

lengthy JavaScript code that was needed before (Figure 10). Developers can be handy to

write DOM operations related programs, and also allow JavaScript novices to write

excellent programs.

Figure 10 – Code comparison between JavaScript and jQuery

 Perfect Ajax. jQuery encapsulates all Ajax operations into a function $. ajax, which allows

developers to concentrate on processing business logic when dealing with Ajax without

having to worry about complex browser compatibility and creation and use of

XMLHttpRequest objects.

 Rich plug-in support. jQuery supplies a lot of powerful plugins the system needs like rich

text editor, full calendar and so forth.

1.5.6 Microsoft SQL Server

Microsoft SQL Server is a relational database management system launched by Microsoft.

It has the advantages of ease of use, good scalability and high integration of related software.

Microsoft SQL Server is a comprehensive database platform that uses integrated business

intelligence (BI) tools to provide enterprise-level data management. The Microsoft SQL Server

database engine provides more secure and reliable storage capabilities for relational and structured

data, allowing users to build and manage high-availability and high-performance data applications

for the business.

Main Reason why Microsoft SQL Server was used:

 Easy Installation and free. Same as the IDE Microsoft Visual Studio, MSSQL is also a

product from Microsoft. Those two tools have perfect compatibility, users can quickly

install MSSQL through NuGet in Visual Studio and establish connection between them.

19

2 Implementations

2.1 Class diagram

Based on the selection of tools, the final class diagram is obtained (Figure 11).

Figure 11 – Class Diagram

 Due to the page size and thinking of readability. Only important models were picked from

the problem domain model to show the logic of how the holistic system works. The rest of the

models follow the same logic as models shown here.

 User model and role model can easily inherit necessary properties they need from .NET

Core Identity instead of adding by themselves. All those models will be added in

ApplicationDbContext instance which from EF Core as entities. Controller uses

ApplicationDbContext instance to implement CRUD activities of each entity.

2.2 Preparation

To start the development, VS should be installed on a local device. Also, after creating a

new project on the VS. Some basic necessary packages should be downloaded from NuGet.

The project needs Microsoft.EntityFrameworkCore.SqlServer,

Microsoft.EntityFrameworkCore.Tools, Microsoft.Identity.EntityFrameworkCore.

20

2.3 Model creation

Following the problem domain model diagram above, domain models can be easily created.

Domain model is a collection of objects that represents the data in the database, it usually has a

one to one relationship with the tables in the database. And below was an example about subject

model creation (Code sample 1).

public class Subject
{
 public Guid Id { get; set; } = Guid.NewGuid();
 public string Name { get; set; }
 public User Creator { get; set; }
 public DateTime Created { get; set; }
 public string Code { get; set; }
 public string ThemeName { get; set; }
 public ICollection<Project> Projects { get; set; }
 public ICollection<Attendance> Attendances { get; set; }
 public ICollection<Notification> Notifications { get; set; }
 public ICollection<UserSubject> UserSubjects { get; set; }
}

Code sample 1 – Create User Model

As said before, domain models represent the data in the database. So, they only define the

properties of the data to be stored in the database. Reasons why use properties rather than fields

are having properties could make some things easier especially when working with reflection and

fields are only good for private variables. Also, extra configurations are needed to use fields in EF

Core. For the relationship between each model, the most common pattern for relationships is to

have navigation properties defined on both ends of the relationship and a foreign key property

defined in the dependent entity class. In the above code, Creator is a reference navigation property

because subject is created by user. And for Projects, Attendances, Notifications, they are collection

navigation properties because they are based on the Subject entity.

2.4 ApplicationDbContext creation

After finishing models’ creation, it is time to create ApplicationDbContext class (Code

sample 2).

public class ApplicationDbContext : IdentityDbContext<User>
{
 public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
 : base(options)
 {
 }

21

 public DbSet<Subject> Subjects { get; set; }
 public DbSet<Project> Projects { get; set; }
 public DbSet<Notification> Notifications { get; set; }
 public DbSet<Attendance> Attendances { get; set; }
 public DbSet<Note> Notes { get; set; }
 public DbSet<Record> Records { get; set; }
 public DbSet<Message> Messages { get; set; }
 public DbSet<Room> Rooms { get; set; }
 public DbSet<Attachment> Attachments { get; set; }
 public DbSet<UserSubject> UserSubjects { get; set; }
 public DbSet<Event> Events { get; set; }
}

Code sample 2 – Create ApplicationDbContext Class

A class that derives from the IdentityDbContext class (a regular DbContext with two

DbSets. One for users and the other for roles.) was created and be named as ApplicationDbContext.

For the ApplicationDbContext class to be able to do any useful work, it needs an instance of the

DbContextOptions class which can carry configuration information such as the connection string,

database provider to use etc. For each entity in the model, class includes a DbSet<TEntity>

property. The LINQ queries against the DbSet<TEntity> will be translated into queries against the

underlying database (Figure 12).

Figure 12 – Database creation from the domain classes

As mentioned in the activity diagram about admin manages users (Figure 2). The delete

action in this site is different compared to traditional sites. But in EF Core, by default the foreign

keys in the parent table have cascade delete behavior which means when a record is removed from

the parent table, then the corresponding records in the child table are deleted automatically. To

avoid it, in the OnModelCreating method of ApplicationDbContext class, the delete behavior of

foreign keys need to be modified (Code sample 3).

protected override void OnModelCreating(ModelBuilder modelBuilder)
{

22

 base.OnModelCreating(modelBuilder);
 foreach (var foreignKey in modelBuilder.Model.GetEntityTypes()
 .SelectMany(e => e.GetForeignKeys()))
 {
 foreignKey.DeleteBehavior = DeleteBehavior.Restrict;
 }
}

Code sample 3 – Modify foreign keys delete behavior

2.5 Record creation

Before talking about how to create records, a diagram about how CUD actions work

between EF Core and database was made (Figure 13).

Figure 13 – Working logic between EF Core and Database

 In the project’s properties have start time and deadline. For matching the requirement of

record creation diagram (Figure 3), a special class which can spilt days between start time and

deadline should be created (Figure 14).

Figure 14 – Week split class

23

The view model is the object which holds the data that needs to be shown, modified or

inserted to the user in the view page. It can be thought as a DTO (Data transfer object) which is

used as a container to encapsulate data and pass it from one layer of the application to another.

View model is related to the presentation layer of the application which matches the usage of DTO

to return data back to the presentation layers, it makes the application more secure as it can avoid

exposing the potentially dangerous properties. With data annotations, programmers can decorate

and validate the properties easily (Code sample 4).

public class RecordCreateViewModel
{
 [Required]
 public string StudentId { get; set; }
 [Required]
 public float LogTime { get; set; }
 [Required]
 public string Week { get; set; }
 [Required]
 public string Note { get; set; }
 [Required]
 public int Progress { get; set; }
}

Code sample 4 – RecordCreateViewModel

 In the RecordsController, the record creation needs two versions of the create method.

One that renders the record creation form by HttpGet (Code sample 5) and the other handles the

request when this creation form is submitted by HttpPost.

[HttpGet]
public async Task<IActionResult> Create(Guid? projectId)
{
 if(projectId == null)
 {
 return View("~/Views/Shared/NotFound.cshtml");
 }
 var project = await this.context.Projects
 .Include(x=>x.Subject).ThenInclude(x=>x.UserSubjects)
 .ThenInclude(x=>x.User)
 .SingleOrDefaultAsync(x => x.Id == projectId);

 var getWeek = Week.Split(project.StartTime, project.DeadLine);
 ViewBag.Week = new SelectList(getWeek);
 return View(new RecordCreateViewModel());
}

Code sample 5 – Create method in HttpGet

 ASP. NET Core MVC supplies an interior process which is model binding. It is the process

controller and razor pages work with data that comes from HTTP request. Model binding can get

24

information directly from forms or URL routing (Figure 15). Project’s id in the above code is the

data sent from the project’s detail page by using anchor tag helper asp-route.

Figure 15 – Model binding

The record is based on the project, so the method needs to check whether project id is sent

together when users visit the record creation page. EF Core queries project table for getting the

project which matches this project id. If either of them equals null, the user will be sent to the

NotFound page. Due to the record and user are two separate entities, the include method from EF

Core was used to specify the related objects to include in the query result.

For sending temporary data from controller to the view, ASP. NET Core MVC supplies a

dynamic property called ViewBag (Figure 16).

25

Figure 16 – Data sending between controller and view by ViewBag

 After the building of front page, the record creation form is done (Figure 17).

Figure 17 – Record creation form

 In the HttpPost create action, ModelState.isValid method (Code sample 6) which

represents errors that come from model binding and model validation was used to judge whether

user’s input data is matching the DataAnnotations which developers configured in the ViewModel

(Figure 18).

26

Figure 18 – ModelState.isValid method

if (this.ModelState.IsValid)

Code sample 6 – Model validation in create action

 If all user’s input data is valid, EF Core will insert a new record in the record diagram as

the diagram shows (Figure 13).

2.6 Localization

 As said in non-functional requirements, the site supports two languages which are

simplified Chinese and English. Before starting to create the resource files, some settings which

related to localization need to be configured in Startup.cs file (Code sample 7).

27

services.AddLocalization(opt => { opt.ResourcesPath = "Resources"; });
services.AddMvc().AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix).AddDataA
nnotationsLocalization();
services.Configure<RequestLocalizationOptions>(
 opt =>
 {
 var supportedCultures = new List<CultureInfo>
 {
 new CultureInfo("en"),
 new CultureInfo("zh")
 };
 opt.DefaultRequestCulture = new RequestCulture("en");
 opt.SupportedCultures = supportedCultures;
 opt.SupportedUICultures = supportedCultures;
 });

Code sample 7 – Configure localization files

 For the path of the resource files, in the application root directory a folder which was named

as Resources should be created and service uses opt.ResourcesPath to find it. CultureInfo class is

for storing culture-specific information, so here it was used to define the allowed cultures.

 After resource files be created (Figure 19, Figure 20), it will be injected to the view page

and replace the original text (Code sample 8).

Figure 19 – Resource file in English

Figure 20 – Resource file in simplified Chinese

@inject Microsoft.AspNetCore.Mvc.Localization.IViewLocalizer localizer
<div class="text-center">
 <h1 class="text-danger">@localizer["title"]</h1>
 <h6 class="text-danger">@localizer["notice"]</h6>

</div>

Code sample 8 – Inject localization file in view page

 To be more user friendly, the system is supposed to save users’ language selection results

inside the cookie, so when users visit the different page, they don’t need to switch language again.

28

To achieve it, a method called CultureManagement was created in the HomeController (Code

sample 9).

[HttpPost]
public IActionResult CultureManagement(string culture, string returnUrl)
{
Response.Cookies.Append(CookieRequestCultureProvider.DefaultCookieName,CookieRequestCultu
reProvider.MakeCookieValue(new RequestCulture(culture)),
new CookieOptions { Expires = DateTimeOffset.Now.AddDays(30) });
return LocalRedirect(returnUrl);
}

Code sample 9 – CultureManagement action in HomeController

In general, cookie is a data carrier of only 4 kb in size that saves in the user’s local browser.

When users first time visit a site, the server sends a HttpResponse which includes Set-Cookie in

the header to clients’ side. The browser saves this cookie in the local and every subsequent

HttpRequest will automatically carry this cookie (Figure 21).

Figure 21 – The process about set cookie

The CultureManagement action expects to receive two parameters – culture and returnUrl.

Culture means the language which users selected and returnUrl can help the site back to the page

where users send this action.

 Then in the razor page, after the code about switch button was written(Code sample 10),

implementation about localization is done.

@{
var returnUrl = string.IsNullOrWhiteSpace(Context.Request.Path) ? "~/" :
$"~{Context.Request.Path.Value}{Context.Request.QueryString}";
}
<form id="switchEn" asp-action="CultureManagement" asp-controller="Home" method="post"
asp-route-returnUrl="@returnUrl">

29

<input type="hidden" name="culture" value="en" />
<a class="collapse-item"
href="#"onclick="document.getElementById('switchEn').submit();">English
</form>

Code sample 10 – Html and JS code about switch button

2.7 Login/register with social media

 SSM supports user login/register with their Google or Facebook account. The benefits of

it are that the system no longer needs to store and maintain those highly sensitive information such

as the password in the database and simplified registration steps(users no longer need to input

email or other personal information that the system can get from social media providers) . Instead,

it is the responsibility of those external authentication providers.

 For showing clearly how different components in the site work with the external login. A

sequence diagram about it was made (Figure 22).

Figure 22 – Sequence diagram about external login

 Before starting on the material code, two packages which are

AspNetCore.Authentication.Facebook and AspNetCore.Authentication.Google should be installed

from the NuGet. Then in the Startup.cs file, authentications about Google and Facebook need to

30

be configured which are the client id and client secret from their OAuth client credentials (Figure

23).

Figure 23 – Client ID from login provider

 For displaying each available external login way, just need to traverse all available

providers from the AuthenticationScheme which in Microsoft.AspNetCore.Authentication

namespace in the login view to get those data which registered (Code sample 11).

@foreach (var provider in Model.ExternalLogins)
{
 if (provider.Name == "Facebook")
 {
 ……
 }
}

Code sample 11 – Traverse and display all available login ways

 After users click one of those social media buttons. Undoubtedly, they will see an error

and that is page not found. Because the current system still doesn’t have ExternalLogin action

which can redirect users to the external login provider login page like the picture show (Figure 24).

31

Figure 24 – Redirect users to the external login page

 But that’s still not the whole action, because users just input their email and password and

send to those external login providers, the system doesn’t have any action which can receive the

data which providers return. Also, as the picture 13 shows, we still need to judge whether users

exist or not in the database. So, to tackle those situations, ExternalLoginCallback action is needed.

For helping understand the interior logic of this action, a process flow diagram was made (Figure

25).

32

Figure 25 – ExternalLoginCallback action process flow diagram

 As default, the ExternalLoginCallback action receives two parameters which are returnUrl

and remoteError. First the system will judge whether returnUrl is null, but due to the logic that all

users must login so they can visit their main page and each controller has [Authorize] attribute, so

it is 100% percentage that this value is null. For the remoteError, if it’s not null, probably the

33

system receives some error information from the external provider which means action is failed

so the user will be redirected to the login page (Code sample 12).

if (remoteError != null)
{
 ModelState.AddModelError(string.Empty, $"Error from external provider: {remoteError}");
 return View("Login", loginViewModel);
}

Code sample 12 – Remote error is not null

 AddModelError method from ModelState allows us to display additional errors related to

specific properties. It can easily add customized error messages to the ModelState.

 The system accesses the next process for getting user’s information from the external

provider and then judges whether user’s information exists. If it is, the system will try to sign in

this user. Due to the result of the sign in action, the system can know whether this user exists in

the database. If succeeded means the user already existed in the database and all necessary

operations were done so the system can directly stop current action. Otherwise, the system needs

to generate a new user account and insert it in the user table .

 As a final result, a new user whose PasswordHash is null that perfectly fit the system

requirements that doesn’t save any highly sensitive information shows up in the dbo.AspNetUsers

table (Figure 26).

Figure 26 – External login new user

2.8 Real time public chat

 For implementing the real time chat functionality, SignalR which provides API for the

communication from the server-to-client using Remote-Procedure-Calls was chosen as the tool

(Figure 27). It can scale up to handle increasing traffic, send messages to all connected clients

simultaneously and handle automatic connection management.

34

Figure 27 – SignalR working logic

 Follow the same logic as code sample 1 and code sample 5, message model and message

view model were created. However, UI layers might fail to async with the entities. Therefore, to

map entities to model or view model, AutoMapper was selected. It acts as a mapper between two

objects and transforms one object type into another (Figure 28).

Figure 28 – AutoMapper between message model and message view model

 The system used the profile from AutoMapper to configure bilateral properties. So, a class

named MessageProfile which inherit profile from AutoMapper was created (Code sample 13).

public class MessageProfile : Profile
{
 public MessageProfile()
 {
 CreateMap<Message, MessageViewModel>()
 .ForMember(dst => dst.From, opt => opt.MapFrom(x => x.FromUser.FullName))
 ……
 CreateMap<MessageViewModel, Message>();
 }
}

35

Code sample 13 – MessageProfile class for configuring AutoMapper

 For handling client-server communication, a ChatHub class which inherits hub from

signalR hub that serves as a high-level pipeline was created. Inside this class, the system will

tackle the data user sent and then send the tackled data to the chat room view’s JavasScript file

for rendering the new DOM element and demonstrate it to those users which connect to this hub

(Figure 29).

Figure 29 – Chathub class in the system

 One of the most common ways to use signalR is write down methods in the ChatHub.cs

file. But in the system’s chat functionality, some actions like send private messages, join/quit the

room and get user’s device. Those actions will not save any data in the database. Meanwhile,

actions like create rooms, send messages, edit rooms, etc. Those actions are related to inserting or

removing data from the database. To make a distinction, only those actions which not influence

the database will be written in the ChatHub.cs file. Vice versa, for those actions related to the

database, they will be written in the controller. As a final result, a class diagram has been made to

describe the relationship between ChatHub.cs and controllers (Figure 30).

36

Figure 30 – Class diagram about RealTime chat

 Due to the thinking of content space and most of the signalR operations in this project are

the same. So below we only talk about the send message functionality which is one of the most

important functionalities in this project.

The signalR is a JavaScript client library and real time chat has a lot of DOM actions.

Instead of standard MVC controller, API controller was picked for this part. By using API

controller, the view can directly receive the JSON data (Figure 31) and based on those data, new

elements can be easily created and appended in the view page.

Figure 31 – HTTP request between view and controller

 HTTP supplies four methods for helping users send HTTP Requests due to different

situations (Figure 32)

Figure 32 – HTTP verbs

37

In general, the activity diagram about how users send message can be figured out (Figure

33).

Figure 33 – Sequence diagram about users send message

 When users come to chat view page, the interior JavaScript file which named as chat.js in

this page will establish connection to the ChatHub.cs file by call the

signalR.HubConnectionBuilder method (Code sample 14).

var connection = new signalR.HubConnectionBuilder().withUrl("/chatHub").build();

Code sample 14 – Establish connection to the chathub

 For getting the history messages in the chat room. An action called GetMessages was

created in the MessageController. It receives one parameter which is roomName and based on the

roomName the system can confirm the room that current user visited and query all history

messages in current room (Figure 34).

38

Figure 34 – Process flow diagram about GetMessages action

 In the frontend part, for sending HTTP requests to get the data that API controller returned,

fetch API from ES5 had been chosen. Fetch API uses the promise method which means it has three

possible states which are pending, fulfilled and rejected (Figure 35).

39

Figure 35 – Promise in JavaScript

 Pending is the state until it reaches the fulfilled or rejected, users are in the black box and

don’t know the outcome. Fulfilled means HTTP request successful, developers can use .then

method to get the data returned by the server. There are a lot of reasons to cause rejected state like

wrong parameters passing, incorrect URL, timeout, etc. The interesting part can be seen from the

above picture is no matter the request is successful or failed, it will still return a promise for helping

us use promise chain call.

 After injecting the ChatHub in the message controller’s constructor, we can use the

methods from ChatHub inside message controller (Code sample 15).

await _hubContext.Clients.Group(room.Name).SendAsync("newMessage", createdMessage);

Code sample 15 – invoke chathub inside message controller

Due to the use of sendasync method from ChatHub, the new message will be broadcasted

to all users which in the same room. In the users’ view page, connection.on method helps us to

access the data which sendasync method sent. Through the data, new DOM elements can be

rendered and displayed to users (Figure 36).

Figure 36 – New message in the chat room

40

CONCLUSION

In the course of the work, a web application was created using the ASP. NET Core and EF

Core.

All set goals have been achieved during the work, including:

 Creating requirements for application.

 Carrying out the designs of the application.

 Implementing all distinguished use-case in code.

Additionally, working with .NET Core, EF Core and more skills in front-end development

was learned during the development.

41

REFERENCES

1. ASP. NET Core // Microsoft Docs.– [N.p.], 2022. – URL:

https://docs.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-6.0

(access date 28.04.2022)

2. ASP. NET Core MVC // Microsoft Docs.– [N.p.], 2022. – URL:

https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-6.0 (access date

28.04.2022)

3. Entity Framework Core // Microsoft Docs.– [N.p.], 2022. – URL:

https://docs.microsoft.com/en-us/ef/ (access date 29.04.2022)

4. Bootstrap // Bootstrap Docs.– [N.p.], 2022. – URL:

https://getbootstrap.com/docs/5.1/getting-started/introduction/ (access date 29.04.2022)

5. jQuery // W3Schools.– [N.p.], 2022. – URL:

https://www.w3schools.com/jquery/jquery_intro.asp (access date 30.04.2022)

6. Microsoft SQL Server // Wikipedia.– [N.p.], 2022. – URL:

https://en.wikipedia.org/wiki/Microsoft_SQL_Server (access date 30.04.2022)

7. SignalR // Microsoft Docs.– [N.p.], 2022. – URL:

https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr

(access date 02.05.2022)

8. Automapper // Pro Code Guide.– [N.p.], 2022. – URL:

https://procodeguide.com/programming/automapper-in-aspnet-core/ (access date 02.05.2022)

9. External logins // Microsoft Docs.– [N.p.], 2022. – URL:

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/?view=aspnetcore-

6.0&tabs=visual-studio (access date 03.05.2022)

10. HTTP verbs // REST API Tutorial.– [N.p.], 2022. – URL:

https://www.restapitutorial.com/lessons/httpmethods.html (access date 05.05.2022)

https://docs.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/ef/
https://getbootstrap.com/docs/5.1/getting-started/introduction/
https://www.w3schools.com/jquery/jquery_intro.asp
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr
https://procodeguide.com/programming/automapper-in-aspnet-core/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/?view=aspnetcore-6.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/?view=aspnetcore-6.0&tabs=visual-studio
https://www.restapitutorial.com/lessons/httpmethods.html

42

APPENDIX A

Login Page:

Figure 37 - Login page

Registration Page:

Figure 38 - Registration page

43

Forgot Password Page:

Figure 39 - Forgot password page

Main Page:

Figure 40 - Main page

44

Subject’s Detail Page (All Projects):

Figure 41 - Subject’s detail page (All Projects)

Subject’s Detail Page (Notification Creation):

Figure 42 - Subject’s detail page (Notification Creation)

45

Subject’s Detail Page (Attendance Table):

Figure 43 - Subject’s detail page (Attendance Table)

Subject’s Detail Page (Users):

Figure 44 - Subject’s detail page (Users)

46

Subject’s Detail Page (Subject’s Code Settings):

Figure 45 - Subject’s detail page (Subject’s Code Settings)

Subject Creation Page:

Figure 46 - Subject’s creation page

47

Project Creation Page:

Figure 47 - Project creation page

Project’s Detail Page:

Figure 48 - Project detail page

48

Record Creation Page:

Figure 49 - Record creation page

Project’s Records Page:

Figure 50 - Project’s records page

49

Project’s Attachments Page:

 Figure 51 - Project’s Attachments page

Chat Room:

Figure 52 - Chat room

50

User’s Events (To do list):

Figure 53 - User’s events

User’s Profile Page:

Figure 54 - User’s profile page

51

Admin Dashboard:

Figure 55 - Admin dashboard

Email Template:

Figure 56 - Email template

52

Roles Table:

Figure 57 - Roles table

Edit Role Page:

Figure 58 - Edit role page

53

Manage Users’ Roles Page:

Figure 59 - Manage users’ roles page

	GLOSSARY
	INTRODUCTION
	1 Design
	1.1 Requirements
	1.2 Use case diagram
	1.3 Activity diagrams
	1.4 Problem domain model
	1.5 Used technologies and tools
	1.5.1 ASP. NET CORE
	1.5.2 ASP. NET CORE MVC
	1.5.3 Entity framework core
	1.5.4 Bootstrap
	1.5.5 jQuery
	1.5.6 Microsoft SQL Server

	2 Implementations
	2.1 Class diagram
	2.2 Preparation
	2.3 Model creation
	2.4 ApplicationDbContext creation
	2.5 Record creation
	2.6 Localization
	2.7 Login/register with social media
	2.8 Real time public chat

	CONCLUSION
	REFERENCES
	APPENDIX A

