

ABSTRACT

With the problems such as climate change caused by fossil energy, various

countries have started to pay attention to renewable energy, and wind energy has

become a key research object due to the problem of non-pollution. Since the

accuracy of wind energy prediction mainly depends on the accuracy of wind speed

prediction. Therefore, exploring and seeking methods to improve the accuracy of

wind speed prediction has become the most important issue at present. In this paper,

propose to use Back-Propagation Neural Networks(BPNN) and Support Vector

Regression (SVR) and Kernel Based Extreme Learning Machine (KELM) as three

different sets of base models and optimize them by using different machine learning

algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO),

Sparrow Search Algorithm (SSA), Sine Cosine Algorithm (SCA), and then combine

them with different decomposition methods such as Empirical Mode Decomposition

(EMD), Ensemble Empirical Mode Decomposition (EEMD), Variational Mode

Decomposition (VMD), Wavelet Decomposition (Wavelet) to form the

corresponding combined prediction models to explore which combined prediction

model has higher accuracy. Based on the data from the National Center for

Meteorological Sciences, the experiments show that the prediction accuracy of the

combined prediction model formed by the VMD method is significantly higher than

that of other combined prediction models in some models of BPNN and most of

SVR, while the prediction accuracy of the combined prediction model formed by the

Wavelet combination is higher in the models of KELM and part of models of SVR.

Keywords – Wind speed prediction, Model Decomposition Method, Back-

Propagation Neural Networks, Support Vector Regression, Kernel Based Extreme

Learning Machine, Genetic Algorithm, Particle Swarm Optimization, Sparrow

Search Algorithm, Sine Cosine Algorithm.

Bachelor’s thesis 70 pages, 22 figures, 12 code samples, 5 tables, 63 sources,

1 appendix.

2

CONTENTS

Introduction ... 6

1 Introduction to the methodologies ... 9

1.1 Introduction to the base model algorithms... 9

1.1.1 Back-Propagation Neural Networks .. 9

1.1.2 Support Vector Regression .. 11

1.1.3 Kernel Based Extreme Learning Machine ... 13

1.2 Optimization algorithms .. 14

1.2.1 Genetic Algorithm (GA) .. 14

1.2.2 Particle Swarm Optimization (PSO) .. 16

1.2.3 Sparrow Search Algorithm (SSA) ... 18

1.2.4 Sine Cosine Algorithm (SCA) ... 20

1.3 Decomposition methods ... 22

1.3.1 Empirical Mode Decomposition (EMD) ... 22

1.3.2 Ensemble Empirical Mode Decomposition (EEMD) 23

1.3.3 Variational Mode Decomposition (VMD) ... 24

1.3.4 Wavelet Decomposition (Wavelet) .. 24

2 Experimental research .. 26

2.1 Data preparation ... 26

3

2.2 Data decomposition .. 27

2.3 Predictive models ... 31

2.4 Evaluation indicators .. 33

2.5 Error analysis ... 34

Introduction of code program .. 42

Conclusion ... 47

Literature ... 49

Appendix A ... 59

4

GLOSSARY

EMD19 – Empirical Mode Decomposition

EEMD20 – Ensemble Empirical Mode Decomposition

VMD21 – Variational Mode Decomposition

Wavelet22 – Wavelet Decomposition

IMF – Intrinsic Mode Functions

BPNN14 – Back Propagation Neural Network

SVR15 – Support Vector Regression

SVM – Support Vector Machine

KELM16 – Kernel Based Extreme Learning Machine

GA12 – Genetic Algorithm

PSO13 – Particle Swarm Optimization

SSA17 – Sparrow Search Algorithm

SCA18– Sine Cosine Algorithm

MAPE – Mean Absolute Percentage Error

MSE – Mean Squared Error

MAE – Mean Absolute Error

RMSE – Root Mean Squared Error

5

Matlab1 – It’s a programming and numeric computing platform used by millions of

engineers and scientists to analyze data, develop algorithms, and create models

6

INTRODUCTION

Since the 21st century, as the new round of technological revolution and

industrial change continues to develop in depth, a new generation of technologies

and applications represented by artificial intelligence has penetrated into every

aspect of society, and people are enjoying the convenience and prosperity brought

by these new technologies. However, climate change, caused by the use of fossil

fuels, is threatening everything. According to the UN survey elevation, the

temperature on earth has increased by 1.1°C in the last decade (2011-2020)

compared to the late 19th century, and extreme droughts, water shortages, major

fires, and sea level rise caused by climate change are threatening human life2. As a

result, renewable energy has become a key research object for countries around the

world, and renewable energy targets and support policies have spread almost all over

the world, and according to the report, at least 164 countries have set renewable

energy targets and 145 countries have introduced support policies3. And wind energy,

as a non-polluting renewable energy source, has become a key research target for

countries around the world, and according to IRENA, solar and wind energy account

for 91% of all new installed renewable energy capacity4. However, the stochastic

and fluctuating nature of wind energy complicates the entry of a high percentage of

wind energy into the grid system. Between the accuracy of wind energy prediction

results depends mainly on the accuracy of wind speed prediction. Wind speed

prediction can effectively reduce the risk associated with wind-related uncertainty5.

How to use modern machine learning techniques to improve the accuracy of wind

7

speed prediction results and how to use machine learning algorithms to explore the

optimal prediction model have become the fields that this paper wants to explore

deeply.

According to the time scale of prediction, wind speed predictions can be

classified into ultra-short-term predictions (mainly in minutes), short-term

predictions (mainly in days), medium-term predictions (mainly in months, weeks)

and long-term predictions (mainly in years)6. For wind speed prediction methods are

mainly divided into physical and statistical methods. Physical methods use real-time

meteorological conditions for prediction, however, due to the complexity of

numerical meteorological models, they are not suitable for short-term and ultra-

short-term wind speed prediction7.Statistical methods are used to establish a

functional relationship between historical data and wind power output by means of

mathematical statistics, such as time series method8, neural network method9,

Kalman filter method10, support vector machine method11, etc. However, many

scholars have combined with other optimization algorithms and other techniques in

order to build a better combined prediction model and thus to improve the prediction

accuracy. For example, some scholars have used machine learning optimization

algorithms such as genetic optimization algorithm12 and Particle Swarm

Optimization algorithm13 to optimize the parameters of a single prediction model in

order to improve the wind speed prediction accuracy.

Based on this, this paper proposes Back-Propagation Neural Networks

(BPNN)14 and Support Vector Regression(SVR)15 and Kernel Based Extreme

8

Learning Machine(KELM)16 as the three base models, and the base models are

optimized by machine learning algorithms such as Genetic Algorithm (GA)12,

Particle Swarm Optimization (PSO)13, Sparrow Search Algorithm (SSA)17, Sine

Cosine Algorithm (SCA)18, etc. to optimize the base model, and then with different

decomposition methods such as Empirical Mode Decomposition (EMD)19,

Ensemble Empirical Mode Decomposition (EEMD)20, Variational Mode

Decomposition (VMD)21, Wavelet Decomposition (Wavelet)22, etc., to form a

combined prediction model to predict the wind speed, and to explore which

combined prediction model has a higher The accuracy of the combined prediction

model is higher.

The paper is organized as follows: the first part is a background introduction,

the second part focuses on the theoretical knowledge of decomposition and

prediction methods and the corresponding optimization algorithms, and the third part

analyzes different combinatorial prediction models through experimental studies.

The fourth part is introduction to the main program code. The fifth part presents the

corresponding research conclusions based on the experimental data analysis. Part A

of the Appendix A introduces the specific code realization of the optimization

algorithm in Matlab.

9

1 Introduction to the methodologies

1.1 Introduction to the base model algorithms

1.1.1 Back-Propagation Neural Networks

Back-Propagation Neural Networks (BPNN) is a multilayer neural network

trained according to the error back-propagation algorithm. The BPNN model has a

powerful computational power and a very complex mapping capability. Based on

this, the BPNN model can be trained adaptively for a large number of unstructured,

non-exact laws23.

The network structure of BPNN consists of: input layer, hidden layer and

output layer. The structure is illustrated in Figure 124 below. The input layer is the

first layer of the neural network, which takes the input information and passes the

signal to the next layer. The input layer does not perform any processing on the data

signal. Hidden layer: The other layers between the input layer and the output layer

are called hidden layers, which usually do not receive signals directly from the

outside world and do not send signals to the outside world. It is a general term for

the different functional layers. Output layer: as the last layer of the neural network,

it is mainly used to receive the input from the hidden layer and to output the resultant

values predicted by the model, The code construction of the keras-based BPNN

algorithm is shown in code sample 125, For example, the neural network shown in

code sample 1 is built quickly by keras and contains an input layer with 7129 nodes,

10

and a hidden layer with 128 nodes, and an output layer, which is a common binary

classification model.

Figure 1 – Backward propagation neural network structure

1. import keras

2. model = keras.Sequential()

3. model.add(keras.layers.Dense(7129, input_dim=7129, kernel_initializer='normal',

activation='tanh'))

4. model.add(keras.layers.Dense(128, kernel_initializer='normal', activation='tanh'

))

5. model.add(keras.layers.Dense(2, kernel_initializer='normal', activation='softmax

'))

6. model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accur

acy'])

7. history = model.fit(x_train, y_train, epochs=6, batch_size=200, verbose=1)

Code sample 1 – Neural networks built on keras code

11

1.1.2 Support Vector Regression

Support Vector Regression are a new type of classifier based on the theoretical

foundation of Support Vector Machine (SVM). The purpose of SVM26 is to find a

hyperplane so that the sample points are as far away from the hyperplane as possible.

The SVR, on the other hand, wants the sample points to be as close to the hyperplane

as possible. The model is optimized by minimizing the width between intervals27.

The structure is schematically shown in the following Figure 2 and Figure 328.

So, it can be considered statistically that the traditional regression method is

only considered correct when the regression function f(x) is exactly equal to y, when

and only when this condition occurs, all kinds of complex losses need to be

calculated, which makes our computation much more. On the contrary, support

vector regression considers that if the regression function f(x) deviates from y within

an acceptable range, this acceptable range is called the threshold (N). As long

as |𝑓𝑓(𝑥𝑥) − 𝑦𝑦| > 𝑁𝑁. Then the prediction can be considered correct. The equation for

the specific SVR regression model can be expressed as formula (1)29:

12

Figure 2 – Schematic diagram of SVM

Figure 3 – Schematic diagram of SVR

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 (1)

In the formula (1), 𝑤𝑤 and 𝑏𝑏 are the model parameters to be determined.

13

1.1.3 Kernel Based Extreme Learning Machine

Kernel Based Extreme Learning Machine (KELM) is an improved learning

algorithm based on the theoretical basis of Extreme Learning Machine (ELM)30 and

combined with kernel functions. By referring to the kernel function in ELM, the

KELM algorithm increases the stability and robustness of the classification model

on the basis of the original ELM algorithm31, which makes the KELM algorithm

have better performance to deal with more classification problems32.

ELM is feed-forward neural network, whose objective function f(x) can be

expressed as formula 233:

𝑓𝑓(𝑥𝑥) = 𝑎𝑎(𝑥𝑥) × 𝑏𝑏 = 𝐴𝐴 × 𝑏𝑏 = 𝐿𝐿 (2)

In the formular 2, x is the input vector, a(x), A is the output of the hidden layer node,

b is the output weight, L is the desired output.

By introducing the regularization factor C and the unit matrix I on the basis

of formula 2, the expression of the output weights is shown in formula 333:

𝑏𝑏 = 𝐴𝐴𝑇𝑇(𝐴𝐴𝐴𝐴𝑇𝑇 + 𝐼𝐼
𝐶𝐶

)−1𝐿𝐿 (3)

Then, the kernel function is introduced, and the matrix equation of the kernel

function can be expressed as formula 433:

𝛺𝛺𝐸𝐸𝐿𝐿𝐸𝐸 = 𝐴𝐴𝐴𝐴𝑇𝑇 = 𝑎𝑎(𝑥𝑥𝑖𝑖)𝑎𝑎�𝑥𝑥𝑗𝑗� = 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) (4)

 In formula 4, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 is the test input vector.

 Finally, the expression can be expressed as formula 533:

14

𝑓𝑓(𝑥𝑥) = [𝐾𝐾(𝑥𝑥, 𝑥𝑥1); ;𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛)](𝐼𝐼
𝐶𝐶

 + 𝛺𝛺𝐸𝐸𝐿𝐿𝐸𝐸)−1𝐿𝐿 (5)

In formula 5, (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, . . . , 𝑥𝑥𝑛𝑛) is the given training sample，n indicates the sample

size, K() is denoted as the kernel function.

1.2 Optimization algorithms

1.2.1 Genetic Algorithm (GA)

The main idea of Genetic Algorithm is derived from Darwin's theory of

biological evolution of natural selection and the computational model of biological

evolution of genetic mechanism, and it is a machine learning algorithm that searches

for the optimal solution through the natural selection process of natural evolution of

superiority35.

The Genetic Algorithm is an efficient search for each running parameter code

by randomization technique using all the individuals in the population as the

object36.The algorithm operation process is shown in Figure 4 below, which selects

the optimal parameter code through three evolutionary operations: selection,

crossover and mutation. Because of its own efficiency and class parallel processing

and global optimality has a very obvious advantage in dealing with various nonlinear

problems and solving multi-objective constrained problems37.

15

Figure 4 – Execution process of Genetic Algorithm

The three important operations of Genetic Algorithm are selection, crossover

and mutation. For the code implementation, please refer to the Genetic Algorithm in

Appendix A38.

16

1.2.2 Particle Swarm Optimization (PSO)

The main idea of the Particle Swarm Optimization algorithm originates from

the process of foraging for food by flocks of birds and the process of collaborating

with each other to complete the search for food. It is simpler than the Genetic

Algorithm because there is no "crossover" or "mutation" operation39. The Particle

Swarm Optimization algorithm is based on an iterative approach to find the global

optimal solution by iteratively updating the optimal solution over and over again40.

 It has become a popular research area in optimization algorithms because of its

simple principle, few adjustable parameters and easier implementation41. The

algorithm operation process is shown in Figure 5 below:

17

Figure 5 – Execution process of Particle Swarm Optimization

The PSO algorithm finds the optimal solution by iteration. During each

iteration, the particle updates its velocity and position by individual and population

extremes. The optimal solution found by the particle itself is called the individual

extremum, which can be represented by pbest. The other optimal solution found in

the population is called the population extreme, which can be represented by gbest.

The formula for the particle to update its own velocity and position can be

represented by the following formula 6 and formula 742:

18

Velocity:

𝑣𝑣𝑖𝑖+1 = 𝑤𝑤 × 𝑣𝑣𝑖𝑖 + 𝑐𝑐1 × 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟1 × (𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖) + 𝑐𝑐2 × 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟2 × (𝑔𝑔𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖) (6)

Position:

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑣𝑣𝑖𝑖+1 (7)

 In the above two formulas, 𝑤𝑤 is the inertia factor, generally taken as 1. 𝑐𝑐1 and

𝑐𝑐2 are the learning factors, generally taken as 2. 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟1 and 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟2 are random

numbers between (0, 1). 𝑣𝑣𝑖𝑖 and 𝑥𝑥𝑖𝑖 denote the velocity and position of the particle

in the i-th dimension, respectively. 𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 , 𝑔𝑔𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 denote the value of the i-th

dimension of the best position of a particle, the value of the i-th dimension of the

best position of the whole population, respectively.

For code implementation of Particle Swarm Optimization algorithm, please

refer to Particle Swarm Optimization in Appendix A.

1.2.3 Sparrow Search Algorithm (SSA)

The sparrow search optimization algorithm was proposed in 2020, and its

main idea is derived from sparrow foraging behavior and anti-predation behavior,

which is a new type of swarm intelligence optimization algorithm44. The sparrow

search optimization algorithm can be considered as an improvement of the artificial

swarm algorithm, and it has almost the same structure as the artificial swarm

algorithm, only with some differences in the search. Its algorithm flow is mainly

shown in Figure 6 below45.

19

In the Sparrow Search Algorithm, in which the discoverers, especially those

possessing better adaptation worthy discoverers, are given priority in the search

process to obtain food. At the same time, the discoverers can also provide foraging

directions for the joiners in all populations, so that the discoverers can forage in a

larger area. Similarly, the joiners will always monitor the discoverers during the

foraging process. If the entire sparrow population is threatened by a predator, it will

immediately engage in anti-predatory behavior46.

Figure 6 – Flow chart of the execution process of the Sparrow Search Algorithm

20

For code implementation of Sparrow Search Algorithm, please refer to

Sparrow Search Algorithm in Appendix A.

1.2.4 Sine Cosine Algorithm (SCA)

The Sine Cosine Algorithm is a new stochastic optimization algorithm that is

an intelligent optimization algorithm proposed by Seyedali Mirjalili, Australia47.

 The algorithm works by creating multiple initial stochastic candidate solutions

and then fluctuates towards the optimal solution using mathematical models of sine

and cosine. The stochastic solutions are evaluated iteratively by the objective

function so that different regions in the space can be used to achieve the global

optimum, very efficiently avoiding the local optimum problem48.

The sine cosine optimization algorithm is widely used in various fields of

optimization problems because of its flexibility, simplicity and ease of

implementation. The operation process of the sine cosine optimization algorithm can

be divided into the following two phases: the exploration phase and the development

phase. In the exploration phase, the initial stochastic solution is combined with the

optimization algorithm to quickly search for feasible spatial regions among all the

stochastic solutions. During the development phase, the random solution changes,

but the rate of change is always lower than that of the exploration phase. Its

formulation can be expressed by the following equation 849.

21

𝑋𝑋𝑖𝑖𝑡𝑡+1 = �
𝑋𝑋𝑖𝑖𝑡𝑡 + 𝑟𝑟1 × 𝑝𝑝𝑠𝑠𝑟𝑟(𝑟𝑟2) × |𝑟𝑟3𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡| 𝑟𝑟4 < 0.5
𝑋𝑋𝑖𝑖𝑡𝑡 + 𝑟𝑟1 × 𝑐𝑐𝑐𝑐𝑝𝑝(𝑟𝑟2) × |𝑟𝑟3𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡| 𝑟𝑟4 > 0.5

(8)

In this equation, 𝑋𝑋𝑖𝑖𝑡𝑡 is the i-th dimension of the current individual and the position

of the t-th generation. 𝑟𝑟2 denotes a random number from 0 to 2𝜋𝜋. 𝑟𝑟3 denotes a

random number between 0 to 2. 𝑟𝑟4 denotes a random number from 0 to 1. 𝑃𝑃𝑖𝑖𝑡𝑡

denotes the position of the i-th dimension of the optimal individual position variable

at the t-th iteration.

The specific execution flow chart of the SCA is shown in Figure 7 below:

Figure 7 – Flow chart of the execution process of the Sine Cosine Algorithm

22

The code to initialize the random result set of the Sine Cosine Algorithm and

the main loop is shown in Sine Cosine Algorithm in Appendix A.

1.3 Decomposition methods

1.3.1 Empirical Mode Decomposition (EMD)

The EMD algorithm was proposed by Norden e. Huang, an American scientist,

and it can decompose a signal by virtue of the time-scale characteristics of the data

itself without setting any basis function in advance51. EMD algorithm has a very

obvious advantage in dealing with various nonlinear and non-stationary signals

because of its data-driven adaptive nature52.

EMD obtains the first-order residual quantity 𝑟𝑟1(𝑝𝑝) by differentiating the

original signal 𝑋𝑋(𝑝𝑝) and 𝑐𝑐1(t), and then replaces 𝑟𝑟1(𝑝𝑝) with the original signal

𝑋𝑋(𝑝𝑝) for the corresponding processing, and the n-th-order modal function 𝑐𝑐𝑛𝑛(𝑝𝑝)

and the final residual quantity 𝑟𝑟𝑛𝑛(𝑝𝑝) can be obtained after repeating n times. The

final decomposition expression is5:

𝑋𝑋(𝑝𝑝) = ∑ 𝑐𝑐𝑛𝑛(𝑝𝑝) + 𝑟𝑟𝑛𝑛(𝑝𝑝)𝑛𝑛
1 (9)

During the EMD method, it is very easy to generate modal mixing because of the

presence of signals with similar scales in the IMF component. Also because the

signal has no sample points to be considered after the beginning and the end, it can

also lead to the polar packets diverging at the end points, thus leading to errors,

23

which is often referred to as the end effect. Therefore, in order to solve these

problems, the EEMD method is proposed53.

1.3.2 Ensemble Empirical Mode Decomposition (EEMD)

The EEMD algorithm is an improved algorithm proposed by Norden e. Huang

and other scientists to suppress the modal aliasing phenomenon caused by the EMD

algorithm. By superimposing a Gaussian white noise auxiliary signal processing

(NADA), the modal aliasing phenomenon is effectively suppressed55.

The specific steps of the decomposition of the EEMD algorithm are shown

below5:

1) The white noise 𝐸𝐸𝑖𝑖(𝑝𝑝) with normal distribution is added to the original

signal 𝑋𝑋(𝑝𝑝) to obtain the new signal 𝑋𝑋′(𝑝𝑝)5:

𝑋𝑋′(𝑝𝑝) = 𝑋𝑋(𝑝𝑝) + 𝐸𝐸𝑖𝑖(𝑝𝑝) (10)

2) Then the obtained new signal X'(t) is decomposed by EMD, so that the IMF

component and the other remaining components can be obtained5:

𝑋𝑋′(𝑝𝑝) = �𝑐𝑐𝑗𝑗(𝑝𝑝) + 𝑟𝑟𝑛𝑛(𝑝𝑝)
𝑛𝑛

𝑗𝑗=1

(11)

3) Then repeat the execution of step 1) and step 2) N times, and then the above

corresponding IMF will be averaged5, and finally can obtain the final IMF

(𝐶𝐶𝑛𝑛(𝑝𝑝), after EEMD as follows:

24

𝐶𝐶𝑛𝑛(𝑝𝑝) =
1
𝑟𝑟
�𝑐𝑐𝑖𝑖(𝑝𝑝)
𝑁𝑁

𝑖𝑖=1

(12)

1.3.3 Variational Mode Decomposition (VMD)

The VMD algorithm is an adaptive signal processing method whose core idea

is to construct and solve variational problems. Unlike the methods proposed by

scientists such as Norden e. Huang, the VMD algorithm aims to decompose the

original signal into subsignals of different frequencies56. This is because the VMD

algorithm considers the original signal as formed by the superposition of subsignals

with different frequency dominance. Therefore, IMF is defined in the VMD

algorithm as a bandwidth-constrained frequency modulation function, and the

original signal is decomposed into a number of specified IMF components by

constructing and solving a variational problem57. It is also because of this feature

that the VMD algorithm can effectively avoid the phenomenon of modal aliasing

and has the advantage of better decomposition accuracy for processing complex data,

and it is for this reason that the VMD algorithm is often used to deal with various

non-smooth and non-linear signal problems58.

1.3.4 Wavelet Decomposition (Wavelet)

The Wavelet Decomposition algorithm can be seen as an optimization of the

Fourier transform, By breaking up a continuous periodic signal into a linear

25

combination of trigonometric signals of different frequencies, when the period of

this periodic signal is infinite, this is the Fourier transform59. The basic equation of

Fourier transform is sin function and cos function, and the basic equation of wavelet

transform is wavelet function. The change made by wavelet transform lies in turning

the infinitely long trigonometric function basis into a finite length wavelet basis that

will decay, and different wavelets have very big differences in waveform, and

similar wavelets form a wavelet family61. The functional representation of the

wavelet transform is shown below. Due to the sparse coding property of Wavelet

Decomposition, wavelet packet decomposition is commonly used to deal with

various signal filtering problems and to deal with various signal noise reduction

problems and various data compression problems62.

𝛼𝛼 = 𝑊𝑊𝑇𝑇𝑓𝑓 (13)

where 𝛼𝛼 denotes the wavelet coefficients obtained from the transform and

𝑊𝑊 is the orthogonal matrix. 𝑓𝑓 is the input signal.

26

2 Experimental research

2.1 Data preparation

The experimental data for this experiment were obtained from the National

Center for Meteorological Sciences (NCMS), and the station located in Qingdao,

Shandong Province, with a latitude and longitude position of (36.07°N, 120.33°E)

and an elevation of 76 m. The specific experimental idea of this experiment is shown

in Figure 8 below:

Figure 8 – Flow chart of experimental idea design

27

2.2 Data decomposition

The sample data for this experiment has a total of 300 and is divided into two

different data sets, the training set and the test set, for training and prediction. The

first 80% of the sample data is used as the training set for the whole model, and the

remaining 20% of the sample data is used as the test set for the whole model.

Firstly, by using different decomposition methods (EMD, EEMD, VMD,

Wavelet) to decompose the original wind speed data to obtain IMF1, IMF2,

IMF3......IMFn. The specific decomposition results are shown in the following

Figure 9,10:

Figure 9, 10 – Raw data signal decomposition

The raw data decomposed by the EMD method is shown in the following

Figure 11:

28

Figure 11 – Raw data signal decomposed by EMD

The raw data by the EEMD method through decomposition is shown in the

following Figure 12, 13:

Figure 12 – Raw data signal decomposed by EEMD

29

Figure 13 – Raw data signal decomposed by EEMD

The raw data decomposed by the VMD method is shown in the following

Figure 14, 15:

Figure 14 – Raw data signal decomposed by VMD

30

Figure 15 – Raw data signal decomposed by VMD

The raw data decomposed by the Wavelet Decomposition method is shown in

the following Figure 16:

Figure 16 – Raw data signal decomposed by Wavelet

31

2.3 Predictive models

In this paper, BPNN, SVR and KELM are used as three groups of basic

prediction models. In order to improve the accuracy of the model, four different

optimization methods (GA, PSO, SSA and SCA) are used to optimize the three

groups of basic models, and then they are combined with the decomposition method

to obtain the following different groups of combined prediction models.

The prediction results of the combined prediction model formed by combining

the EMD method with the prediction model are shown in the following Figure 17:

Figure 17 – Prediction diagram of EMD combined prediction model

The prediction results of the combined prediction model formed by combining

the EEMD method with the prediction model are shown in the following Figure 18:

32

Figure 18 – Prediction diagram of EEMD combined prediction model

The prediction results of the combined prediction model formed by combining

the VMD method with the prediction model are shown in the following Figure 19:

Figure 19 – Prediction diagram of VMD combined prediction model

33

The final prediction results of the prediction model formed by combining the

Wavelet Decomposition method with the prediction model are shown in the

following Figure 20:

Figure 20 – Prediction diagram of Wavelet Decomposition combined prediction

model

2.4 Evaluation indicators

After predicting the model, it is necessary to analyze the error of the model to

measure the prediction accuracy of the model. In this paper, the prediction accuracy

of the combined prediction model is analyzed by using four common evaluation

indexes: mean absolute percentage error, mean square error, mean absolute error,

and root mean square error. Through them, quantitative error analysis is carried out.

The evaluation indexes range from [0, +∞), and when the error between the predicted

value and the true value is infinitely closer to 0, it means that the prediction accuracy

34

of the model is closer to the perfect combination prediction model. Among them, the

definitions and formulas of the four evaluation indicators are shown below:

𝐸𝐸𝐴𝐴𝑃𝑃𝐸𝐸 =
100%
𝑟𝑟

��
𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

(14)

𝐸𝐸𝑀𝑀𝐸𝐸 =
1
𝑟𝑟
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

(15)

𝐸𝐸𝐴𝐴𝐸𝐸 = �|𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

(16)

𝑅𝑅𝐸𝐸𝑀𝑀𝐸𝐸 = �
1
𝑟𝑟
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

(17)

In the formula: n represents the number of test samples, 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝚤𝚤
� represent

the true and predicted values at moment i-th.

2.5 Error analysis

After the combination prediction model predicts the original data, it is

necessary to analyze and compare the prediction results of the combination

prediction model according to the evaluation index to obtain the optimal

combination prediction model.

The error table of the combined prediction model formed by combining the

EMD method with the basic prediction model is shown in the following Table 1:

35

Table 1 Error analysis of EMD combined prediction method

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s)

emdBPNN 5.44 0.1784 0.2469 0.4223

emdGABPNN 6.11 0.2244 0.2863 0.4738

emdPSOBPNN 9.20 0.4299 0.4364 0.6557

emdSSABPNN 3.20 0.032 0.1519 0.1519

emdSCABPNN 4.29 0.0429 0.2032 0.2032

emdSVR 6.83 0.4635 0.3345 0.6808

emdGASVR 5.44 0.2561 0.2631 0.5061

emdPSOSVR 6.42 0.2408 0.3000 0.4907

emdSSASVR 8.87 0.0887 0.5958 0.5958

emdSCASVR 8.87 0.0887 0.5961 0.5961

emdKELM 7.02 0.0702 0.5061 0.5061

emdGAKELM 5.36 0.0536 0.5004 0.5004

emdPSOKELM 7.06 0.0706 0.4474 0.4474

emdSSAKELM 5.07 0.0507 0.4377 0.4377

emdSCAKELM 6.87 0.0687 0.4680 0.4680

36

The error table of the combined prediction model formed by combining the

EEMD method with the basic prediction model is shown in the following Table 2:

Table 2 Error analysis of EEMD combined prediction method

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s)

eemdBPNN 5.75 0.2335 0.2752 0.4832

eemdGABPNN 6.27 0.2964 0.2938 0.5445

eemdPSOBPNN 7.00 0.3480 0.3419 0.5899

eemdSSABPNN 2.83 0.0283 0.1343 0.1343

eemdSCABPNN 0.54 0.0054 0.0255 0.0255

eemdSVR 6.65 0.2903 0.3245 0.5388

eemdGASVR 6.25 0.2527 0.3104 0.5027

eemdPSOSVR 6.14 0.2386 0.2926 0.4456

eemdSSASVR 9.34 0.0934 0.7235 0.7235

eemdSCASVR 12.48 0.1248 0.8973 0.8973

eemdKELM 8.19 0.0819 0.626 0.626

eemdGAKELM 6.06 0.0606 0.4897 0.4897

eemdPSOKELM 5.54 0.0554 0.4013 0.4013

37

Continuation of Table 2

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s)

eemdSSAKELM 11.08 0.1108 0.6324 0.6324

eemdSCAKELM 5.83 0.0583 0.4065 0.4065

The error table of the combined prediction model formed by combining the

VMD method with the basic prediction model is shown in the following Table 3:

Table 3 Error analysis of VMD combined prediction method

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s)

VMDBPNN 1.89 0.0127 0.0820 0.1126

VMDGABPNN 1.99 0.0110 0.0852 0.1048

VMDPSOBPNN 2.17 0.0158 0.0946 0.1256

VMDSSABPNN 2.54 0.0254 0.1204 0.1204

VMDSCABPNN 2.33 0.0233 0.1106 0.1106

VMDSVR 5.08 0.0597 0.2058 0.2443

VMDGASVR 4.95 0.0759 0.2291 0.2755

VMDPSOSVR 3.04 0.1986 0.1419 0.1737

VMDSSASVR 7.25 0.1225 0.642 0.642

38

Continuation of Table 3

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s)

VMDSCASVR 7.27 0.1227 0.6417 0.6417

VMDKELM 10.62 0.0702 0.5061 0.5061

VMDGAKELM 5.36 0.0536 0.5004 0.5004

VMDPSOKELM 7.06 0.0706 0.4474 0.4474

VMDSSAKELM 5.07 0.0507 0.4377 0.4377

VMDSCAKELM 6.87 0.0687 04.68 0.468

The error table for the combined prediction model formed by combining the

Wavelet Decomposition method with the basic prediction model is shown in the

following Table 4:

Table 4 Error analysis of Wavelet combined prediction method

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s)

waveletBPNN 3.57 0.0357 0.2555 0.2555

waveletGABPNN 3.47 0.0347 0.2148 0.2148

waveletPSOBPNN 5.08 0.0508 0.3403 0.3403

waveletSSABPNN 4.17 0.0417 0.1978 0.1978

39

Continuation of Table 4

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s)

waveletSCABPNN 3.61 0.0361 0.1711 0.1711

waveletSVR 5.57 0.057 0.3358 0.3358

waveletGASVR 5.85 0.0585 0.3979 0.3979

waveletPSOSVR 4.80 0.048 0.2651 0.2651

waveletSSASVR 8.67 0.0867 0.5454 0.5454

waveletSCASVR 8.79 0.0873 0.5463 0.5463

waveletKELM 6.65 0.0665 0.3883 0.3883

waveletGAKELM 4.16 0.0416 0.246 0.246

waveletPSOKELM 3.42 0.0342 0.1961 0.1961

waveletSSAKELM 5.08 0.0508 0.1993 0.1993

waveletSCAKELM 3.3 0.032 0.0906 0.0906

In order to make a more intuitive comparison and analysis of the prediction

error results of these 60 different sets of combined prediction models, the Table 5

obtained by collation is shown below:

40

Table 5 Error analysis of all combined prediction method

EMD/EEMD/VMD/Wavelet MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s)

BPNN 5.44/5.75/1.89/3.57 0.1784/0.2335/0.0127/0.0357 0.2469/0.2752/0.0820/0.2555 0.4223/0.4832/0.1126/0.2555

GABPNN 6.11/6.27/1.99/3.47 0.2244/0.2964/0.0110/0.0347 0.2863/0.2938/0.0852/0.2148 0.4738/0.5445/0.1048/0.2148

PSOBPNN 9.20/7.00/2.17/5.08 0.4299/0.3480/0.0158/0.0508 0.4364/0.3419/0.0946/0.3403 0.6557/0.5899/0.1256/0.3403

SSABPNN 3.20/2.83/2.54/4.17 0.032/0.0283/0.0254/0.0417 0.1519/0.1343/0.1204/0.1978 0.1519/0.1343/0.1204/0.1978

SCABPNN 4.29/0.54/2.33/3.61 0.0429/0.0054/0.0233/0.0361 0.2032/0.0255/0.1106/0.1711 0.2032/0.0255/0.1106/0.1711

SVR 6.83/6.65/5.08/5.57 0.4635/0.2903/0.0597/0.057 0.3345/0.3245/0.2058/0.3358 0.6808/0.5388/0.2443/0.3358

GASVR 5.44/6.25/4.95/5.85 0.2561/0.2527/0.0759/0.0585 0.2631/0.3104/0.2291/0.3979 0.5061/0.5027/0.2755/0.3979

PSOSVR 6.42/6.14/3.04/4.80 0.2408/0.2386/0.1986/0.048 0.3000/0.2926/0.1419/0.2651 0.4907/0.4456/0.1737/0.2651

SSASVR 8.87/9.34/7.25/8.67 0.0887/0.0934/0.1225/0.0867 0.5958/0.7235/0.642/0.5454 0.5958/0.7235/0.642/0.5454

SCASVR 8.87/12.48/7.27/8.79 0.0887/0.1248/0.1227/0.0873 0.5961/0.8973/0.6417/0.5463 0.5961/0.8973/0.6417/0.5463

KELM 7.02/8.19/10.62/6.65 0.0702/0.0819/0.0702/0.0665 0.5061/0.626/0.5061/0.3883 0.5061/0.626/0.5061/0.3883

GAKELM 5.36/6.06/5.36/4.16 0.0536/0.0606/0.0536/0.0416 0.5004/0.4897/0.5004/0.246 0.5004/0.4897/0.5004/0.246

PSOKELM 7.06/5.54/7.06/3.42 0.0706/0.0554/0.0706/0.0342 0.4474/0.4013/0.4474/0.1961 0.4474/0.4013/0.4474/0.1961

SSAKELM 5.07/11.08/5.07/5.08 0.0507/0.1108/0.0507/0.0508 0.4377/0.6324/0.4377/0.1993 0.4377/0.6324/0.4377/0.1993

SCAKELM 6.87/5.83/6.87/3.3 0.0687/0.0583/0.0687/0.032 0.468/0.4065/0.468/0.0906 0.468/0.4065/0.468/0.0906

Through the analysis of the above experimental data, the following

conclusions can be obtained:

1) Among the combined prediction models formed by different

decomposition methods, through the overall comparison, it can be found that the

error of the combined prediction model formed by the combination of VMD

methods is much smaller in BPNN and SVR models, indicating that in BPNN and

most SVR (SVR, GASVR, PSOSVR) models, the combined prediction model

formed by VMD has better prediction effect. The research also shows that the

41

combined prediction model formed by VMD overcomes the modal confusion caused

by EMD method and solves the residual noise caused by EEMD.

2) In contrast, the combined prediction model formed by Wavelet presents

a smaller experimental error in comparison with the KELM prediction model and

part of SVR (SCASVR, SSASVR), indicating that the combined prediction model

formed by Wavelet has a better prediction effect in the model of KELM. It also

shows that Wavelet is also very good at overcoming the problems arising from the

EMD method and the EEMD method.

3) Through the overall vertical comparison of the models, it can be found

that although there are some deviations in different models, in general, the prediction

model using SCA optimization algorithm shows more accurate prediction ability in

BPNN prediction model. In the SVR prediction model, the prediction model using

PSO optimization algorithm generally has more accurate prediction ability.

Similarly, in the KELM model, the prediction model optimized by SCA optimization

algorithm shows a more accurate prediction.

4) Through experimental analysis, it can be concluded that it is very

undesirable to simply infer that a method must be better in theory, so as to ignore

the actual situation.

42

INTRODUCTION OF CODE PROGRAM

In this section, the main program of the program as well as the drawing

program will be introduced. The main programming tool used is Matlab.

In the main program, different decomposition models and different prediction

models are selected for prediction, and then they are combined into a combined

prediction model. Then the prediction accuracy is compared according to the

evaluation index. The main program mainly includes three parts: parameter

initialization, data decomposition and model selection.

The program code for the initialization of the parameters is shown below:

1. %% Parameter initialization

2. interval = 1;

3. start_train = 1;

4. lag = 4;

5. data = wave;

6. end_train = floor(0.8*length(data));

7. [row col] = size(data);

8. Y = [];

9. mape = [];

10. dstat = [];

11. rmse = [];

Code Sample 8 – Parameter initialization in the main program

After initializing the parameters, a choice of different decomposition methods

needs to be made. The procedure for data decomposition is shown below. The

decomposition method model that can be chosen is indicated after %.

43

1. %% Data decomposition

2. decomp_type = 'VMD'; %emd,eemd,VMD，wavelet

3. data_sample = data;

4. [Comp] = tm_decomposition_method(decomp_type,data_sample);

Code Sample 9 – Data decomposition in the main program.

Then select different prediction models and combine them with

decomposition methods to form a combined prediction model to predict and analyze

data.The code is shown below. where the model's after % indicate the predictor

models that can be selected.

1. %% Selecting a predictive model

2. Model = 'SVR';%SVR,BP,ga_svr,ga_bp,pso_svr,pso_bp;;;

3. %KELM,PSO_KELM;SSA_KELM,SCA_KELM,GA_KELM, SSA_BPNN,SCA_BPNN,SSA_SVR,SCA_SVR

4. [MAPE,RMSE,Dstat,MSE,MAE,Sum_t_all]

 = emd_family_prediction(Comp,data_sample,Model);

5. mz= sprintf([decomp_type '_' Model]);

6. save(mz, 'Sum_t_all')

Code Sample 10 – Prediction model selection in the main program.

Then, by running the main program, the program will analyze the combined

prediction model around the 4 set evaluation indicators. Then it will show the

analysis result of the program on the right side. It will also load the data from the

run into the taskbar on the left. This is shown in the Figure 21 below:

44

Figure 21 – The result of the main program

After all the combined prediction models are run, the analysis diagram of the

combined prediction model can be drawn according to the running results. The

drawing code is divided into two main parts. The first part loads the data for the run,

and the second part is the plotting function. Taking VMD combination prediction

method as an example.

The code to load the data is shown below:

1. clc

2. clear all

3. %%

4. load y_true.mat

5. y_true = s;

6. load VMD_SVR.mat

7. VMD_SVR = Sum_t_all;

8. load VMD_BP.mat

9. VMD_BP = Sum_t_all;

10. ...

Code Sample 11 – Loading data

45

 The analysis diagram code for drawing the combined prediction model is

shown below:

1. %%

2. plot(y_true,'-+','LineWidth',1.5);

3. hold on

4. plot(VMD_SVR,'-s','LineWidth',1.5);

5. hold on

6. plot(VMD_BP,'-o','LineWidth',1.5);

7. hold on

8. ...

9. ...

10. grid

11. xlabel('Test set')

12. ylabel('data')

13. title('Fitting the comparison curve')

14. legend('ytrue','VMDSVRy','VMDBPy','VMDgasvry','VMDpsosvry','VMDgabpy','VMDpsobpy

','VMDSSABPNN','VMDSCABPNN','VMDSSASVR','VMDSCASVR','VMDKELM','VMDGAKELM','VMDSO

KELM','VMDSSAKELM','VMDSCAKELM','Location','SouthEast');

Code Sample 12 – Plotting of combined predictive models

Then, by running the plotting function, the following analysis diagram of the

combined prediction model (Figure 22) is obtained.

46

Figure 22 – Prediction diagram sample of VMD combined prediction model

47

CONCLUSION

In this paper, BPNN, SVR and KELM are used as three groups of basic

prediction models. GA, PSO, SSA, SCA and other optimization algorithms are used

to optimize the basic prediction model, and then four different decomposition

methods are used to form different combined prediction models, and each combined

prediction model is compared and analyzed.

The analysis of experimental data shows that

 The combined prediction model consisting of VMD method has higher

prediction accuracy in the BPNN and most of SVR models compared with the

combined prediction model formed by other decomposition methods. The accuracy

of the combined prediction model formed by the Wavelet Decomposition method in

the KELM model and part of SVR model is higher. It also shows that both the VMD

method and the Wavelet Decomposition method can overcome the modal

confounding problem generated by the EMD and the noise residual problem

generated by the EEMD.

 Through the overall vertical comparison of the models, it can be found

that although there are some deviations in different models, in general, the prediction

model using SCA optimization algorithm shows more accurate prediction ability in

BPNN prediction model. In the SVR prediction model, the prediction model using

PSO optimization algorithm generally has more accurate prediction ability.

48

Similarly, in the KELM model, the prediction model optimized by SCA optimization

algorithm shows a more accurate prediction.

 Through experimental analysis, it can be concluded that it is very

undesirable to infer that a certain method is better only through theoretical analysis,

while ignoring the actual situation. In the selection of prediction methods, more

appropriate combinations should be selected according to different actual conditions

to improve the prediction accuracy.

 Prospects and applications: This combined prediction model can be used

not only for wind speed prediction, but also for other predictions, such as financial

risk prediction models, etc.

49

LITERATURE

1. Matlab // Matlab website. – [N.p.], – URL:

https://www.mathworks.com/help/pdf_doc/matlab/rn.pdf (access date:

10.09.2021).

2. Renewable Energy Policy Network for the 21st Century

(REN21),Renewables 2015 Global Status Report // Annual Reporting on

Renewables: Ten Years of Excellence (Paris, REN21 Secretariat, 2015), p.

18. Available. [N.p.], 2015. URL: www.ren21.net/gsr. (access date:

10.10.2021)

3. International Energy Agency (IEA) // Medium Term Energy

Efficiency,Market Report (Paris, Organisation for Economic Co‑operation

and Development (OECD) and IEA, (2015), p. 86. Available. [Paris], 2015.

URL:

http://www.iea.org/publications/freepublications/publication/MediumTerm

EnergyefficiencyMarketReport2015.pdf. (access date: 10.10.2021)

4. IRENA. – [N.p.], URL: https://www.irena.org/ (access date: 11.10.2021)

5. Z. Hu, R. Zhang, Z. Zenkova and Y. Wang, "Wind Speed Prediction

Performance Based on Modal Decomposition Method," // 2020 2nd

International Conference on Information Technology and Computer

Application (ITCA), 2020, pp. 736-741,

doi:10.1109/ITCA52113.2020.00158.

https://www.mathworks.com/help/pdf_doc/matlab/rn.pdf
http://www.ren21.net/gsr.
http://www.iea.org/publications/freepublications/publication/MediumTermEnergyefficiencyMarketReport2015.pdf
http://www.iea.org/publications/freepublications/publication/MediumTermEnergyefficiencyMarketReport2015.pdf
https://www.irena.org/

50

6. Wang J,Li WD. Ultra-short-term wind speed prediction based on CEEMD

and GWO[J] // Power System Protection and Control,2018,46(09):69-74.

7. LING Jin, Mao Meiqin, Li Fugen, Zhang Enming. Study on the correlation

method of short-term wind speed prediction and its application[J] //

Journal of Hefei University of Technology (Natural Science

Edition),2017,40(11):1502-1506.

8. LYDIA M, SURESH K S, IMMANUEL S A, et al. Linear and non-linear

autoregressive models for short-term wind speed predictioning[J] // Energy

Conversion and Management, 2016, 112: 115-124.

9. LI Zhi, YE Lin, ZHAO Yongning. Short-term wind power prediction

based on extreme learning machine with error correction[J] // Protection

and Control of Modern Power Systems, 2016, 1(1): 9-16. DOI:

10.1186/s41601-016-0016-y.

10. XIU Chunbo, REN Xiao, LI Yanqing, et al. Short-term prediction method

of wind speed series based on Kalman filtering fusion[J] //

11. Transactions of China Electrotechnical Society, 2014, 29(2): 253-259.

12. MOHANDES M A, HALAWANI T O, REHMAN S, et al. Support vector

machine for wind speed prediction[J] // Renewable Energy, 2004,

29(6): 939-947.

51

13. AN Xiaojuan, GONG Renxi, ZHANG Qianfeng. Application of

optimization SVM based on improved Genetic Algorithm in short-time

wind speed prediction[J] // Power System Protection and Control, 2016,

44(9):38-42.

14. WU Zhongqiang, JIA Wenjing, WU Changhan, et al. Short-term wind

speed predictioning based on PSO-BSNN[J] // Power System Protection

and Control, 2015, 43(15):36-41.

15. Karsoliya S. Approximating number of hidden layer neurons in multiple

hidden layer BPNN architecture[J] // International Journal of Engineering

Trends and Technology, 2012, 3(6): 714-717.

16. Balabin R M, Lomakina E I. Support vector machine regression (SVR/LS-

SVM)—an alternative to neural networks (ANN) for analytical chemistry

Comparison of nonlinear methods on near infrared (NIR) spectroscopy

data[J] // Analyst, 2011, 136(8): 1703-1712.

17. Lu H, Du B, Liu J, et al. A kernel extreme learning machine algorithm

based on improved particle swam optimization[J] // Memetic Computing,

2017, 9(2): 121-128.

18. Xue J, Shen B. A novel swarm intelligence optimization approach:

Sparrow Search Algorithm[J] // Systems Science & Control

Engineering, 2020, 8(1): 22-34.

52

19. Mirjalili S. SCA: a Sine Cosine Algorithm for solving optimization

problems[J] // Knowledge-based systems, 2016, 96: 120-133.

20. Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and

its algorithms[C] // IEEE-EURASIP workshop on nonlinear signal and

image processing. Grado: IEEER, 2003, 3(3): 8-11.

21. Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-

assisted data analysis method[J] // Advances in adaptive data analysis, 2009,

1(01): 1-41.

22. ur Rehman N, Aftab H. Multivariate variational mode decomposition[J]

 // IEEE Transactions on signal processing, 2019, 67(23): 6039-6052.

23. Abramovich F, Silverman B W. Wavelet decomposition approaches to

statistical inverse problems[J] // Biometrika, 1998, 85(1): 115-129.

24. Qu Z, Mao W, Zhang K, et al. Multi-step wind speed predictioning based

on a hybrid decomposition technique and an improved back-propagation

neural network[J] // Renewable energy, 2019, 133: 919-929.

25. Aljanad, Ahmed & Tan, Nadia & Agelidis, Vassilios & Shareef, Hussain.

(2021). Neural Network Approach for Global Solar Irradiance Prediction at

Extremely Short-Time-Intervals Using Particle Swarm Optimization

Algorithm. // Energies. 14. 1-20. 10.3390/en14041213.

53

26. Jianshu // Combing of BP neural networks. [N.p.], 2019. URL:

https://www.jianshu.com/p/9037890c9b65 (access date: 12.12.2021)

27. Wang H, Hu D. Comparison of SVM and LS-SVM for regression[C] //

2005 International Conference on Neural Networks and Brain. IEEE, 2005,

1: 279-283.

28. Abo-Khalil A G, Lee D C. MPPT control of wind generation systems based

on estimated wind speed using SVR[J] // IEEE transactions on Industrial

Electronics, 2008, 55(3): 1489-1490.

29. Ren Y, Suganthan P N, Srikanth N. A novel empirical mode decomposition

with support vector regression for wind speed predictioning[J] // IEEE

transactions on neural networks and learning systems, 2014, 27(8): 1793-

1798.

30. ZHANG Lin,WANG Ting-Hua,ZHOU Hui-Ying. Research progress of

SVR parameter optimization based on swarm intelligence algorithm[J] //

Computer Engineering and Applications,2021,57(16):50-64.

31. Ding S, Zhao H, Zhang Y, et al. Extreme learning machine: algorithm,

theory and applications[J] // Artificial Intelligence Review, 2015, 44(1):

103-115.

32. Liu H, Mi X, Li Y. An experimental investigation of three new hybrid wind

speed predictioning models using multi-decomposing strategy and ELM

algorithm[J] // Renewable energy, 2018, 123: 694-705.

https://www.jianshu.com/p/9037890c9b65

54

33. Luo F, Guo W, Yu Y, et al. A multi-label classification algorithm based on

kernel extreme learning machine[J] // Neurocomputing, 2017, 260: 313-

320.

34. CSDN // Kernel Extreme Learning Machine (KELM) based classification.

[N.p.], 2021. URL:

https://blog.csdn.net/u011835903/article/details/116840012 (access date:

02. 01. 2022)

35. Whitley D. A Genetic Algorithm tutorial[J] // Statistics and computing,

1994, 4(2): 65-85.

36. Kumar M, Husain M, Upreti N, et al. Genetic Algorithm: Review and

application[J] // Available at SSRN 3529843, 2010.

37. Katoch S, Chauhan S S, Kumar V. A review on Genetic Algorithm: past,

present, and future[J] // Multimedia Tools and Applications, 2021, 80(5):

8091-8126.

38. Vose M D. The simple Genetic Algorithm: foundations and theory[M] //

 MIT press, 1999.

39. CSDN // Big talk about genetic algorithms. [N.p.], 2017. URL:

https://blog.csdn.net/acelit/article/details/78187715 (access date:

12.11.2021)

https://blog.csdn.net/u011835903/article/details/116840012
https://blog.csdn.net/acelit/article/details/78187715

55

40. Kennedy J, Eberhart R. Particle Swarm Optimization[C] // Proceedings of

ICNN'95-international conference on neural networks. IEEE, 1995, 4: 1942-

1948.

41. Shi Y. Particle Swarm Optimization: developments, applications and

resources[C] // Proceedings of the 2001 congress on evolutionary

computation (IEEE Cat. No. 01TH8546). IEEE, 2001, 1: 81-86.

42. Shi Y. Particle Swarm Optimization[J] // IEEE connections, 2004, 2(1): 8-

13.

43. CSDN // Optimization Algorithm. [N.p.], 2018. URL:

https://blog.csdn.net/wang454592297/article/details/80367158 (access date:

03. 05. 2021)

44. CSDN // Introduction to Particle Swarm Optimization (PSO) algorithm

and MATLAB implementation. [N.p.], 2018. URL:

https://blog.csdn.net/lyxleft/article/details/82978362 (access date:

11.11.2021)

45. Ouyang C, Zhu D, Wang F. A learning Sparrow Search Algorithm[J] //

Computational Intelligence and Neuroscience, 2021, 2021.

46. CSDN // Optimization Algorithm Notes - Sparrow Search Algorithm.

[N.p.], 2020. URL: https://www.jianshu.com/p/70ed22bc609d (access date:

12.12.2021)

https://blog.csdn.net/wang454592297/article/details/80367158
https://blog.csdn.net/lyxleft/article/details/82978362
https://www.jianshu.com/p/70ed22bc609d

56

47. Zhihu // Sparrow Search Algorithm. [N.p.], 2020. URL:

https://zhuanlan.zhihu.com/p/134217408 (access date: 12.12.2021)

48. Code sample[6] - [N.p.], 2020. URL:

https://python.iitter.com/other/135147.html (access date: 10.11.2021)

49. Abualigah L, Diabat A. Advances in Sine Cosine Algorithm: a

comprehensive survey[J] // Artificial Intelligence Review, 2021, 54(4):

2567-2608.

50. CSDN // Intelligent optimization algorithm: sine cosine optimization

algorithm. [N.p.], 2020. URL:

https://blog.csdn.net/u011835903/article/details/107762654 (access date:

01.03.2022)

51. CSDN // [Optimization Algorithm] Sine Cosine Algorithm. [N.p.], 2021.

URL:

https://qq912100926.blog.csdn.net/article/details/120209221?spm=1001.2

101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-

2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&depth_1-

utm_source=distribute.pc_relevant.none-task-blog-

2%7Edefault%7ECTRLIST%7ERate-

2.pc_relevant_default&utm_relevant_index=5 (access date: 02.03.2022)

52. ZHOU Xuejun,CHEN Xiaoqiang,XIE Lei,JIANG Chenglong. A hybrid

model for short-term wind speed prediction based on EMD[J] // Journal of

https://zhuanlan.zhihu.com/p/134217408
https://python.iitter.com/other/135147.html
https://blog.csdn.net/u011835903/article/details/107762654
https://qq912100926.blog.csdn.net/article/details/120209221?spm=1001.2101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&utm_relevant_index=5
https://qq912100926.blog.csdn.net/article/details/120209221?spm=1001.2101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&utm_relevant_index=5
https://qq912100926.blog.csdn.net/article/details/120209221?spm=1001.2101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&utm_relevant_index=5
https://qq912100926.blog.csdn.net/article/details/120209221?spm=1001.2101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&utm_relevant_index=5
https://qq912100926.blog.csdn.net/article/details/120209221?spm=1001.2101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&utm_relevant_index=5
https://qq912100926.blog.csdn.net/article/details/120209221?spm=1001.2101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-2.pc_relevant_default&utm_relevant_index=5

57

Liaoning University of Petroleum and Chemical

Technology,2021,41(06):79-86.

53. Zhang Y, Zhang C, Sun J, et al. Improved wind speed prediction using

empirical mode decomposition[J] // Advances in Electrical and

Computer Engineering, 2018, 18(2): 3-10.

54. Github // Introduction to empirical modal decomposition. [N.p.], 2018.

URL:

https://muyi110.github.io/2019/%E6%B5%85%E8%B0%88%E7%BB%8

F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3

-EMD/ (access date: 05.10.2021)

55. Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble

empirical mode decomposition with adaptive noise[C] // 2011 IEEE

international conference on acoustics, speech and signal processing

(ICASSP). IEEE, 2011: 4144-4147.

56. Zhang, J., Yan, R., Gao, R. X., & Feng, Z. (2010). Performance

enhancement of ensemble empirical mode decomposition. // Mechanical

Systems and Signal Processing, 24(7), 2104-2123.

57. Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J] // IEEE

Transactionson Signal Processing,2014,62(3):531-544.

https://muyi110.github.io/2019/%E6%B5%85%E8%B0%88%E7%BB%8F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3-EMD/
https://muyi110.github.io/2019/%E6%B5%85%E8%B0%88%E7%BB%8F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3-EMD/
https://muyi110.github.io/2019/%E6%B5%85%E8%B0%88%E7%BB%8F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3-EMD/

58

58. Hu H, Wang L, Tao R. Wind speed predictioning based on variational

mode decomposition and improved echo state network[J] // Renewable

Energy, 2021, 164: 729-751.

59. Zhang, Y., Liu, K., Qin, L., & An, X. (2016). Deterministic and

probabilistic interval prediction for short-term wind power generation based

on variational mode decomposition and machine learning methods. //

Energy Conversion and Management, 112, 208-219.

60. Walczak, B., and D. L. Massart. “Noise suppression and signal

compression using the wavelet packet transform.”// Chemometrics and

Intelligent Laboratory Systems 36.2 (1997): 81-94.

61. Soltani, Skander. "On the use of the wavelet decomposition for time series

prediction." // Neurocomputing 48.1-4 (2002): 267-277.

62. Abramovich, F., & Silverman, B. W. (1998). Wavelet decomposition

approaches to statistical inverse problems. // Biometrika, 85(1), 115-129.

63. Zhang D. Wavelet transform[M] // Fundamentals of Image Data Mining.

Springer, Cham, 2019: 35-44.

64. Chun-Lin L. A tutorial of the wavelet transform[J] // NTUEE, Taiwan,

2010, 21: 22.

59

APPENDIX A

Part A Optimize algorithms for specific code implementation

1). Genetic Algorithm

Code Sample 238: Genetic Algorithm of selection: Selection of evolved

individuals using the Roulette Wheel Selection method.

1. for i=1:population_size

2. r = rand * fitness_sum(population_size);

3. first = 1;

4. last = population_size;

5. mid = round((last+first)/2);

6. idx = -1;

7.

8. % Individual selection by the middle row method

9. while (first <= last) && (idx == -1)

10. if r > fitness_sum(mid)

11. first = mid;

12. elseif r < fitness_sum(mid)

13. last = mid;

14. else

15. idx = mid;

16. break;

17. end

18. mid = round((last+first)/2);

19. if (last - first) == 1

20. idx = last;

21. break;

22. end

23. end

24.

25. % Generating a new generation of individuals

26. for j=1:chromosome_size

27. population_new(i,j) = population(idx,j);

28. end

29. end

30. for i=1:population_size

31. for j=1:chromosome_size

32. population(i,j) = population_new(i,j);

60

33. end

34. end

Code sample 238 – matlab code implementation of selection in Genetic Algorithm

Code Sample 338: Genetic Algorithm of crossover.

1. for i=1:2:population_size

2. % Crossover manipulation of chromosome strings of two individuals

3. if(rand < cross_rate)

4. cross_position = round(rand * chromosome_size);

5. if (cross_position == 0 || cross_position == 1)

6. continue;

7. end

8. % Swap binary strings for cross_position and beyond

9. for j=cross_position:chromosome_size

10. temp = population(i,j);

11. population(i,j) = population(i+1,j);

12. population(i+1,j) = temp;

13. end

14. end

15. end

Code sample 338 – Matlab code implementation of crossover in Genetic Algorithm

Code Sample 438: Genetic Algorithm of mutation.

1. for i=1:population_size

2. if rand < mutate_rate

3. mutate_position = round(rand*chromosome_size);

4. if mutate_position == 0

5. continue;

6. end

7. population(i,mutate_position) = 1 - population(i, mutate_position);

8. end

9. end

Code sample 438 – Matlab code implementation of Mutation in Genetic Algorithm

61

2). Particle Swarm Optimization

Code Sample of Particle Swarm Optimization algorithm 43:

1. %% I. Emptying the environment

2. clc

3. clear all

4.

5. %% II. Plot the objective function curve

6. x = 1:0.01:2;

7. y = sin(10*pi*x) ./ x;

8. figure

9. plot(x, y)

10. hold on

11.

12. %% III. Parameter initialization

13. c1 = 1.49445;

14. c2 = 1.49445;

15. maxgen = 50; % Number of evolutions

16. sizepop = 10; % Population size

17. Vmax = 0.5; %Range of speed。

18. Vmin = -0.5;

19. popmax = 2; %Individual range of variation

20. popmin = 1;

21.

22.

23. %% IV. Generate initial particles and velocities

24. for i = 1:sizepop

25. pop(i,:) = (rands(1) + 1) / 2 + 1;

26. V(i,:) = 0.5 * rands(1);

27. fitness(i) = fun(pop(i,:));

28. end

29.

30.

31. %% V. Individual and group extremes

32. [bestfitness bestindex] = max(fitness);

33. zbest = pop(bestindex,:);

34. gbest = pop;

35. fitnessgbest = fitness;

36. fitnesszbest = bestfitness;

37.

38.

39. %% VI. Iterative Optimization Search

62

40. for i = 1:maxgen

41. for j = 1:sizepop

42. V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - po

p(j,:));

43. V(j,find(V(j,:)>Vmax)) = Vmax;

44. V(j,find(V(j,:)<Vmin)) = Vmin;

45.

46. pop(j,:) = pop(j,:) + V(j,:);

47. pop(j,find(pop(j,:)>popmax)) = popmax;

48. pop(j,find(pop(j,:)<popmin)) = popmin;

49.

50. fitness(j) = fun(pop(j,:));

51. end

52.

53. for j = 1:sizepop

54. if fitness(j) > fitnessgbest(j)

55. gbest(j,:) = pop(j,:);

56. fitnessgbest(j) = fitness(j);

57. end

58.

59. if fitness(j) > fitnesszbest

60. zbest = pop(j,:);

61. fitnesszbest = fitness(j);

62. end

63. end

64. yy(i) = fitnesszbest;

65. end

Code sample 543 – Matlab code implementation of PSO algorithm

3). Sparrow Search Algorithm

Code sample of Sparrow Search Algorithm47:

1. clear all;

2. close all;

3. clc;

4.

5. %% Parameter Setting

6. N=30;

7. dim=2;

8. N_discoverer=0.7*N;

9. N_Followers=0.1*N;

10. N_Vigilant=0.2*N;

63

11. Max_iter=100;

12. ST=0.6;

13.

14. %% Test Functions

15. f=@(x) sum(x.^2);

16. ub=10;

17. lb=-10;

18.

19. %% Initialization

20. x=lb+rand(N,dim).*(ub-lb);

21. for i=1:N

22. fitness(i)=f(x(i,:));

23. end

24. [A,index]=sort(fitness);

25. x_best=x(index(1),:);

26. x_worst=x(index(end),:);

27. best_fitness=A(1);

28. worst_fitness=A(end);

29. x_best_currently=x(index(1),:);

30. x_worst_currently=x(index(end),:);

31. best_fitness_currently=A(1);

32. worst_fitness_currently=A(end);

33. x_discoverer=x(index(1:N_discoverer),:);

34. x_Followers=x(index(N_discoverer+1:N_discoverer+N_Followers),:);

35. x_Vigilant=x(index(N_discoverer+N_Followers+1:N),:);

36. B=[-1,1];

37. F=best_fitness;

38. iter=1;

39.

40. %% Start of iterative updates

41. while iter<Max_iter

42. for i=1:dim

43. C(i)=B(round(rand)+1);

44. end

45. A=C'*inv((C*C'));

46. R2=rand;

47. for i=1:N_discoverer

48. for j=1:dim

49. if R2<ST

50. x_discoverer(i,j)=x_discoverer(i,j)*exp(-i/rand*Max_iter);

51. else

52. x_discoverer(i,j)=x_discoverer(i,j)+randn;

53. end

54. end

64

55. ub_flag=x_discoverer(i,:)>ub;

56. lb_flag=x_discoverer(i,:)<lb;

57. x_discoverer(i,:)=(x_discoverer(i,:).*(~(ub_flag+lb_flag)))+ub.*ub_flag+

lb.*lb_flag;

58. end

59. for i=1:N_Followers

60. for j=1:dim

61. if i>N/2

62. x_Followers(i,j)=rand*exp((x_worst_currently(j)-

x_Followers(i,j))/i^2);

63. else

64. x_Followers(i,j)=x_discoverer(1,j)+abs(x_Followers(i,j)-

x_discoverer(1,j))*A(j);

65. end

66. end

67. ub_flag=x_Followers(i,:)>ub;

68. lb_flag=x_Followers(i,:)<lb;

69. x_Followers(i,:)=(x_Followers(i,:).*(~(ub_flag+lb_flag)))+ub.*ub_flag+lb

.*lb_flag;

70. end

71. for i=1:N_Vigilant

72. for j=1:dim

73. if f(x_Vigilant(i,:))~=best_fitness_currently

74. x_Vigilant(i,j)=x_best_currently(j)+randn*abs(x_Vigilant(i,j)-

x_best_currently(j));

75. else

76. x_Vigilant(i,j)=x_Vigilant(i,j)+B(round(rand)+1)*(abs(x_Vigilant

(i,j)-x_worst_currently(j)))/abs(f(x_Vigilant(i,:))-

worst_fitness_currently)+1;

77. end

78. end

79. ub_flag=x_Vigilant(i,:)>ub;

80. lb_flag=x_Vigilant(i,:)<lb;

81. x_Vigilant(i,:)=(x_Vigilant(i,:).*(~(ub_flag+lb_flag)))+ub.*ub_flag+lb.*

lb_flag;

82. end

83. x=[x_discoverer;x_Followers;x_Vigilant];

84. for i=1:N

85. fitness(i)=f(x(i,:));

86. end

87. [E,index]=sort(fitness);

88. if f(x(index(1),:))<best_fitness

89. best_fitness=f(x(index(1),:));

90. x_best=x(index(1),:);

65

91. end

92. if f(x(index(end),:))>worst_fitness

93. worst_fitness= f(x(index(end),:));

94. x_worst=x(index(end),:);

95. end

96. x_best_currently=x(index(1),:);

97. x_worst_currently=x(index(end),:);

98. best_fitness_currently=E(1);

99. worst_fitness_currently=E(end);

100. x_discoverer=x(index(1:N_discoverer),:);

101. x_Followers=x(index(N_discoverer+1:N_discoverer+N_Followers),:);

102. x_Vigilant=x(index(N_discoverer+N_Followers+1:N),:);

103. F=[F,best_fitness];

104. iter=iter+1;

105. end

Code sample 647 – Matlab code implementation of SSA algorithm

4). Sine Cosine Algorithm

Code sample of Sine Cosine Algorithm50:

1. clear all

2. clc

3.

4. SearchAgents_no=30; % Number of search agents

5.

6. Function_name='F1'; % Name of the test function that can be from F1 to F23 (Tabl

e 1,2,3 in the paper)

7.

8. Max_iteration=1000; % Maximum numbef of iterations

9.

10. % Load details of the selected benchmark function

11. [lb,ub,dim,fobj]=Get_Functions_details(Function_name);

12.

13. [Best_score,Best_pos,cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)

;

14.

15. figure('Position',[284 214 660 290])

16. %Draw search space

17. subplot(1,2,1);

18. func_plot(Function_name);

19. title('Test function')

20. xlabel('x_1');

66

21. ylabel('x_2');

22. zlabel([Function_name,'(x_1 , x_2)'])

23. grid off

24.

25. %Draw objective space

26. subplot(1,2,2);

27. semilogy(cg_curve,'Color','b')

28. title('Convergence curve')

29. xlabel('Iteration');

30. ylabel('Best flame (score) obtained so far');

31.

32. axis tight

33. grid off

34. box on

35. legend('SCA')

36.

37. display(['The best solution obtained by SCA is : ', num2str(Best_pos)]);

38. display(['The best optimal value of the objective funciton found by SCA is : ',

num2str(Best_score)]);

39.

40. function [Destination_fitness,Destination_position,Convergence_curve]=SCA(N,Max_

iteration,lb,ub,dim,fobj)

41.

42. display('SCA is optimizing your problem');

43.

44. %Initialize the set of random solutions

45. X=initialization(N,dim,ub,lb);

46.

47. Destination_position=zeros(1,dim);

48. Destination_fitness=inf;

49.

50. Convergence_curve=zeros(1,Max_iteration);

51. Objective_values = zeros(1,size(X,1));

52.

53. % Calculate the fitness of the first set and find the best one

54. for i=1:size(X,1)

55. Objective_values(1,i)=fobj(X(i,:));

56. if i==1

57. Destination_position=X(i,:);

58. Destination_fitness=Objective_values(1,i);

59. elseif Objective_values(1,i)<Destination_fitness

60. Destination_position=X(i,:);

61. Destination_fitness=Objective_values(1,i);

62. end

67

63.

64. All_objective_values(1,i)=Objective_values(1,i);

65. end

66.

67. %Main loop

68. t=2; % start from the second iteration since the first iteration was dedicated t

o calculating the fitness

69. while t<=Max_iteration

70.

71. % Eq. (3.4)

72. a = 2;

73. Max_iteration = Max_iteration;

74. r1=a-t*((a)/Max_iteration); % r1 decreases linearly from a to 0

75.

76. % Update the position of solutions with respect to destination

77. for i=1:size(X,1) % in i-th solution

78. for j=1:size(X,2) % in j-th dimension

79.

80. % Update r2, r3, and r4 for Eq. (3.3)

81. r2=(2*pi)*rand();

82. r3=2*rand;

83. r4=rand();

84.

85. % Eq. (3.3)

86. if r4<0.5

87. % Eq. (3.1)

88. X(i,j)= X(i,j)+(r1*sin(r2)*abs(r3*Destination_position(j)-

X(i,j)));

89. else

90. % Eq. (3.2)

91. X(i,j)= X(i,j)+(r1*cos(r2)*abs(r3*Destination_position(j)-

X(i,j)));

92. end

93.

94. end

95. end

Code sample 750 – Matlab code implementation of SCA algorithm’s main loop and

optimal solution

	ok
	Bachelor Thesis(10)
	GLOSSARY
	INTRODUCTION
	1 Introduction to the methodologies
	1.1 Introduction to the base model algorithms
	1.1.1 Back-Propagation Neural Networks
	1.1.2 Support Vector Regression
	1.1.3 Kernel Based Extreme Learning Machine

	1.2 Optimization algorithms
	1.2.1 Genetic Algorithm (GA)
	1.2.2 Particle Swarm Optimization (PSO)
	1.2.3 Sparrow Search Algorithm (SSA)
	1.2.4 Sine Cosine Algorithm (SCA)

	1.3 Decomposition methods
	1.3.1 Empirical Mode Decomposition (EMD)
	1.3.2 Ensemble Empirical Mode Decomposition (EEMD)
	1.3.3 Variational Mode Decomposition (VMD)
	1.3.4 Wavelet Decomposition (Wavelet)

	2 Experimental research
	2.1 Data preparation
	2.2 Data decomposition
	2.3 Predictive models
	2.4 Evaluation indicators
	2.5 Error analysis

	INTRODUCTION OF CODE PROGRAM
	CONCLUSION
	LITERATURE
	APPENDIX A
	Part A Optimize algorithms for specific code implementation

	last page

