




 

ABSTRACT 

With the problems such as climate change caused by fossil energy, various 

countries have started to pay attention to renewable energy, and wind energy has 

become a key research object due to the problem of non-pollution. Since the 

accuracy of wind energy prediction mainly depends on the accuracy of wind speed 

prediction. Therefore, exploring and seeking methods to improve the accuracy of 

wind speed prediction has become the most important issue at present. In this paper, 

propose to use Back-Propagation Neural Networks(BPNN) and Support Vector 

Regression (SVR) and Kernel Based Extreme Learning Machine (KELM) as three 

different sets of base models and optimize them by using different machine learning 

algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), 

Sparrow Search Algorithm (SSA), Sine Cosine Algorithm (SCA), and then combine 

them with different decomposition methods such as Empirical Mode Decomposition 

(EMD), Ensemble Empirical Mode Decomposition (EEMD), Variational Mode 

Decomposition (VMD), Wavelet Decomposition (Wavelet) to form the 

corresponding combined prediction models to explore which combined prediction 

model has higher accuracy. Based on the data from the National Center for 

Meteorological Sciences, the experiments show that the prediction accuracy of the 

combined prediction model formed by the VMD method is significantly higher than 

that of other combined prediction models in some models of BPNN and most of 

SVR, while the prediction accuracy of the combined prediction model formed by the 

Wavelet combination is higher in the models of KELM and part of models of SVR. 
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BPNN14 – Back Propagation Neural Network 

SVR15 – Support Vector Regression 

SVM – Support Vector Machine 

KELM16 – Kernel Based Extreme Learning Machine 

GA12 – Genetic Algorithm 

PSO13 – Particle Swarm Optimization 

SSA17 – Sparrow Search Algorithm 

SCA18– Sine Cosine Algorithm 

MAPE – Mean Absolute Percentage Error  
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Matlab1 – It’s a programming and numeric computing platform used by millions of 

engineers and scientists to analyze data, develop algorithms, and create models
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INTRODUCTION 

Since the 21st century, as the new round of technological revolution and 

industrial change continues to develop in depth, a new generation of technologies 

and applications represented by artificial intelligence has penetrated into every 

aspect of society, and people are enjoying the convenience and prosperity brought 

by these new technologies. However, climate change, caused by the use of fossil 

fuels, is threatening everything. According to the UN survey elevation, the 

temperature on earth has increased by 1.1°C in the last decade (2011-2020) 

compared to the late 19th century, and extreme droughts, water shortages, major 

fires, and sea level rise caused by climate change are threatening human life2. As a 

result, renewable energy has become a key research object for countries around the 

world, and renewable energy targets and support policies have spread almost all over 

the world, and according to the report, at least 164 countries have set renewable 

energy targets and 145 countries have introduced support policies3. And wind energy, 

as a non-polluting renewable energy source, has become a key research target for 

countries around the world, and according to IRENA, solar and wind energy account 

for 91% of all new installed renewable energy capacity4. However, the stochastic 

and fluctuating nature of wind energy complicates the entry of a high percentage of 

wind energy into the grid system. Between the accuracy of wind energy prediction 

results depends mainly on the accuracy of wind speed prediction. Wind speed 

prediction can effectively reduce the risk associated with wind-related uncertainty5. 

How to use modern machine learning techniques to improve the accuracy of wind 
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speed prediction results and how to use machine learning algorithms to explore the 

optimal prediction model have become the fields that this paper wants to explore 

deeply. 

According to the time scale of prediction, wind speed predictions can be 

classified into ultra-short-term predictions (mainly in minutes), short-term 

predictions (mainly in days), medium-term predictions (mainly in months, weeks) 

and long-term predictions (mainly in years)6. For wind speed prediction methods are 

mainly divided into physical and statistical methods. Physical methods use real-time 

meteorological conditions for prediction, however, due to the complexity of 

numerical meteorological models, they are not suitable for short-term and ultra-

short-term wind speed prediction7.Statistical methods are used to establish a 

functional relationship between historical data and wind power output by means of 

mathematical statistics, such as time series method8, neural network method9, 

Kalman filter method10, support vector machine method11, etc. However, many 

scholars have combined with other optimization algorithms and other techniques in 

order to build a better combined prediction model and thus to improve the prediction 

accuracy. For example, some scholars have used machine learning optimization 

algorithms such as genetic optimization algorithm12 and Particle Swarm 

Optimization algorithm13 to optimize the parameters of a single prediction model in 

order to improve the wind speed prediction accuracy. 

Based on this, this paper proposes Back-Propagation Neural Networks 

(BPNN)14 and Support Vector Regression(SVR)15 and Kernel Based Extreme 
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Learning Machine(KELM)16 as the three base models, and the base models are 

optimized by machine learning algorithms such as Genetic Algorithm (GA)12, 

Particle Swarm Optimization (PSO )13, Sparrow Search Algorithm (SSA)17, Sine 

Cosine Algorithm (SCA)18, etc. to optimize the base model, and then with different 

decomposition methods such as Empirical Mode Decomposition (EMD)19, 

Ensemble Empirical Mode Decomposition (EEMD)20, Variational Mode 

Decomposition (VMD)21, Wavelet Decomposition (Wavelet)22, etc., to form a 

combined prediction model to predict the wind speed, and to explore which 

combined prediction model has a higher The accuracy of the combined prediction 

model is higher.  

The paper is organized as follows: the first part is a background introduction, 

the second part focuses on the theoretical knowledge of decomposition and 

prediction methods and the corresponding optimization algorithms, and the third part 

analyzes different combinatorial prediction models through experimental studies. 

The fourth part is introduction to the main program code. The fifth part presents the 

corresponding research conclusions based on the experimental data analysis. Part A 

of the Appendix A introduces the specific code realization of the optimization 

algorithm in Matlab. 
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1 Introduction to the methodologies 

1.1 Introduction to the base model algorithms 

1.1.1 Back-Propagation Neural Networks 

Back-Propagation Neural Networks (BPNN) is a multilayer neural network 

trained according to the error back-propagation algorithm. The BPNN model has a 

powerful computational power and a very complex mapping capability. Based on 

this, the BPNN model can be trained adaptively for a large number of unstructured, 

non-exact laws23.  

The network structure of BPNN consists of: input layer, hidden layer and 

output layer. The structure is illustrated in Figure 124 below. The input layer is the 

first layer of the neural network, which takes the input information and passes the 

signal to the next layer. The input layer does not perform any processing on the data 

signal. Hidden layer: The other layers between the input layer and the output layer 

are called hidden layers, which usually do not receive signals directly from the 

outside world and do not send signals to the outside world. It is a general term for 

the different functional layers. Output layer: as the last layer of the neural network, 

it is mainly used to receive the input from the hidden layer and to output the resultant 

values predicted by the model, The code construction of the keras-based BPNN 

algorithm is shown in code sample 125, For example, the neural network shown in 

code sample 1 is built quickly by keras and contains an input layer with 7129 nodes, 



10 

 

and a hidden layer with 128 nodes, and an output layer, which is a common binary 

classification model. 

 

Figure 1 – Backward propagation neural network structure 

 

1. import keras   

2. model = keras.Sequential()   

3. model.add(keras.layers.Dense(7129, input_dim=7129, kernel_initializer='normal', 

activation='tanh'))   

4. model.add(keras.layers.Dense(128, kernel_initializer='normal', activation='tanh'

))   

5. model.add(keras.layers.Dense(2, kernel_initializer='normal', activation='softmax

'))   

6. model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accur

acy'])   

7. history = model.fit(x_train, y_train, epochs=6, batch_size=200, verbose=1)   

Code sample 1 – Neural networks built on keras code 
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1.1.2 Support Vector Regression 

Support Vector Regression are a new type of classifier based on the theoretical 

foundation of Support Vector Machine (SVM). The purpose of SVM26 is to find a 

hyperplane so that the sample points are as far away from the hyperplane as possible. 

The SVR, on the other hand, wants the sample points to be as close to the hyperplane 

as possible. The model is optimized by minimizing the width between intervals27. 

The structure is schematically shown in the following Figure 2 and Figure 328. 

So, it can be considered statistically that the traditional regression method is 

only considered correct when the regression function f(x) is exactly equal to y, when 

and only when this condition occurs, all kinds of complex losses need to be 

calculated, which makes our computation much more. On the contrary, support 

vector regression considers that if the regression function f(x) deviates from y within 

an acceptable range, this acceptable range is called the threshold (N). As long 

as |𝑓𝑓(𝑥𝑥) − 𝑦𝑦|  >  𝑁𝑁. Then the prediction can be considered correct. The equation for 

the specific SVR regression model can be expressed as formula (1)29: 
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Figure 2 – Schematic diagram of SVM 

 

Figure 3 – Schematic diagram of SVR 

𝑓𝑓(𝑥𝑥) =  𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 (1)

In the formula (1), 𝑤𝑤 and 𝑏𝑏 are the model parameters to be determined. 
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1.1.3 Kernel Based Extreme Learning Machine 

Kernel Based Extreme Learning Machine (KELM) is an improved learning 

algorithm based on the theoretical basis of Extreme Learning Machine (ELM)30 and 

combined with kernel functions. By referring to the kernel function in ELM, the 

KELM algorithm increases the stability and robustness of the classification model 

on the basis of the original ELM algorithm31, which makes the KELM algorithm 

have better performance to deal with more classification problems32.  

ELM is feed-forward neural network, whose objective function f(x) can be 

expressed as formula 233:  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎(𝑥𝑥) ×  𝑏𝑏 =  𝐴𝐴 ×  𝑏𝑏 =  𝐿𝐿 (2)

In the formular 2, x is the input vector, a(x), A is the output of the hidden layer node, 

b is the output weight, L is the desired output. 

By introducing the regularization factor C and the unit matrix I on the basis 

of formula 2, the expression of the output weights is shown in formula 333:  

𝑏𝑏 =  𝐴𝐴𝑇𝑇(𝐴𝐴𝐴𝐴𝑇𝑇  +  𝐼𝐼
𝐶𝐶

)−1𝐿𝐿 (3)

Then, the kernel function is introduced, and the matrix equation of the kernel 

function can be expressed as formula 433:  

𝛺𝛺𝐸𝐸𝐿𝐿𝐸𝐸 = 𝐴𝐴𝐴𝐴𝑇𝑇 = 𝑎𝑎(𝑥𝑥𝑖𝑖)𝑎𝑎�𝑥𝑥𝑗𝑗� = 𝐾𝐾(𝑥𝑥𝑖𝑖 ,  𝑥𝑥𝑗𝑗) (4)

 In formula 4, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 is the test input vector. 

 Finally, the expression can be expressed as formula 533:  
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𝑓𝑓(𝑥𝑥)  =  [𝐾𝐾(𝑥𝑥, 𝑥𝑥1); . . . . ;𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑛𝑛)](𝐼𝐼
𝐶𝐶

 +  𝛺𝛺𝐸𝐸𝐿𝐿𝐸𝐸)−1𝐿𝐿 (5)

In formula 5, (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, . . . , 𝑥𝑥𝑛𝑛) is the given training sample，n indicates the sample 

size, K() is denoted as the kernel function. 

 

1.2 Optimization algorithms 

1.2.1 Genetic Algorithm (GA) 

The main idea of Genetic Algorithm is derived from Darwin's theory of 

biological evolution of natural selection and the computational model of biological 

evolution of genetic mechanism, and it is a machine learning algorithm that searches 

for the optimal solution through the natural selection process of natural evolution of 

superiority35.  

The Genetic Algorithm is an efficient search for each running parameter code 

by randomization technique using all the individuals in the population as the 

object36.The algorithm operation process is shown in Figure 4 below, which selects 

the optimal parameter code through three evolutionary operations: selection, 

crossover and mutation. Because of its own efficiency and class parallel processing 

and global optimality has a very obvious advantage in dealing with various nonlinear 

problems and solving multi-objective constrained problems37.  
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Figure 4 – Execution process of Genetic Algorithm 

The three important operations of Genetic Algorithm are selection, crossover 

and mutation. For the code implementation, please refer to the Genetic Algorithm in 

Appendix A38.  
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1.2.2 Particle Swarm Optimization (PSO) 

The main idea of the Particle Swarm Optimization algorithm originates from 

the process of foraging for food by flocks of birds and the process of collaborating 

with each other to complete the search for food. It is simpler than the Genetic 

Algorithm because there is no "crossover" or "mutation" operation39. The Particle 

Swarm Optimization algorithm is based on an iterative approach to find the global 

optimal solution by iteratively updating the optimal solution over and over again40.

 It has become a popular research area in optimization algorithms because of its 

simple principle, few adjustable parameters and easier implementation41. The 

algorithm operation process is shown in Figure 5 below: 
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Figure 5 – Execution process of Particle Swarm Optimization 

The PSO algorithm finds the optimal solution by iteration. During each 

iteration, the particle updates its velocity and position by individual and population 

extremes. The optimal solution found by the particle itself is called the individual 

extremum, which can be represented by pbest. The other optimal solution found in 

the population is called the population extreme, which can be represented by gbest. 

The formula for the particle to update its own velocity and position can be 

represented by the following formula 6 and formula 742:  
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Velocity: 

𝑣𝑣𝑖𝑖+1 = 𝑤𝑤 × 𝑣𝑣𝑖𝑖 + 𝑐𝑐1 × 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟1 × (𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖) + 𝑐𝑐2 × 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟2 × (𝑔𝑔𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖) (6)

Position: 

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑣𝑣𝑖𝑖+1 (7)

 In the above two formulas, 𝑤𝑤 is the inertia factor, generally taken as 1. 𝑐𝑐1 and 

𝑐𝑐2 are the learning factors, generally taken as 2. 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟1 and 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟2 are random 

numbers between (0, 1). 𝑣𝑣𝑖𝑖 and 𝑥𝑥𝑖𝑖 denote the velocity and position of the particle 

in the i-th dimension, respectively. 𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 , 𝑔𝑔𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖  denote the value of the i-th 

dimension of the best position of a particle, the value of the i-th dimension of the 

best position of the whole population, respectively. 

For code implementation of Particle Swarm Optimization algorithm, please 

refer to Particle Swarm Optimization in Appendix A. 

 

1.2.3 Sparrow Search Algorithm (SSA) 

The sparrow search optimization algorithm was proposed in 2020, and its 

main idea is derived from sparrow foraging behavior and anti-predation behavior, 

which is a new type of swarm intelligence optimization algorithm44. The sparrow 

search optimization algorithm can be considered as an improvement of the artificial 

swarm algorithm, and it has almost the same structure as the artificial swarm 

algorithm, only with some differences in the search. Its algorithm flow is mainly 

shown in Figure 6 below45. 
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In the Sparrow Search Algorithm, in which the discoverers, especially those 

possessing better adaptation worthy discoverers, are given priority in the search 

process to obtain food. At the same time, the discoverers can also provide foraging 

directions for the joiners in all populations, so that the discoverers can forage in a 

larger area. Similarly, the joiners will always monitor the discoverers during the 

foraging process. If the entire sparrow population is threatened by a predator, it will 

immediately engage in anti-predatory behavior46.  

 

Figure 6 – Flow chart of the execution process of the Sparrow Search Algorithm 
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For code implementation of Sparrow Search Algorithm, please refer to 

Sparrow Search Algorithm in Appendix A. 

 

1.2.4 Sine Cosine Algorithm (SCA) 

The Sine Cosine Algorithm is a new stochastic optimization algorithm that is 

an intelligent optimization algorithm proposed by Seyedali Mirjalili, Australia47.

 The algorithm works by creating multiple initial stochastic candidate solutions 

and then fluctuates towards the optimal solution using mathematical models of sine 

and cosine. The stochastic solutions are evaluated iteratively by the objective 

function so that different regions in the space can be used to achieve the global 

optimum, very efficiently avoiding the local optimum problem48.  

The sine cosine optimization algorithm is widely used in various fields of 

optimization problems because of its flexibility, simplicity and ease of 

implementation. The operation process of the sine cosine optimization algorithm can 

be divided into the following two phases: the exploration phase and the development 

phase. In the exploration phase, the initial stochastic solution is combined with the 

optimization algorithm to quickly search for feasible spatial regions among all the 

stochastic solutions. During the development phase, the random solution changes, 

but the rate of change is always lower than that of the exploration phase. Its 

formulation can be expressed by the following equation 849.  
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𝑋𝑋𝑖𝑖𝑡𝑡+1  = �
𝑋𝑋𝑖𝑖𝑡𝑡 + 𝑟𝑟1 × 𝑝𝑝𝑠𝑠𝑟𝑟(𝑟𝑟2) × |𝑟𝑟3𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡|   𝑟𝑟4 < 0.5
𝑋𝑋𝑖𝑖𝑡𝑡 + 𝑟𝑟1 × 𝑐𝑐𝑐𝑐𝑝𝑝(𝑟𝑟2) × |𝑟𝑟3𝑃𝑃𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡|  𝑟𝑟4 > 0.5

(8)

In this equation, 𝑋𝑋𝑖𝑖𝑡𝑡 is the i-th dimension of the current individual and the position 

of the t-th generation. 𝑟𝑟2 denotes a random number from 0 to 2𝜋𝜋. 𝑟𝑟3 denotes a 

random number between 0 to 2. 𝑟𝑟4  denotes a random number from 0 to 1. 𝑃𝑃𝑖𝑖𝑡𝑡 

denotes the position of the i-th dimension of the optimal individual position variable 

at the t-th iteration. 

The specific execution flow chart of the SCA is shown in Figure 7 below: 

 

Figure 7 – Flow chart of the execution process of the Sine Cosine Algorithm 
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The code to initialize the random result set of the Sine Cosine Algorithm and 

the main loop is shown in Sine Cosine Algorithm in Appendix A. 

 

1.3 Decomposition methods 

1.3.1 Empirical Mode Decomposition (EMD) 

The EMD algorithm was proposed by Norden e. Huang, an American scientist, 

and it can decompose a signal by virtue of the time-scale characteristics of the data 

itself without setting any basis function in advance51. EMD algorithm has a very 

obvious advantage in dealing with various nonlinear and non-stationary signals 

because of its data-driven adaptive nature52.  

EMD obtains the first-order residual quantity 𝑟𝑟1(𝑝𝑝) by differentiating the 

original signal 𝑋𝑋(𝑝𝑝) and 𝑐𝑐1(t), and then replaces 𝑟𝑟1(𝑝𝑝) with the original signal 

𝑋𝑋(𝑝𝑝) for the corresponding processing, and the n-th-order modal function 𝑐𝑐𝑛𝑛(𝑝𝑝) 

and the final residual quantity 𝑟𝑟𝑛𝑛(𝑝𝑝) can be obtained after repeating n times. The 

final decomposition expression is5:  

𝑋𝑋(𝑝𝑝) = ∑ 𝑐𝑐𝑛𝑛(𝑝𝑝) + 𝑟𝑟𝑛𝑛(𝑝𝑝)𝑛𝑛
1 (9)

During the EMD method, it is very easy to generate modal mixing because of the 

presence of signals with similar scales in the IMF component. Also because the 

signal has no sample points to be considered after the beginning and the end, it can 

also lead to the polar packets diverging at the end points, thus leading to errors, 
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which is often referred to as the end effect. Therefore, in order to solve these 

problems, the EEMD method is proposed53.  

 

1.3.2 Ensemble Empirical Mode Decomposition (EEMD) 

The EEMD algorithm is an improved algorithm proposed by Norden e. Huang 

and other scientists to suppress the modal aliasing phenomenon caused by the EMD 

algorithm. By superimposing a Gaussian white noise auxiliary signal processing 

(NADA), the modal aliasing phenomenon is effectively suppressed55.  

The specific steps of the decomposition of the EEMD algorithm are shown 

below5:  

1) The white noise 𝐸𝐸𝑖𝑖(𝑝𝑝)  with normal distribution is added to the original 

signal 𝑋𝑋(𝑝𝑝) to obtain the new signal 𝑋𝑋′(𝑝𝑝)5: 

𝑋𝑋′(𝑝𝑝)  =  𝑋𝑋(𝑝𝑝)  +  𝐸𝐸𝑖𝑖(𝑝𝑝) (10) 

2) Then the obtained new signal X'(t) is decomposed by EMD, so that the IMF 

component and the other remaining components can be obtained5: 

𝑋𝑋′(𝑝𝑝) = �𝑐𝑐𝑗𝑗(𝑝𝑝) + 𝑟𝑟𝑛𝑛(𝑝𝑝)
𝑛𝑛

𝑗𝑗=1

(11) 

3) Then repeat the execution of step 1) and step 2) N times, and then the above 

corresponding IMF will be averaged5, and finally can obtain the final IMF 

(𝐶𝐶𝑛𝑛(𝑝𝑝), after EEMD as follows: 
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𝐶𝐶𝑛𝑛(𝑝𝑝) =
1
𝑟𝑟
�𝑐𝑐𝑖𝑖(𝑝𝑝)
𝑁𝑁

𝑖𝑖=1

(12) 

 

1.3.3 Variational Mode Decomposition (VMD) 

The VMD algorithm is an adaptive signal processing method whose core idea 

is to construct and solve variational problems. Unlike the methods proposed by 

scientists such as Norden e. Huang, the VMD algorithm aims to decompose the 

original signal into subsignals of different frequencies56. This is because the VMD 

algorithm considers the original signal as formed by the superposition of subsignals 

with different frequency dominance. Therefore, IMF is defined in the VMD 

algorithm as a bandwidth-constrained frequency modulation function, and the 

original signal is decomposed into a number of specified IMF components by 

constructing and solving a variational problem57. It is also because of this feature 

that the VMD algorithm can effectively avoid the phenomenon of modal aliasing 

and has the advantage of better decomposition accuracy for processing complex data, 

and it is for this reason that the VMD algorithm is often used to deal with various 

non-smooth and non-linear signal problems58.  

 

1.3.4 Wavelet Decomposition (Wavelet) 

The Wavelet Decomposition algorithm can be seen as an optimization of the 

Fourier transform, By breaking up a continuous periodic signal into a linear 
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combination of trigonometric signals of different frequencies, when the period of 

this periodic signal is infinite, this is the Fourier transform59. The basic equation of 

Fourier transform is sin function and cos function, and the basic equation of wavelet 

transform is wavelet function. The change made by wavelet transform lies in turning 

the infinitely long trigonometric function basis into a finite length wavelet basis that 

will decay, and different wavelets have very big differences in waveform, and 

similar wavelets form a wavelet family61. The functional representation of the 

wavelet transform is shown below. Due to the sparse coding property of Wavelet 

Decomposition, wavelet packet decomposition is commonly used to deal with 

various signal filtering problems and to deal with various signal noise reduction 

problems and various data compression problems62. 

𝛼𝛼 =  𝑊𝑊𝑇𝑇𝑓𝑓 (13) 

where 𝛼𝛼 denotes the wavelet coefficients obtained from the transform and 

𝑊𝑊 is the orthogonal matrix. 𝑓𝑓 is the input signal. 
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2 Experimental research  

2.1 Data preparation 

The experimental data for this experiment were obtained from the National 

Center for Meteorological Sciences (NCMS), and the station located in Qingdao, 

Shandong Province, with a latitude and longitude position of (36.07°N, 120.33°E) 

and an elevation of 76 m. The specific experimental idea of this experiment is shown 

in Figure 8 below: 

 

Figure 8 – Flow chart of experimental idea design 
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2.2 Data decomposition 

The sample data for this experiment has a total of 300 and is divided into two 

different data sets, the training set and the test set, for training and prediction. The 

first 80% of the sample data is used as the training set for the whole model, and the 

remaining 20% of the sample data is used as the test set for the whole model. 

Firstly, by using different decomposition methods (EMD, EEMD, VMD, 

Wavelet) to decompose the original wind speed data to obtain IMF1, IMF2, 

IMF3......IMFn. The specific decomposition results are shown in the following 

Figure 9,10: 

    

Figure 9, 10 – Raw data signal decomposition 

The raw data decomposed by the EMD method is shown in the following 

Figure 11: 
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Figure 11 – Raw data signal decomposed by EMD 

The raw data by the EEMD method through decomposition is shown in the 

following Figure 12, 13: 

 

Figure 12 – Raw data signal decomposed by EEMD 
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Figure 13 – Raw data signal decomposed by EEMD 

The raw data decomposed by the VMD method is shown in the following 

Figure 14, 15: 

 

Figure 14 – Raw data signal decomposed by VMD 
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Figure 15 – Raw data signal decomposed by VMD 

The raw data decomposed by the Wavelet Decomposition method is shown in 

the following Figure 16: 

 

Figure 16 – Raw data signal decomposed by Wavelet 
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2.3 Predictive models 

In this paper, BPNN, SVR and KELM are used as three groups of basic 

prediction models. In order to improve the accuracy of the model, four different 

optimization methods (GA, PSO, SSA and SCA) are used to optimize the three 

groups of basic models, and then they are combined with the decomposition method 

to obtain the following different groups of combined prediction models. 

The prediction results of the combined prediction model formed by combining 

the EMD method with the prediction model are shown in the following Figure 17: 

 

Figure 17 – Prediction diagram of EMD combined prediction model 

The prediction results of the combined prediction model formed by combining 

the EEMD method with the prediction model are shown in the following Figure 18: 
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Figure 18 – Prediction diagram of EEMD combined prediction model 

The prediction results of the combined prediction model formed by combining 

the VMD method with the prediction model are shown in the following Figure 19: 

 

Figure 19 – Prediction diagram of VMD combined prediction model 
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The final prediction results of the prediction model formed by combining the 

Wavelet Decomposition method with the prediction model are shown in the 

following Figure 20: 

 

Figure 20 – Prediction diagram of Wavelet Decomposition combined prediction 

model 

 

2.4 Evaluation indicators 

After predicting the model, it is necessary to analyze the error of the model to 

measure the prediction accuracy of the model. In this paper, the prediction accuracy 

of the combined prediction model is analyzed by using four common evaluation 

indexes: mean absolute percentage error, mean square error, mean absolute error, 

and root mean square error. Through them, quantitative error analysis is carried out. 

The evaluation indexes range from [0, +∞), and when the error between the predicted 

value and the true value is infinitely closer to 0, it means that the prediction accuracy 
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of the model is closer to the perfect combination prediction model. Among them, the 

definitions and formulas of the four evaluation indicators are shown below: 

𝐸𝐸𝐴𝐴𝑃𝑃𝐸𝐸 =
100%
𝑟𝑟

��
𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

(14) 

𝐸𝐸𝑀𝑀𝐸𝐸 =
1
𝑟𝑟
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

(15) 

𝐸𝐸𝐴𝐴𝐸𝐸 = �|𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

(16) 

𝑅𝑅𝐸𝐸𝑀𝑀𝐸𝐸 = �
1
𝑟𝑟
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

(17) 

In the formula: n represents the number of test samples, 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝚤𝚤
�  represent 

the true and predicted values at moment i-th. 

 

2.5 Error analysis 

After the combination prediction model predicts the original data, it is 

necessary to analyze and compare the prediction results of the combination 

prediction model according to the evaluation index to obtain the optimal 

combination prediction model. 

The error table of the combined prediction model formed by combining the 

EMD method with the basic prediction model is shown in the following Table 1: 
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Table 1 Error analysis of EMD combined prediction method 

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s) 

emdBPNN 5.44 0.1784 0.2469 0.4223 

emdGABPNN 6.11 0.2244 0.2863 0.4738 

emdPSOBPNN 9.20 0.4299 0.4364 0.6557 

emdSSABPNN 3.20 0.032 0.1519 0.1519 

emdSCABPNN 4.29 0.0429 0.2032 0.2032 

emdSVR 6.83 0.4635 0.3345 0.6808 

emdGASVR 5.44 0.2561 0.2631 0.5061 

emdPSOSVR 6.42 0.2408 0.3000 0.4907 

emdSSASVR 8.87 0.0887 0.5958 0.5958 

emdSCASVR 8.87 0.0887 0.5961 0.5961 

emdKELM 7.02 0.0702 0.5061 0.5061 

emdGAKELM 5.36 0.0536 0.5004 0.5004 

emdPSOKELM 7.06 0.0706 0.4474 0.4474 

emdSSAKELM 5.07 0.0507 0.4377 0.4377 

emdSCAKELM 6.87 0.0687 0.4680 0.4680 
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The error table of the combined prediction model formed by combining the 

EEMD method with the basic prediction model is shown in the following Table 2:  

Table 2 Error analysis of EEMD combined prediction method 

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s) 

eemdBPNN 5.75 0.2335 0.2752 0.4832 

eemdGABPNN 6.27 0.2964 0.2938 0.5445 

eemdPSOBPNN 7.00 0.3480 0.3419 0.5899 

eemdSSABPNN 2.83 0.0283 0.1343 0.1343 

eemdSCABPNN 0.54 0.0054 0.0255 0.0255 

eemdSVR 6.65 0.2903 0.3245 0.5388 

eemdGASVR 6.25 0.2527 0.3104 0.5027 

eemdPSOSVR 6.14 0.2386 0.2926 0.4456 

eemdSSASVR 9.34 0.0934 0.7235 0.7235 

eemdSCASVR 12.48 0.1248 0.8973 0.8973 

eemdKELM 8.19 0.0819 0.626 0.626 

eemdGAKELM 6.06 0.0606 0.4897 0.4897 

eemdPSOKELM 5.54 0.0554 0.4013 0.4013 
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Continuation of Table 2 

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s) 

eemdSSAKELM 11.08 0.1108 0.6324 0.6324 

eemdSCAKELM 5.83 0.0583 0.4065 0.4065 

The error table of the combined prediction model formed by combining the 

VMD method with the basic prediction model is shown in the following Table 3:  

Table 3 Error analysis of VMD combined prediction method 

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s) 

VMDBPNN 1.89 0.0127 0.0820 0.1126 

VMDGABPNN 1.99 0.0110 0.0852 0.1048 

VMDPSOBPNN 2.17 0.0158 0.0946 0.1256 

VMDSSABPNN 2.54 0.0254 0.1204 0.1204 

VMDSCABPNN 2.33 0.0233 0.1106 0.1106 

VMDSVR 5.08 0.0597 0.2058 0.2443 

VMDGASVR 4.95 0.0759 0.2291 0.2755 

VMDPSOSVR 3.04 0.1986 0.1419 0.1737 

VMDSSASVR 7.25 0.1225 0.642 0.642 
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Continuation of Table 3 

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s) 

VMDSCASVR 7.27 0.1227 0.6417 0.6417 

VMDKELM 10.62 0.0702 0.5061 0.5061 

VMDGAKELM 5.36 0.0536 0.5004 0.5004 

VMDPSOKELM 7.06 0.0706 0.4474 0.4474 

VMDSSAKELM 5.07 0.0507 0.4377 0.4377 

VMDSCAKELM 6.87 0.0687 04.68 0.468 

The error table for the combined prediction model formed by combining the 

Wavelet Decomposition method with the basic prediction model is shown in the 

following Table 4:  

Table 4 Error analysis of Wavelet combined prediction method 

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s) 

waveletBPNN 3.57 0.0357 0.2555 0.2555 

waveletGABPNN 3.47 0.0347 0.2148 0.2148 

waveletPSOBPNN 5.08 0.0508 0.3403 0.3403 

waveletSSABPNN 4.17 0.0417 0.1978 0.1978 
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Continuation of Table 4 

Model\Index MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s) 

waveletSCABPNN 3.61 0.0361 0.1711 0.1711 

waveletSVR 5.57 0.057 0.3358 0.3358 

waveletGASVR 5.85 0.0585 0.3979 0.3979 

waveletPSOSVR 4.80 0.048 0.2651 0.2651 

waveletSSASVR 8.67 0.0867 0.5454 0.5454 

waveletSCASVR 8.79 0.0873 0.5463 0.5463 

waveletKELM 6.65 0.0665 0.3883 0.3883 

waveletGAKELM 4.16 0.0416 0.246 0.246 

waveletPSOKELM 3.42 0.0342 0.1961 0.1961 

waveletSSAKELM 5.08 0.0508 0.1993 0.1993 

waveletSCAKELM 3.3 0.032 0.0906 0.0906 

In order to make a more intuitive comparison and analysis of the prediction 

error results of these 60 different sets of combined prediction models, the Table 5 

obtained by collation is shown below: 
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Table 5 Error analysis of all combined prediction method 

EMD/EEMD/VMD/Wavelet MAPE(%) MSE(m/s) MAE(m/s) RMSE(m/s) 

BPNN 5.44/5.75/1.89/3.57 0.1784/0.2335/0.0127/0.0357 0.2469/0.2752/0.0820/0.2555 0.4223/0.4832/0.1126/0.2555 

GABPNN 6.11/6.27/1.99/3.47 0.2244/0.2964/0.0110/0.0347 0.2863/0.2938/0.0852/0.2148 0.4738/0.5445/0.1048/0.2148 

PSOBPNN 9.20/7.00/2.17/5.08 0.4299/0.3480/0.0158/0.0508 0.4364/0.3419/0.0946/0.3403 0.6557/0.5899/0.1256/0.3403 

SSABPNN 3.20/2.83/2.54/4.17 0.032/0.0283/0.0254/0.0417 0.1519/0.1343/0.1204/0.1978 0.1519/0.1343/0.1204/0.1978 

SCABPNN 4.29/0.54/2.33/3.61 0.0429/0.0054/0.0233/0.0361 0.2032/0.0255/0.1106/0.1711 0.2032/0.0255/0.1106/0.1711 

SVR 6.83/6.65/5.08/5.57 0.4635/0.2903/0.0597/0.057 0.3345/0.3245/0.2058/0.3358 0.6808/0.5388/0.2443/0.3358 

GASVR 5.44/6.25/4.95/5.85 0.2561/0.2527/0.0759/0.0585 0.2631/0.3104/0.2291/0.3979 0.5061/0.5027/0.2755/0.3979 

PSOSVR 6.42/6.14/3.04/4.80 0.2408/0.2386/0.1986/0.048 0.3000/0.2926/0.1419/0.2651 0.4907/0.4456/0.1737/0.2651 

SSASVR 8.87/9.34/7.25/8.67 0.0887/0.0934/0.1225/0.0867 0.5958/0.7235/0.642/0.5454 0.5958/0.7235/0.642/0.5454 

SCASVR 8.87/12.48/7.27/8.79 0.0887/0.1248/0.1227/0.0873 0.5961/0.8973/0.6417/0.5463 0.5961/0.8973/0.6417/0.5463 

KELM 7.02/8.19/10.62/6.65 0.0702/0.0819/0.0702/0.0665 0.5061/0.626/0.5061/0.3883 0.5061/0.626/0.5061/0.3883 

GAKELM 5.36/6.06/5.36/4.16 0.0536/0.0606/0.0536/0.0416 0.5004/0.4897/0.5004/0.246 0.5004/0.4897/0.5004/0.246 

PSOKELM 7.06/5.54/7.06/3.42 0.0706/0.0554/0.0706/0.0342 0.4474/0.4013/0.4474/0.1961 0.4474/0.4013/0.4474/0.1961 

SSAKELM 5.07/11.08/5.07/5.08 0.0507/0.1108/0.0507/0.0508 0.4377/0.6324/0.4377/0.1993 0.4377/0.6324/0.4377/0.1993 

SCAKELM 6.87/5.83/6.87/3.3 0.0687/0.0583/0.0687/0.032 0.468/0.4065/0.468/0.0906 0.468/0.4065/0.468/0.0906 

Through the analysis of the above experimental data, the following 

conclusions can be obtained: 

1) Among the combined prediction models formed by different 

decomposition methods, through the overall comparison, it can be found that the 

error of the combined prediction model formed by the combination of VMD 

methods is much smaller in BPNN and SVR models, indicating that in BPNN and 

most SVR (SVR, GASVR, PSOSVR) models, the combined prediction model 

formed by VMD has better prediction effect. The research also shows that the 
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combined prediction model formed by VMD overcomes the modal confusion caused 

by EMD method and solves the residual noise caused by EEMD. 

2) In contrast, the combined prediction model formed by Wavelet presents 

a smaller experimental error in comparison with the KELM prediction model and 

part of SVR (SCASVR, SSASVR), indicating that the combined prediction model 

formed by Wavelet has a better prediction effect in the model of KELM. It also 

shows that Wavelet is also very good at overcoming the problems arising from the 

EMD method and the EEMD method. 

3) Through the overall vertical comparison of the models, it can be found 

that although there are some deviations in different models, in general, the prediction 

model using SCA optimization algorithm shows more accurate prediction ability in 

BPNN prediction model. In the SVR prediction model, the prediction model using 

PSO optimization algorithm generally has more accurate prediction ability. 

Similarly, in the KELM model, the prediction model optimized by SCA optimization 

algorithm shows a more accurate prediction. 

4) Through experimental analysis, it can be concluded that it is very 

undesirable to simply infer that a method must be better in theory, so as to ignore 

the actual situation. 
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INTRODUCTION OF CODE PROGRAM 

In this section, the main program of the program as well as the drawing 

program will be introduced. The main programming tool used is Matlab. 

In the main program, different decomposition models and different prediction 

models are selected for prediction, and then they are combined into a combined 

prediction model. Then the prediction accuracy is compared according to the 

evaluation index. The main program mainly includes three parts: parameter 

initialization, data decomposition and model selection. 

The program code for the initialization of the parameters is shown below: 

1. %% Parameter initialization   

2. interval = 1;   

3. start_train = 1;   

4. lag = 4;   

5. data = wave;   

6. end_train = floor(0.8*length(data));   

7. [row col] = size(data);   

8. Y = [];   

9. mape = [];   

10. dstat = [];   

11. rmse = [];   

Code Sample 8 – Parameter initialization in the main program 

After initializing the parameters, a choice of different decomposition methods 

needs to be made. The procedure for data decomposition is shown below. The 

decomposition method model that can be chosen is indicated after %. 
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1.  %% Data decomposition   

2. decomp_type = 'VMD'; %emd,eemd,VMD，wavelet   

3. data_sample = data;   

4. [Comp] = tm_decomposition_method(decomp_type,data_sample);  

Code Sample 9 – Data decomposition in the main program. 

Then select different prediction models and combine them with 

decomposition methods to form a combined prediction model to predict and analyze 

data.The code is shown below. where the model's after % indicate the predictor 

models that can be selected. 

1. %% Selecting a predictive model   

2. Model = 'SVR';%SVR,BP,ga_svr,ga_bp,pso_svr,pso_bp;;;   

3. %KELM,PSO_KELM;SSA_KELM,SCA_KELM,GA_KELM, SSA_BPNN,SCA_BPNN,SSA_SVR,SCA_SVR   

4. [MAPE,RMSE,Dstat,MSE,MAE,Sum_t_all]

 = emd_family_prediction(Comp,data_sample,Model);   

5. mz= sprintf([decomp_type '_' Model]);   

6. save(mz, 'Sum_t_all')   

Code Sample 10 – Prediction model selection in the main program. 

Then, by running the main program, the program will analyze the combined 

prediction model around the 4 set evaluation indicators. Then it will show the 

analysis result of the program on the right side. It will also load the data from the 

run into the taskbar on the left. This is shown in the Figure 21 below: 



44 

 

 

Figure 21 – The result of the main program 

After all the combined prediction models are run, the analysis diagram of the 

combined prediction model can be drawn according to the running results. The 

drawing code is divided into two main parts. The first part loads the data for the run, 

and the second part is the plotting function. Taking VMD combination prediction 

method as an example. 

The code to load the data is shown below: 

1. clc   

2. clear all   

3. %%   

4. load y_true.mat   

5. y_true = s;   

6. load VMD_SVR.mat   

7. VMD_SVR = Sum_t_all;   

8. load VMD_BP.mat   

9. VMD_BP = Sum_t_all;   

10. ... 

Code Sample 11 – Loading data 
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 The analysis diagram code for drawing the combined prediction model is 

shown below: 

1.  %%   

2. plot(y_true,'-+','LineWidth',1.5);   

3. hold on   

4. plot(VMD_SVR,'-s','LineWidth',1.5);   

5. hold on   

6. plot(VMD_BP,'-o','LineWidth',1.5);   

7. hold on   

8. ...   

9. ... 

10. grid   

11. xlabel('Test set')   

12. ylabel('data')   

13. title('Fitting the comparison curve')   

14. legend('ytrue','VMDSVRy','VMDBPy','VMDgasvry','VMDpsosvry','VMDgabpy','VMDpsobpy

','VMDSSABPNN','VMDSCABPNN','VMDSSASVR','VMDSCASVR','VMDKELM','VMDGAKELM','VMDSO

KELM','VMDSSAKELM','VMDSCAKELM','Location','SouthEast');   

Code Sample 12 – Plotting of combined predictive models 

Then, by running the plotting function, the following analysis diagram of the 

combined prediction model (Figure 22) is obtained. 
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Figure 22 – Prediction diagram sample of VMD combined prediction model 
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CONCLUSION 

In this paper, BPNN, SVR and KELM are used as three groups of basic 

prediction models. GA, PSO, SSA, SCA and other optimization algorithms are used 

to optimize the basic prediction model, and then four different decomposition 

methods are used to form different combined prediction models, and each combined 

prediction model is compared and analyzed. 

The analysis of experimental data shows that  

 The combined prediction model consisting of VMD method has higher 

prediction accuracy in the BPNN and most of SVR models compared with the 

combined prediction model formed by other decomposition methods. The accuracy 

of the combined prediction model formed by the Wavelet Decomposition method in 

the KELM model and part of SVR model is higher. It also shows that both the VMD 

method and the Wavelet Decomposition method can overcome the modal 

confounding problem generated by the EMD and the noise residual problem 

generated by the EEMD.  

 Through the overall vertical comparison of the models, it can be found 

that although there are some deviations in different models, in general, the prediction 

model using SCA optimization algorithm shows more accurate prediction ability in 

BPNN prediction model. In the SVR prediction model, the prediction model using 

PSO optimization algorithm generally has more accurate prediction ability. 
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Similarly, in the KELM model, the prediction model optimized by SCA optimization 

algorithm shows a more accurate prediction.  

 Through experimental analysis, it can be concluded that it is very 

undesirable to infer that a certain method is better only through theoretical analysis, 

while ignoring the actual situation. In the selection of prediction methods, more 

appropriate combinations should be selected according to different actual conditions 

to improve the prediction accuracy. 

 Prospects and applications: This combined prediction model can be used 

not only for wind speed prediction, but also for other predictions, such as financial 

risk prediction models, etc. 
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APPENDIX A 

Part A Optimize algorithms for specific code implementation 

1). Genetic Algorithm 

Code Sample 238: Genetic Algorithm of selection: Selection of evolved 

individuals using the Roulette Wheel Selection method. 

1. for i=1:population_size   

2.     r = rand * fitness_sum(population_size);     

3.     first = 1;   

4.     last = population_size;   

5.     mid = round((last+first)/2);   

6.     idx = -1;   

7.  

8.     % Individual selection by the middle row method   

9.     while (first <= last) && (idx == -1)    

10.         if r > fitness_sum(mid)   

11.             first = mid;   

12.         elseif r < fitness_sum(mid)   

13.             last = mid;        

14.         else   

15.             idx = mid;   

16.             break;   

17.         end   

18.         mid = round((last+first)/2);   

19.         if (last - first) == 1   

20.             idx = last;   

21.             break;   

22.         end   

23.     end    

24.  

25.    % Generating a new generation of individuals   

26.    for j=1:chromosome_size   

27.         population_new(i,j) = population(idx,j);   

28.    end   

29. end     

30. for i=1:population_size   

31.    for j=1:chromosome_size   

32.        population(i,j) = population_new(i,j);   
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33.    end   

34. end   

Code sample 238 – matlab code implementation of selection in Genetic Algorithm 

Code Sample 338: Genetic Algorithm of crossover. 

1. for i=1:2:population_size   

2.     % Crossover manipulation of chromosome strings of two individuals   

3.     if(rand < cross_rate)   

4.         cross_position = round(rand * chromosome_size);   

5.         if (cross_position == 0 || cross_position == 1)   

6.             continue;   

7.         end   

8.         % Swap binary strings for cross_position and beyond   

9.         for j=cross_position:chromosome_size   

10.             temp = population(i,j);   

11.             population(i,j) = population(i+1,j);   

12.             population(i+1,j) = temp;   

13.         end   

14.     end   

15. end   

Code sample 338 – Matlab code implementation of crossover in Genetic Algorithm 

Code Sample 438: Genetic Algorithm of mutation. 

1. for i=1:population_size   

2.     if rand < mutate_rate   

3.         mutate_position = round(rand*chromosome_size);     

4.         if mutate_position == 0   

5.             continue;   

6.         end   

7.         population(i,mutate_position) = 1 - population(i, mutate_position);   

8.     end   

9. end   

Code sample 438 – Matlab code implementation of Mutation in Genetic Algorithm 
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2). Particle Swarm Optimization 

Code Sample of Particle Swarm Optimization algorithm 43: 

1.  %% I. Emptying the environment   

2. clc   

3. clear all   

4.   

5. %% II.  Plot the objective function curve   

6. x = 1:0.01:2;   

7. y = sin(10*pi*x) ./ x;   

8. figure   

9. plot(x, y)   

10. hold on   

11.     

12. %% III. Parameter initialization   

13. c1 = 1.49445;   

14. c2 = 1.49445;   

15. maxgen = 50;   % Number of evolutions     

16. sizepop = 10;   % Population size   

17. Vmax = 0.5;   %Range of speed。   

18. Vmin = -0.5;     

19. popmax = 2;   %Individual range of variation   

20. popmin = 1;   

21.     

22.  

23. %% IV. Generate initial particles and velocities   

24. for i = 1:sizepop   

25.     pop(i,:) = (rands(1) + 1) / 2 + 1;    

26.     V(i,:) = 0.5 * rands(1);     

27.     fitness(i) = fun(pop(i,:));      

28. end   

29.     

30.  

31. %% V. Individual and group extremes   

32. [bestfitness bestindex] = max(fitness);   

33. zbest = pop(bestindex,:);     

34. gbest = pop;       

35. fitnessgbest = fitness;      

36. fitnesszbest = bestfitness;     

37.     

38.  

39. %% VI. Iterative Optimization Search   
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40. for i = 1:maxgen   

41.     for j = 1:sizepop   

42.         V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - po

p(j,:));   

43.         V(j,find(V(j,:)>Vmax)) = Vmax;   

44.         V(j,find(V(j,:)<Vmin)) = Vmin;   

45.            

46.         pop(j,:) = pop(j,:) + V(j,:);   

47.         pop(j,find(pop(j,:)>popmax)) = popmax;   

48.         pop(j,find(pop(j,:)<popmin)) = popmin;   

49.    

50.         fitness(j) = fun(pop(j,:));    

51.     end   

52.        

53.     for j = 1:sizepop       

54.         if fitness(j) > fitnessgbest(j)   

55.             gbest(j,:) = pop(j,:);   

56.             fitnessgbest(j) = fitness(j);   

57.         end   

58.           

59.         if fitness(j) > fitnesszbest   

60.             zbest = pop(j,:);   

61.             fitnesszbest = fitness(j);   

62.         end   

63.     end    

64.     yy(i) = fitnesszbest;             

65. end  

Code sample 543 – Matlab code implementation of PSO algorithm 

3). Sparrow Search Algorithm  

Code sample of Sparrow Search Algorithm47: 

1. clear all;    

2. close all;   

3. clc;   

4.    

5. %% Parameter Setting   

6. N=30;     

7. dim=2;     

8. N_discoverer=0.7*N;     

9. N_Followers=0.1*N;      

10. N_Vigilant=0.2*N;      
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11. Max_iter=100;       

12. ST=0.6;      

13.    

14. %% Test Functions   

15. f=@(x) sum(x.^2);   

16. ub=10;   

17. lb=-10;   

18.    

19. %% Initialization   

20. x=lb+rand(N,dim).*(ub-lb);     

21. for i=1:N   

22.     fitness(i)=f(x(i,:));     

23. end   

24. [A,index]=sort(fitness);   

25. x_best=x(index(1),:);     

26. x_worst=x(index(end),:);     

27. best_fitness=A(1);     

28. worst_fitness=A(end);     

29. x_best_currently=x(index(1),:);     

30. x_worst_currently=x(index(end),:);     

31. best_fitness_currently=A(1);      

32. worst_fitness_currently=A(end);      

33. x_discoverer=x(index(1:N_discoverer),:);      

34. x_Followers=x(index(N_discoverer+1:N_discoverer+N_Followers),:);     

35. x_Vigilant=x(index(N_discoverer+N_Followers+1:N),:);     

36. B=[-1,1];   

37. F=best_fitness;     

38. iter=1;    

39.    

40. %% Start of iterative updates   

41. while iter<Max_iter   

42.     for i=1:dim   

43.         C(i)=B(round(rand)+1);   

44.     end   

45.     A=C'*inv((C*C'));   

46.     R2=rand;   

47.     for i=1:N_discoverer   

48.         for j=1:dim   

49.             if R2<ST   

50.                 x_discoverer(i,j)=x_discoverer(i,j)*exp(-i/rand*Max_iter);   

51.             else   

52.                  x_discoverer(i,j)=x_discoverer(i,j)+randn;   

53.             end   

54.         end   
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55.         ub_flag=x_discoverer(i,:)>ub;   

56.         lb_flag=x_discoverer(i,:)<lb;   

57.         x_discoverer(i,:)=(x_discoverer(i,:).*(~(ub_flag+lb_flag)))+ub.*ub_flag+

lb.*lb_flag;   

58.     end   

59.     for i=1:N_Followers   

60.         for j=1:dim   

61.             if i>N/2   

62.                 x_Followers(i,j)=rand*exp((x_worst_currently(j)-

x_Followers(i,j))/i^2);   

63.             else   

64.                 x_Followers(i,j)=x_discoverer(1,j)+abs(x_Followers(i,j)-

x_discoverer(1,j))*A(j);   

65.             end   

66.         end   

67.         ub_flag=x_Followers(i,:)>ub;   

68.         lb_flag=x_Followers(i,:)<lb;   

69.         x_Followers(i,:)=(x_Followers(i,:).*(~(ub_flag+lb_flag)))+ub.*ub_flag+lb

.*lb_flag;   

70.     end   

71.     for i=1:N_Vigilant   

72.         for j=1:dim   

73.             if f(x_Vigilant(i,:))~=best_fitness_currently   

74.                 x_Vigilant(i,j)=x_best_currently(j)+randn*abs(x_Vigilant(i,j)-

x_best_currently(j));   

75.             else   

76.                 x_Vigilant(i,j)=x_Vigilant(i,j)+B(round(rand)+1)*(abs(x_Vigilant

(i,j)-x_worst_currently(j)))/abs(f(x_Vigilant(i,:))-

worst_fitness_currently)+1;   

77.             end   

78.         end   

79.         ub_flag=x_Vigilant(i,:)>ub;   

80.         lb_flag=x_Vigilant(i,:)<lb;   

81.         x_Vigilant(i,:)=(x_Vigilant(i,:).*(~(ub_flag+lb_flag)))+ub.*ub_flag+lb.*

lb_flag;   

82.     end   

83.     x=[x_discoverer;x_Followers;x_Vigilant];    

84.     for i=1:N   

85.         fitness(i)=f(x(i,:));      

86.     end   

87.     [E,index]=sort(fitness);   

88.     if f(x(index(1),:))<best_fitness       

89.         best_fitness=f(x(index(1),:));   

90.         x_best=x(index(1),:);   
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91.     end   

92.     if f(x(index(end),:))>worst_fitness      

93.         worst_fitness= f(x(index(end),:));   

94.         x_worst=x(index(end),:);   

95.     end   

96.     x_best_currently=x(index(1),:);      

97.     x_worst_currently=x(index(end),:);     

98.     best_fitness_currently=E(1);      

99.     worst_fitness_currently=E(end);     

100.     x_discoverer=x(index(1:N_discoverer),:);     

101.     x_Followers=x(index(N_discoverer+1:N_discoverer+N_Followers),:);     

102.     x_Vigilant=x(index(N_discoverer+N_Followers+1:N),:);     

103.     F=[F,best_fitness];      

104.     iter=iter+1;    

105. end   

Code sample 647 – Matlab code implementation of SSA algorithm 

4). Sine Cosine Algorithm 

Code sample of Sine Cosine Algorithm50: 

1.  clear all    

2. clc   

3.    

4. SearchAgents_no=30; % Number of search agents   

5.    

6. Function_name='F1'; % Name of the test function that can be from F1 to F23 (Tabl

e 1,2,3 in the paper)   

7.    

8. Max_iteration=1000; % Maximum numbef of iterations   

9.    

10. % Load details of the selected benchmark function   

11. [lb,ub,dim,fobj]=Get_Functions_details(Function_name);   

12.    

13. [Best_score,Best_pos,cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)

;   

14.    

15. figure('Position',[284   214   660   290])   

16. %Draw search space   

17. subplot(1,2,1);   

18. func_plot(Function_name);   

19. title('Test function')   

20. xlabel('x_1');   
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21. ylabel('x_2');   

22. zlabel([Function_name,'( x_1 , x_2 )'])   

23. grid off   

24.    

25. %Draw objective space   

26. subplot(1,2,2);   

27. semilogy(cg_curve,'Color','b')   

28. title('Convergence curve')   

29. xlabel('Iteration');   

30. ylabel('Best flame (score) obtained so far');   

31.    

32. axis tight   

33. grid off   

34. box on   

35. legend('SCA')   

36.    

37. display(['The best solution obtained by SCA is : ', num2str(Best_pos)]);   

38. display(['The best optimal value of the objective funciton found by SCA is : ', 

num2str(Best_score)]);   

39.    

40. function [Destination_fitness,Destination_position,Convergence_curve]=SCA(N,Max_

iteration,lb,ub,dim,fobj)   

41.    

42. display('SCA is optimizing your problem');   

43.    

44. %Initialize the set of random solutions   

45. X=initialization(N,dim,ub,lb);   

46.    

47. Destination_position=zeros(1,dim);   

48. Destination_fitness=inf;   

49.    

50. Convergence_curve=zeros(1,Max_iteration);   

51. Objective_values = zeros(1,size(X,1));   

52.    

53. % Calculate the fitness of the first set and find the best one   

54. for i=1:size(X,1)   

55.     Objective_values(1,i)=fobj(X(i,:));   

56.     if i==1   

57.         Destination_position=X(i,:);   

58.         Destination_fitness=Objective_values(1,i);   

59.     elseif Objective_values(1,i)<Destination_fitness   

60.         Destination_position=X(i,:);   

61.         Destination_fitness=Objective_values(1,i);   

62.     end   
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63.        

64.     All_objective_values(1,i)=Objective_values(1,i);   

65. end   

66.    

67. %Main loop   

68. t=2; % start from the second iteration since the first iteration was dedicated t

o calculating the fitness   

69. while t<=Max_iteration   

70.        

71.     % Eq. (3.4)   

72.     a = 2;   

73.     Max_iteration = Max_iteration;   

74.     r1=a-t*((a)/Max_iteration); % r1 decreases linearly from a to 0   

75.        

76.     % Update the position of solutions with respect to destination   

77.     for i=1:size(X,1) % in i-th solution   

78.         for j=1:size(X,2) % in j-th dimension   

79.                

80.             % Update r2, r3, and r4 for Eq. (3.3)   

81.             r2=(2*pi)*rand();   

82.             r3=2*rand;   

83.             r4=rand();   

84.                

85.             % Eq. (3.3)   

86.             if r4<0.5   

87.                 % Eq. (3.1)   

88.                 X(i,j)= X(i,j)+(r1*sin(r2)*abs(r3*Destination_position(j)-

X(i,j)));   

89.             else   

90.                 % Eq. (3.2)   

91.                 X(i,j)= X(i,j)+(r1*cos(r2)*abs(r3*Destination_position(j)-

X(i,j)));   

92.             end   

93.                

94.         end   

95.     end   

Code sample 750 – Matlab code implementation of SCA algorithm’s main loop and 

optimal solution 
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