
Citation: Razorenov, S.; Garkushin,

G.; Savinykh, A.; Promakhov, V.;

Matveev, A.; Klimova-Korsmik, O.;

Vorozhtsov, A. Strength

Characteristics of a Heat-Resistant

Metal-Matrix Composite Inconel

625–5%NiTi–TiB2 Alloy Fabricated by

Direct Laser Deposition under

Shock-Wave Loading. Metals 2023, 13,

477. https://doi.org/10.3390/

met13030477

Academic Editors: Hany Hassanin

and Pavel Krakhmalev

Received: 8 December 2022

Revised: 10 January 2023

Accepted: 4 February 2023

Published: 25 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Communication

Strength Characteristics of a Heat-Resistant Metal-Matrix
Composite Inconel 625–5%NiTi–TiB2 Alloy Fabricated by Direct
Laser Deposition under Shock-Wave Loading
Sergey Razorenov 1, Gennady Garkushin 1 , Andrey Savinykh 1 , Vladimir Promakhov 2,*, Alexey Matveev 2 ,
Olga Klimova-Korsmik 3 and Alexander Vorozhtsov 2

1 Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS,
142432 Chernogolovka, Russia

2 Faculty of Physics and Engineering, National Research Tomsk State University, 36 Lenin Avenue,
634050 Tomsk, Russia

3 Department of Digital Industrial Technology, St. Petersburg Marine Technical University, Lotsmanskaya, 3,
190121 St. Petersburg, Russia

* Correspondence: vvpromakhov@mail.ru

Abstract: The Hugoniot elastic limit and spall strength were measured for a heat-resistant metal-
matrix composite Inconel 625–5%NiTi–TiB2 alloy additive manufactured (AM) by direct laser deposi-
tion. The strength characteristics of the alloy were obtained from the analysis of the complete wave
profiles recorded with a VISAR laser Doppler velocimeter during shock-wave loading of the samples.
The samples were loaded using a PP50 pneumatic gun or ad hoc explosive devices along and across
the material deposition direction in order to determine the strength anisotropy of the AM alloy under
study. The maximum shock compression pressure was ~7 GPa, and the strain rate under tension
before spalling varied in the range of 105–106 s–1. Kinetic dependencies of elastic/plastic transition
and critical fracture stresses vs. loading conditions were plotted. It was shown that the Hugoniot
elastic limit of the alloy under study decreases as the shock wave travels into the sample, while the
spall strength increases as the material’s strain rate increases at the moment of spall fracture. A com-
parison of the strength characteristics of the Inconel 625–NiTi–TiB2 composite alloy with the original
Inconel 625 alloy has shown that an addition of 5% of powder based on NiTi-TiB2 leads to a decrease
in its elastic limit and critical fracture stresses upon spalling by more than 10%. The alloy under study
demonstrates anisotropy of strength properties relative to the material deposition direction.

Keywords: additively manufactured heat-resistant alloy; metal-matrix composite Inconel
625–5%NiTi-TiB2; direct laser deposition; shock-wave loading; Hugoniot elastic limit; spall strength

1. Introduction

Heat-resistant alloys of the Inconel brand have proven themselves as functional ma-
terials with advanced mechanical properties operating at high temperatures and loads in
chemically aggressive environments [1,2]. Specifically, Inconel 625 has excellent mechanical
properties and excellent resistance to pitting, crevice, erosion and intergranular corrosion as
well as insensitivity to corrosion cracking and good resistance to nitric, phosphoric, sulfuric,
hydrochloric and organic acids. According to a series of research papers, a combination of
advantages of additive manufacturing technologies with improved mechanical properties
of Inconel alloys makes it possible to cost-effectively produce products with complex geome-
tries, such as turbines and engine injectors, complex pipeline joints, etc., operating under
extreme conditions: high temperatures, high mechanical stress and pressures, etc. [3–6].
Despite the fact that Inconel 625 alloys have advanced mechanical properties over a wide
range of operating temperatures, new designs and products are constantly being developed
in different industries and they require still better performance [7]. One of the methods for
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improving physical and mechanical properties of materials is the creation of metal-matrix
composites. The structure of these composites consists of a metal/intermetallic matrix
wherein ceramic inclusions are uniformly distributed [8,9]. With the inclusion of ceramic
particles, composites have higher mechanical strength as compared to traditional alloys,
and these particles also increase composites’ durability and wear resistance at higher op-
erating temperatures [10–13]. Metal-matrix composites are mostly made from a mixture
of Inconel powders (base) and ceramic powders: TiC [14], WC [15] and CrC [16], etc.
However, use of such a powder mixture is very often accompanied by agglomeration of
ceramic particles in the process of composite material fabrication by direct laser deposition.
Agglomeration of ceramic particles leads to the formation of a heterogeneous structure in
the composite material and the emergence of depleted zones (i.e., areas without ceramic
inclusions), which significantly worsens composites’ mechanical properties. The authors
of works [17–19] have demonstrated successful use of the NiTi–TiB2 powder as a dopant
(5 wt. %) to Inconel 625. The NiTi–TiB2 powder was obtained by self-propagating high-
temperature synthesis from a NiB–Ti powder mixture [17]. The powder particles consisted
of an intermetallic NiTi matrix and TiB2 ceramic inclusions distributed within it. During
direct laser deposition, the matrix melt wetted ceramic particles, thus allowing them to
be evenly distributed in the base Inconel 625 melt. In addition, the matrix melt hindered
the agglomeration and recrystallization of TiB2 particles. The authors of [17–19] found
that the addition of 5 wt. % NiTi–TiB2 resulted in increased hardness as well as tensile,
compressive, and three-point bending strength, both at room and elevated temperatures as
compared to pure Inconel 625 alloy. Despite widespread use of additive materials in many
industries, data on their dynamic properties under impulse loading are scarce. The results
of measurements of the strength characteristics under impact loading of high-strength
steels [20,21], titanium [22–24], aluminium alloys [25], tantalum [26], and, more recently,
high-temperature INCONEL alloys [27–29] with an intensity of up to 7 GPa are known.
However, they do not include a well-defined response of AM metals and alloys to dynamic
loading. In most cases, AM materials demonstrate strength properties that are at least as
good, or, in some cases, much better than those of their counterparts produced using con-
ventional technologies. Rarely, there is a deterioration in their strength characteristics and
anisotropy of these characteristics that correlates with the texture formed due to fabrication
process peculiarities.

The purpose of this work is to study the strength properties of the following composite
alloy: Inconel 625 + 5 wt. % NiTi–TiB2 fabricated by direct laser deposition under shock-
wave loading with the intensity up to 13 GPa.

2. Materials and Methods
2.1. Fabrication of Samples by Direct Laser Deposition

Inconel 625 powders (Hoganas) and NiTi–TiB2 composite powder were used to fabri-
cate samples by direct laser deposition. The sizes of ceramic inclusions ranged between
40 and 180 µm while the average size was 90 µm. The NiTi-TiB2 powder was obtained
by self-propagating high-temperature synthesis from a NiB–Ti powder mixture [17]. The
average particle size of titanium diboride in the intermetallic matrix was 0.5 µm, and the
largest contribution to the distribution was made by particles with the size ranging from
0.1 to 0.2 µm. The Inconel 625 and NiTi–TiB2 powders were mixed at the following ratio:
95 wt. % Inconel 625 + 5 wt. % NiTi–TiB2. The mixture was stirred in a ball mill for
30 min. Massive samples were obtained by direct laser deposition of the powder mixture
on a substrate made of 7 mm thick RCE36 steel. An industrial robot M20iB/25 (Fanuc,
Oshino-mura, Japan), LS-3 ytterbium fiber laser (IPG Photonics, Oxford, MA, USA) was
used for deposition. Laser radiation was focused using an FLW D30 process (IPG Photonics,
Oxford, MA, USA). A SO12 coaxial deposition nozzle (ILWT, Saint-Petersburg, Russia) was
used to form the gas-powder jet and a 5.0 APS Powder insert powder feeder (Oerlikon,
Freienbach, Switzerland). The process of depositing samples from 95% (Inconel 625) + 5%
(NiTi–TiB2) by the AM process was carried out in argon atmosphere at a radiation power of
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1200 W, and the process rate was 25 mm/s with a beam diameter of 2 mm. The workpieces
obtained in this way were homogeneous, they did not contain visible discontinuities and
large foreign inclusions. An image of a fabricated workpiece of a high-temperature 95%
Inconel 625 + 5% NiTi–TiB2 composite alloy is shown in Figure 1a. The X-ray pattern of the
fabricated composite as well as its structure and a histogram of TiB2 ceramic particle sizes
distribution are shown in Figure 1b–d.
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Figure 1. Appearance of a workpiece made of a high-temperature composite Inconel 625 + 5 wt.%
NiTi–TiB2 (a) alloy, X-ray and SEM images of the workpiece structure (b,c), histogram of the distribu-
tion of TiB2 ceramic inclusions in the structure of the composite workpiece (d).

The density measured using hydrostatic weighing on a Mettler Toledo ME204T (Shang-
hai, China) high-precision analytical balance was 8.24 g/cm3. The original Inconel 625 alloy
had a density of 8.44 g/cm3. The MGNIVP “Akustika” (Saint-Peterburg, Russia) device
was used for measuring the velocity of propagation of acoustic waves, and the longitu-
dinal sound speeds cl of the samples along and across the direction of deposition were
5.784 ± 10 km/s and 5.616 ± 10 km/s, respectively.

The microhardness of the 95% Inconel 625 + 5% NiTi–TiB2 alloy varied from 4.24
to 4.54 GPa, and the average microhardness was 4.42 ± 0.1 GPa, while its distribution
over the sample was determined as linear. The average microhardness of the pure Inconel
625 measured for the sake of comparison was 2.73 ± 0.1 GPa. Thus, adding 5 wt.% of
NiTi–TiB2 composite metal matrix powder to Inconel 625 powder results in increasing of
the material microhardness by 1.5 times.

2.2. Shock-Wave Loading of the Samples

For shock-wave experiments, plane-parallel samples with a thickness ranging from
0.2 mm to 3 mm were cut from the workpiece (Figure 1) on an ARTA 120 machine
(Phryazino, Moscow reg., Russia) using the electroerosion method. This was followed by
manual machining (grinding and polishing) of the surface to bring it to the reflectivity
required for recording its velocity with a laser interferometer. The traces of the direction
of deposition are clearly visible on the workpiece. That is why the issue of the anisotropy
of the strength properties of this alloy is a concern. It is known that in the process of
manufacturing using AM technologies, the material may have anisotropy of properties
with respect to the material deposition direction [23]. For the practical use of such materials,
it is important to be aware of their anisotropy including that of their mechanical properties.
In the present paper, the shock-wave loading experiments were carried out on the alloy
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samples along and across the deposition direction as shown in Figure 2. The scheme of the
experiments is also shown there.
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Compression shock waves were generated in the samples under study when the
samples collided with 0.1–0.5 mm thick copper impactors accelerated with a 50 mm PP50
pneumatic gun to a velocity of 340 ± 10 m/s, or with 0.4 mm thick aluminum impactors
accelerated using special explosive devices [30] to a velocity of 650 ± 30 m/s. The values of
the Hugoniot elastic limit and spall strength of the samples under study were determined
from the analysis of the velocity profiles of the free surface of the samples. The velocity
was continuously recorded during sample loading using a VISAR laser Doppler interfero-
metric velocimeter (Federal Research Center of Problems of Chemical Physics and Medical
Chemistry RAS, Chernogolovka, Russia) [31] with a high spatial and temporal resolution.
To prevent impactor bending during its acceleration in the gun barrel, the impactor was
mounted on a 5 mm thick polymethyl methacrylate substrate with a minimal gap. The
substrate was glued to the end of a hollow projectile, a cylinder 50 mm in diameter and
100 mm in length made of D16 grade duralumin. The impactor throwing velocity was
measured using electrical contact sensors (pins). The gun barrel and the space around the
sample were vacuumized before the experiment. Figure 3 shows visual appearance of the
air gun. All the experiments were performed at room temperature.
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3. Results and Discussion

Figure 4 shows the velocity profiles of the free surface of samples of the 95% Inconel
625 + 5% NiTi–TiB2 alloy fabricated in the course of experiments with a light gas gun when
loading samples along (a) and across (b) the deposition direction.
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in the experiments with samples loaded along (a) and across (b) the deposition direction.

The wave profiles obtained demonstrate all the features of shock-wave deformation
and spall fracture of the samples. The wave front is a two-wave configuration associated
with an elastic–plastic transition in the compression wave. The elastic precursor wave
propagates ahead of the plastic compression wave with a velocity approximately equaling
the longitudinal sound speed. A smooth increase in the parameters between elastic and
plastic waves is associated with stress relaxation and strain hardening of the material [32].
In the plastic compression wave, the substance acquires maximum velocity. The stress
that corresponded to the Hugoniot elastic limit of the material σHEL is calculated from
the amplitude of the elastic compression wave uHEL as σHEL = ρ0CluHEL / 2, where uHELis
the maximum surface velocity on the elastic compression wave and Cl is the longitudinal
sound speed.

Maximum shock wave compression pressure was determined as Pmax = ρ0 USumax
where ρ0 is the sample density, US is the shock wave velocity and umax = Wmax/2 is the
particle velocity at profile peak. The shock adiabat for calculating the maximum pressure
was taken from [27] for Inconel 625 as linear relations US = 4.497 + 1.61up (for loading
across the deposition direction) and US = 4.502 + 1.55up (for loading along the deposition
direction) assuming that the adding 5% of the NiTi–TiB2 dopant will not cause a noticeable
error in the calculations. The estimated error associated with the use of adiabats in this
form does not exceed 1%, which is somewhat less than the measurement error.

Behind the shock wave, a rarefaction wave emerges on the surface of the sample,
reducing its velocity. The first velocity minimum moment in time corresponds to the
formation of a spall crack inside the sample when tensile stresses exceeding the strength of
the sample are generated inside the sample due to the interaction of the rarefaction waves,
one of which is the incident wave and the other one is reflected from the free surface [30].
At the moment of spallation, tensile stresses relax from a value equal to the critical tensile
stresses (i.e., the spall strength of the material) to zero, which results in the formation of a
weak compression wave (the spall pulse). The value of the decrease in the surface velocity
∆ufs (Figure 4) from its maximum to the first minimum before the front of the spall pulse is
proportional to the spall strength of the material σsp. In a linear approximation, the spall
strength is defined as σsp = 1/2ρ0Cb(∆ufs + δ) where δ is the correction for the velocity
profile distortion caused by the difference in the velocity of the spall pulse front Cl and the
velocity of the plastic part of the incident unloading wave in front of it moving with the
bulk speed of the sound (Cb) [33].

Spall pulse reverberations in the spall plate cause surface velocity oscillations which
are recorded on the profile as decay velocity oscillations. From the time of a single oscil-
lation of the spall pulse ∆t (Figure 4) in the spall plate, we can determine its thickness as
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hsp= Cl∆t/2. The strain rate of the material before spalling is actually the rate of expansion
of the substance in the rarefaction wave and it equals to:

.
V
V0

= −
.
u f sr

2cb

where
.
u f sris the decay rate of the free surface velocity in the unloading wave before spalling

as determined from the wave profile.
Figures 5 and 6 show the results of processing the wave profiles shown in Figure 4 as

a dependency of the Hugoniot elastic limit vs. the distance traveled by the elastic wave
and the dependency of the spall strength vs. the strain rate. For the sake of comparison,
the Figures 5 and 6 also show values of the strength characteristics of a pure AM Inconel
625 alloy obtained under the similar loading conditions [27]. The experimental conditions
and calculated strength characteristics are shown in Table 1.
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3 1.06 0.26 165 305 5.95 26 0.72 2.96 5.0 × 105 95 0.27 

4 * 2.0 0.44 196 320 6.26 19 0.45 2.63 1.6 × 105 212 0.6 
Across the deposition direction 

5 0.22 0.09 144 364 7.18 54 1.24 4.51 1.4 × 106 40 0.11 
6 0.50 0.19 168 331 6.5 52 1.20 3.58 7.7 × 105 82 0.23 
7 1.02 0.5 154 338 6.64 33 1.77 3.82 4.5 × 105 109 0.3 

8 * 2.0 0.43 160 334 6.56 19 0.44 3.72 2.2 × 105 214 0.6 
* explosive experiments where the velocity of an aluminum impactor was 650 ± 30 m/s 
[30]. 

As seen from Figure 5, the Hugoniot elastic limit of the composite alloy decreases 
noticeably as the elastic wave propagates through the sample. For thin samples, there is a 
significant difference in its value, which is up to 25%, depending on the loading condi-
tions, while for thicker samples it is practically absent. It means that in the experiments 
with thin samples, the composite alloy demonstrates noticeable anisotropy of the Hu-
goniot elastic limit. Overall attenuation of the elastic precursor wave and, accordingly, a 
decrease in the Hugoniot elastic limit of this alloy in this range of sample thicknesses 
reaches 75% in experiments with samples loaded along the deposition direction and up 
to 65% when the samples were loaded across it. It should be noted that under the same 
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Figure 6. Dependency of the spall strength of the 95% Inconel 625 + 5% NiTi–TiB2 AM alloy on the
strain rate before spalling. The data for pure Inconel 625 alloy were taken from [27].
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Table 1. The conditions and results of the experiments carried out with a PP50 pneumatic gun, and
the results of wave profiles processing. Here hvl is the sample thickness; himp is the thickness of the
impactor; Wmin is the surface velocity before spalling; Wmax is the maximum surface velocity; Pmax is
the maximum shock compression pressure; uHEL is the elastic precursor wave amplitude; σHEL is the
Hugoniot elastic limit; σsp is the spall strength;

.
V/V0 is the strain rate in the rarefaction wave, ∆t is

the time of a single spall pulse oscillation; hsp is the spall plate thickness.

No Hvl,
mm

Himp,
mm

Wmin,
m/s

Wmax,
m/s

Pmax,
GPa

uHEL,
m/s

σHEL,
GPa

σsp,
GPa

.
V/V0

∆t,
ns

hsp,
mm

Along the deposition direction

1 0.19 0.09 112 329 6.45 71 1.69 4.33 1.3 × 106 35 0.1

2 0.49 0.19 153 323 6.32 67 1.59 3.67 7.1 × 105 91 0.25

3 1.06 0.26 165 305 5.95 26 0.72 2.96 5.0 × 105 95 0.27

4 * 2.0 0.44 196 320 6.26 19 0.45 2.63 1.6 × 105 212 0.6

Across the deposition direction

5 0.22 0.09 144 364 7.18 54 1.24 4.51 1.4 × 106 40 0.11

6 0.50 0.19 168 331 6.5 52 1.20 3.58 7.7 × 105 82 0.23

7 1.02 0.5 154 338 6.64 33 1.77 3.82 4.5 × 105 109 0.3

8 * 2.0 0.43 160 334 6.56 19 0.44 3.72 2.2 × 105 214 0.6

* explosive experiments where the velocity of an aluminum impactor was 650 ± 30 m/s [30].

As seen from Figure 5, the Hugoniot elastic limit of the composite alloy decreases
noticeably as the elastic wave propagates through the sample. For thin samples, there is a
significant difference in its value, which is up to 25%, depending on the loading conditions,
while for thicker samples it is practically absent. It means that in the experiments with
thin samples, the composite alloy demonstrates noticeable anisotropy of the Hugoniot
elastic limit. Overall attenuation of the elastic precursor wave and, accordingly, a decrease
in the Hugoniot elastic limit of this alloy in this range of sample thicknesses reaches
75% in experiments with samples loaded along the deposition direction and up to 65%
when the samples were loaded across it. It should be noted that under the same loading
conditions (sample thickness), the value of the Hugoniot elastic limit measured for pure
Inconel 625 alloy [27] exceeds this value measured for the 95% Inconel 625 + 5% NiTi–TiB2
composite alloy by about 2.5 times.

An analysis of the measurement results of the strength characteristics of the investi-
gated alloy in the conditions of spall fracture (Figure 6) shows that critical fracture stresses
(i.e., spall strength) strongly depend on the rate of material strain before fracture. Critical
fracture stresses in this range of strain rates increased by up to 40% when the samples were
loaded along the deposition direction and they increased by almost 20% when loading
across it. It can be seen from the figure that at strain rates below 5 × 105 c−1, strong
anisotropy of spall strength relative to the deposition direction is observed, and the dif-
ference in fracture stresses may reach 30%. However, at high strain rates, anisotropy is
virtually the same within the measured values scatter for both sample types. The absence
of strength anisotropy at high strain rates is explained by the fact that under these condi-
tions, smaller structural defects become the initiators of spall fracture (i.e., tensile stress
concentrators) and those are distributed more uniformly within the sample volume and
independently of the material texture shaped by the fabrication process. The values of
spall strength for pure Inconel 625 alloy [27] obtained for similar loading conditions are
also provided here. It can be seen that fracture spall stresses realized in a pure material do
not depend on the loading conditions (load direction) and exceed those measured for the
composite alloy by 15–40%, depending on the loading direction.
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4. Conclusions

Shock wave experiments performed to measure the strength characteristics of a pure
high-temperature Inconel 625 alloy and a composite alloy based thereon and consisting of
95% Inconel 625 + 5% NiTi–TiB2 have produced the following conclusions:

- unlike pure alloy, the 95% Inconel 625 + 5% NiTi-TiB2 composite alloy demonstrates
anisotropy of strength characteristics depending on the direction of material deposition;

- the Hugoniot elastic limit and spall strength of pure Inconel 625 alloy are significantly
higher than those measured under the same loading conditions for the composite alloy;

- critical fracture stresses and Hugoniot elastic limit of both alloys do not depend on
the intensity of shock compression;

- the spall strength of the composite alloy increases with an increase in the strain rate
before fracture, and the Hugoniot elastic limit decreases as the elastic compression
wave propagates within the sample, regardless of the loading conditions relative to
the sample texture.
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