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Introduction

In this paper, the potential method [1, 2] which was popular in Russia in 1920s—
1960s, is used for finding the solution of the problem indicated in the heading. As far as
the author knows, the problem has no analytical solution [3—10]. The main results of [1]
in a brief presentation with modern notation are given in the first section [11]. Some
comments about the method will be made in conclusion.

1. Newtonian potential equal to a constant inside
of a simply connected three-dimensional domain

A Newtonian source 1/r(p,q), where r(p,q) is the distance between the points

a(y,, Yy, ¥s) and p(x,%,,%;) , r= 1}23(& —v,)? , is a harmonic function of p in the

space R®, with the exception of the point of source g, that is, in p e R*\{q}. The
function
_ o(a)

V(p,g) = jr(pq) o 1)
where ¢ is the density function and S is a two-dimensional surface in R?, is commonly
referred as a Newtonian potential of the simple layer [1, 2]. If S is the boundary of
a simply connected domain @, (1) is a harmonic function in ® or in R*\@. The poten-
tial (1) has the limit values of the normal derivative of external normal n_ at the point

peS, SeC,, from the inside (index plus) and from the outside (index minus) of the

domain ®:
oV (p,o) o(q)
{—an } =+o(p) + Lan [r(p’q)jdsq, @

p

where the integral is singular and exists in the sense of the principal value.

The potential (1) satisfies the condition of radiation; therefore, the representation
of a harmonic function in R*\® obtained by use of it and satisfying the condition of
radiation is unique. As the integral in (1) has a weak singularity, (1) is a continuous

function in R?; therefore, the representation by the potential (1) of a harmonic function
in ® is also unique because any unique representation (1) of a solution of the

Dirichlet problem in R*\® corresponds with unique representation (1) of a solution of
the Dirichlet problem in ® with the same boundary values on S.

Therefore, there is the unique function oo, L(pédS =1, at which the potential (1)

V(p,9p,) isequal to a constant inside of the simply connected domain with the boundary
S €C,. In the general case, the form of o is not known; in the particular case, when S
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is the surface of a full sphere, ¢o is a constant co, easily calculated through the value
of the potential in the center of the full sphere:

2Rc, | 3

where R is the radius.
The expressions (4) follow from (2).

Vo) | o [ave)| -
{T} =0, {T} =20 )

p P

a C

Fig. 1. Definition of the harmonic function of the difference of two potentials

If we consider the harmonic function defined by the difference of two potentials (1)
in which one of them is specified on the smooth boundary of a simply connected do-
main and the other is specified on the surface of the full sphere located inside of this
domain, when both potentials are equal to the same constant inside this domain and
inside this full sphere, we obtain the limit expressions of the normal derivative from
outside of the domain at the point N (Fig. 1a):

—2¢,(N)+2c, 20, (5)
since the harmonic function outside the domain has the smallest values equal to zero at
the tangency point N and at the infinitely distant boundary.

Indeed, the potential (1) with density ¢ =c,, ¢, >0, specified at the full sphere’s

boundary, is equal inside the full sphere to the value in the center (3), and monotonically
decreases to zero from the boundary of this full sphere towards any infinitely distant
point. Therefore, at all points of the boundary of the domain (Fig. 1a), with the excep-
tion of the point N, the values of the potential specified on the boundary of the full
sphere are less than (3) but larger than zero, and at the point N the value is equal to (3).
Therefore, taking into account (4), condition (5) is satisfied since the difference of the
potentials on the boundary of the domain is greater than zero or equal to it and at the
infinitely distant boundary is zero, and this difference, being a harmonic function
outside the domain, reaches the maximum and minimum values at the boundary of
the definitional domain and cannot have negative values. Therefore, the limit value
of the normal derivative of the potential’s difference at the point N from outside of the
domain (Fig. 1a) cannot be negative (5).

Let us increase the radius of the full sphere so that the tangency at the point N
is preserved and the potential specified at its boundary is equal to the same constant

inside the full sphere. Then, the value of C, will decrease inversely to the ratio of current

and original radiuses (3), the second item of the sum (5) will decrease. Starting with
a certain value of the radius, inequality (5) will cease to be satisfied. This is possible if

30



Trubaev N.A. Solution of the parameter problem of the Schwarz-Christoffel conformal mapping

the full sphere ceases to be completely located in the domain (Fig. 1c), the potential’s
difference will have negative values on the boundary of the union of the domain and
the full sphere at the points of the full sphere outside of the domain. Therefore, for the
inscribed full sphere the inequality (5) goes over into the equality (Fig. 1b). By this
equality we can determine o through sequentially inscribing of a full sphere at a point
of the boundary of the domain, by the value of the radius of the inscribed full sphere
and the value of the given constant equal to the potentials.

The given algorithm for determining the values of ¢o for a simply connected do-
main with a smooth boundary, S € C,, can be used for a piecewise-smooth boundary as

it is applicable in the process of approach of rounding radius at unregular (angular)
points of a piecewise-smooth boundary to zero. The potential obtained in this way will
be equal to a given constant at all points of the simply connected domain with a piece-
wise-smooth boundary but will not have representation (1) at some irregular points
of the boundary, at which the integral in (1) diverges due to the presence of singularity
of the @o. (Since the values of oo are inversely proportional to the radius of the in-
scribed full sphere, | @, |> o, if the radius tends to zero. At some such points, the de-
gree of singularity of ¢o allows us to calculate (1).)

(The function o is used in physics. If we will locate the electrical charges interact-
ing according to Coulomb’s law on an electric conductor, they will be distributed on
the surface of the electric conductor in accordance with the density ¢o with an accuracy
to a coefficient, generating a constant electrical potential inside the conductor. The
analysis carried out in this section shows that the electric charges on the electrical con-
ductor occupying a simply connected domain with a piecewise smooth boundary S

in vacuum cannot be in a stable state if there is no integral Is¢o(p)d3p (if it diverges).

They will flow out from the conductor until the total amount of the charges will be zero.)

2. Logarithmic potential equal to a constant inside
of a simply connected two-dimensional domain

The algorithm given in the previous section for the Newtonian potential in the
three-dimensional case cannot be repeated for the logarithmic potential (6) because it
does not satisfy the radiation condition in the two-dimensional case and does not ap-
proach zero at the infinitely distant boundary:

V(p,cp):%jsln( :

r(p,a)
where r(p,q) is the distance between the points q(y,,y,) and p(x,X,), r = 4/25(& -2

Let us use the three-dimensional problem for generalization for the two-dimensional
problem. Since the potential V (p,,) is equal to a constant inside of the simply con-
nected domain, the section of a body elongated along the axis x, with a constant cross
section corresponds to the two-dimensional problem in the plane Ox x, (Fig. 2).

Let us consider the integration element of the infinitely elongated domain with a
constant cross section (Fig. 2):
dS,, = r(p,q)da./cos(a)dL. (7)

}P(Q)dsq, (6)
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Let the point p(z,2,,0) be the observation point, q(y,,y,,y,) be the integration
point, a(a,,a,,a,) be the difference of coordinates: a =z -y, i=1,23, and
d, (yl, y,,0) be the intermediate point (Fig. 3). In Fig. 3, dL is the element of integration

along the perimeter of the cross section in Ox,x, . The angle a is located in a plane paral-
lel to the axis x, passing through the points p,q and is measured from the plane Ox,x, .

Fig. 2. Domain elongated along the axis x, with a constant cross section

Let us consider expression (2) equal to a zero constant in the domain (Fig. 2). Since
the values of ¢o found by the algorithm described in the previous section are the same
in each transverse section, parallel to the plane Oxx,, far from the L-shaped ends,

and the influence of the integrals of L-shaped ends at the points of the plane Oxx,
approaches zero at the approach of the extended along Ox, size infinity, we can con-

sider expression (2) for the potential equal to a constant inside the domain (Fig. 2),
when its size extended along the axis x, approaches infinity. In this expression, the

integral over the surface extended along the axis x, will remain only, let us denote this
surface as S, the integrals of the L-shaped ends will become zero.

X2

Fig. 3. Element of integration dS,, =r(p,q)do./ cos(c)dL
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The expression corresponds to the element of integration over the infinite surface
S, of the domain infinitely extended along the axis x, (Fig. 2):

0 [ 0,(a) _ an +an —
_[Wjds” " K Py cos(a) V4
- (a,n, +a,n,)cos(ar)
r(p.q,)’
where (7) and the equality r(p,q) =r(p,q,)/cos(a) are taken into account (Fig. 3).

¥, (0, )dadL,

(When the points p and q are located on the straight line parallel to Ox, , their two other

coordinates coincide, and the expression in the brackets is equal to zero, hence the con-
tribution to the integral sum is zero.) Therefore, the integral in (2) on the infinite
surface S, infinitely extended along the axis x, (Fig. 2) is equal to

0 [ 9(a) g (3N +a,n,)cos(a) _
ISB 6!’1 [r(p,q)) 3q 77(/2-'. r(p,q )2 (Po(qp)dl—da

= _sin(a) |72 [ &Mt 3N — _of &M +an, L )
1% | oy @ j (poay 7o) ®

It is easy to see that the last expression (8) coincides with the expression of the
integral of the normal derivative of the logarithmic potential (6). Thus, in the limit, we
have received the expressions of the limiting values of the normal derivative of the
logarithmic potential (6) at the boundary of the two-dimensional domain, which coin-
cides with the cross section of the three-dimensional domain (Fig. 2):

Javipe) | _[aVipo) ] _ 0 1
J;EIL{ on }{ on, } ST, In[r(pq)]%(q)

p

an +a,n,
nt r(p,q,)’

where the integral exists in the sense of the principal value at the points on the smooth
parts of a piecewise-smooth boundary (the calculation of the summand outside the in-

= +<Po(p)— ®o(a,)dL, 9)

tegral in (9) is similar to the calculation of (p(p).[ dx, in[12, p. 70]), that is,
T

le d2

NG| . [Vpe) ] _
o[

p
Since (10) were obtained by generalization of the three-dimensional case, the potential
equal to a constant inside a simply connected two-dimensional domain has no represen-
tation (6) at some irregular points of the two-dimensional boundary where | @, > «.
Thus, in the two-dimensional case, we can use the algorithm for finding the density
function ¢q of the logarithmic potential \7(p,(po) (6), equal to a constant inside of the
two-dimensional simply connected domain with a piecewise-smooth boundary, similar

to finding @o in the three-dimensional case; instead of inscribed full spheres, we have
to use inscribed circles.
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3. Conformal mapping of the interior (exterior)
of a circle onto the interior (exterior) of a polygon

Conformal mapping of the interior (exterior) of a circle onto the interior (exterior)
of a polygon can be performed by the function [5, p. 179]

w(2)=C[ (z-e)" " (z-¢,) %™ ...(z-¢,) " Vdz+Cy, (11)
%

where {(k are the interior (exterior) angles of the corners of the polygon measured
in radians divided by &, 0 < §,k <2; e are the points of the unit circle corresponding
to the vertices of the polygon, |,/ =1;and z,, C, C. are some constants.

In (9), from the equality of the derivative of the Newtonian potential to zero in the
limiting case the equality to zero of the derivative of the logarithmic potential follows;
however, we do not know the value of constant to which the logarithmic potential with
the density o is equal inside of the two-dimensional simply connected domain of
the cross section (Fig. 2). If we set the logarithmic potential with the unit density at
the boundary of a unit circle, equal to its value in the center, inscribed in the domain
of the form of a polygon with rounded corners (Fig. 4), and require that the logarithmic
potential specified on the boundary of this domain has to be equal to the same constant,
the densities of these potentials at the tangent point will not coincide. That is, the densi-
ty of the potential ¢o on the boundary of the domain at the tangent point will differ
from the unit density at the boundary of the circle by the coefficient k. At a different
point of the boundary of the domain (Fig. 4), ¢o will be equal to /R, where R is the
radius of the inscribed circle at this point.

//.\\ /'—\\
/ -

|/ S / \\

\ . e
\I“ //

)

N

Fig. 4. Polygon with rounded corners

If we obtain the conformal mapping of the interior of the unit circle (Fig. 4) onto
the interior of the domain (Fig. 4), the sources of the logarithmic potential at the
boundary of the circle will be distributed along the boundary of the domain and generate
inside the domain the same constant potential. The total amount of the sources before
and after the mapping will be equal to 2x. That is,

J ) K _r2n _
jo%(q)qu =, mcqu = jo do = 27,
where J is the perimeter of the boundary of the domain. This corresponds to the re-
placement of the integration variable:

dL, =mda.

K
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Consequently,
g (12)
[ = a’
°R(@) *
where L is the distance along the boundary of the considered simply connected domain,
a is the angle of the sector of the unit circle corresponding to L before the mapping, and
k=2n/ ’ LdL .
°R(@) "

Let the boundary of the domain (Fig. 4) be divided into N elements with the begin-
ning and the end in the middles of the adjacent polygon legs (N is equal to the number
of vertices of the polygon). Thus, the element with the number i corresponding to the
contour AABC,C of the polygon legs adjacent at the angle B, with the length L, (Fig. 5)

corresponds to the integral

D = Liiqu =Gi+8, — 1 [In(E]+In[bﬁB+ 8.V, +(1-3,)9;,
° R(q) sin(B, / 2)cos(B; / 2) a a

o =1 , - <,
where < ' Pr<m

5 =0 , B >m
the first summand c; is the value of the integral over the arc ABC, (if B, <m, ci= B:);
the second summand is the value of the integral over the parts of the segments of
straight lines [AA], [C,C], having symmetric by B, part of the segment of the straight

line on the adjacent polygon leg: bi < b, , biz < b, (Fig. 5); the third summand v, is
the value of the integral over the part of [AA] or [C,C] for which there is no the
symmetric by B, part of the straight line on the adjacent polygon leg?; the fourth sum-
mand is the value of the integral over [AA] and [C/C] in the case 3> rt; the value

of a is assumed to be the same for all elements.
Indeed, if the segment [AA] has a symmetric segment on the adjacent polygon leg

A

bi =b, (Fig. 5), it corresponds to the integral [13, p. 253-254] in the local coordinate
system (Fig. 6):
| " (x,y(00) (1+ y'(x)z)% dx = ! in[ 22, (13)
a sin(B; / 2)cos(B; / 2) a
where y(x) is the equation of the line [AA]: y(X) =tan(B; / 2)x ;
1 1
f(x,y(x))= = :
(Y09 = Ra) ™ SinGp, 7 2)x
The expression for [C,C] is similar to (13), where bu is replaced by biz, biz < b.,
(Fig. 5).

! For the case shown in Fig. 5, the third summand is equal to zero. The third summand is larger
than zero, for example, if the half of the length of one of the two considered adjacent polygon
legs is larger than the length of the other.
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2bi1

Fig. 5. The line AABC,C of the boundary of the polygon with rounded corners.

yl
bi1

a
A

A14

Fig. 6. The integration over the line AA .

X
—

We get the coefficient « = 2n/ZT:1Dj, and the value of the angle of the unit
circle (12) corresponding to the line AABC,C is a;, =«D, .
Let us consider the limit expression for o, when a — 0. Since at this approach

In(1/a) > and the values of ci, In(b.l) In(b.z) dv,, (1-98,)g, are finite, we
obtain

- . D 8, 1
o, =limoy = lim——2n =

mo Sy =2 sin(B, / 2) cos(p, / 2) Z Vsin(B; /2)cos(B; /2)’

N
Yo, =2m & >0 if B <m & =0 if g, >n

i=1
As the integral (13) and the similar integral for bio at B, <m approach the same

value tending towards infinity as a— 0 when the rest summands in the expression
of D, are finite, the angular coordinates in radians on the unit circle correspond to the

vertices of the polygon before the mapping:
Y= /2, =, t+0, /2+6,/2, 2<i<N.
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These coordinates y; are the parameters of the Schwarz—Christoffel integral (11).
Since we know these parameters, we can easily determine the values of the constants
Z,, C, Ci. Thus, the parameter problem of the conformal mapping of the interior
(exterior) of a circle onto the interior (exterior) of a polygon is solved.

Conclusion

The paper presents the solution by the method of potential of the parameter problem
of the conformal mapping of the interior (exterior) of a circle onto the interior (exterior)
of a polygon which has been sought for more than 150 years. This solution for the first
time was published in [14] and discussed in [15].

The primary formulation of the potential method is given in the works of
A.M. Lyapunov (1857-1918) [16]. It was created with the aim of finding the condi-
tions for existence and uniqueness of solutions of the Dirichlet and Neumann problems,
there was no purpose to solve the problems numerically at that time. Therefore, the
restrictions that the considered boundary conditions have to be the Dirichlet conditions
or the Neumann conditions on a smooth boundary of a simply connected domain
seemed not very rigid. With the advent of available computers, these conditions have
become too rigid for numerical calculations in which the boundary conditions are
usually mixed, and the greatest interest is the calculations of the points in which the
gradient of the required solution has a singularity — irregular points of a piecewise-
smooth boundary and points at which the boundary conditions change their type. In the
two-dimensional case, these points could be considered by mapping of the solution for
a half-plane onto a wedge; in the three-dimensional case, there was no such algorithm.
This led to a gradual extinction of interest in the potential method as a numerical tool.

The paper [12] contains the previously unknown form of a harmonic function
in spherical coordinates and its representation by the potentials of a double or simple
layer, which allows us to use the potential method for numerical calculations of the
Dirichlet, Neumann, and mixed Dirichlet-Neumann problems on a piecewise-smooth
boundary. That is, the main drawback of the traditional formulation of the method is
eliminated. The author hopes to show that other reasons of unpopularity of the potential
method can be eliminated also.
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