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Introduction 

 

In this paper, the potential method [1, 2] which was popular in Russia in 1920s–

1960s, is used for finding the solution of the problem indicated in the heading. As far as 

the author knows, the problem has no analytical solution [3–10]. The main results of [1] 

in a brief presentation with modern notation are given in the first section [11]. Some 

comments about the method will be made in conclusion. 

 

1. Newtonian potential equal to a constant inside  

of a simply connected three-dimensional domain 

 

A Newtonian source 1/ ( , )r p q , where ( , )r p q  is the distance between the points 

1 2 3( , , )q y y y  and 1 2 3( , , )p x x x  , 
3 2

1
= ( )i ir x y , is a harmonic function of p in the 

space 3 , with the exception of the point of source q, that is, in 3 \{ }p q . The 

function 

 
1 ( )

( , ) = ,
2 ( , )

q
S

q
V p dS

r p q




 
 (1) 

where φ is the density function and S is a two-dimensional surface in 3 , is commonly 

referred as a Newtonian potential of the simple layer [1, 2]. If S is the boundary of  

a simply connected domain Θ, (1) is a harmonic function in Θ or in 3 \ . The poten-

tial (1) has the limit values of the normal derivative of external normal 
pn  at the point 

p S , 1S C , from the inside (index plus) and from the outside (index minus) of the 

domain Θ:  

 
( , ) 1 ( )

( ) ,
2 ( , )

q
S

p p

V p q
p dS

n n r p q



      
     

      
  (2) 

where the integral is singular and exists in the sense of the principal value. 

The potential (1) satisfies the condition of radiation; therefore, the representation  

of a harmonic function in 3 \  obtained by use of it and satisfying the condition of 

radiation is unique. As the integral in (1) has a weak singularity, (1) is a continuous 

function in 3 ; therefore, the representation by the potential (1) of a harmonic function 

in Θ is also unique because any unique representation (1) of a solution of the  

Dirichlet problem in 3 \  corresponds with unique representation (1) of a solution of 

the Dirichlet problem in Θ with the same boundary values on S. 

Therefore, there is the unique function φ0, 
2

0 =1
S

dS  , at which the potential (1) 

0( , )V p   is equal to a constant inside of the simply connected domain with the boundary 

1S C . In the general case, the form of φ0 is not known; in the particular case, when S 
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is the surface of a full sphere, φ0 is a constant c0, easily calculated through the value  

of the potential in the center of the full sphere:  

 0
ˆ2 ,Rc  (3) 

where R̂  is the radius. 

The expressions (4) follow from (2).  

 0 0

0

( , ) ( , )
= 0,  = 2 .

p p

V p V p

n n

 

      
    

       

 (4) 

 

 
a                            b                            c 

Fig. 1. Definition of the harmonic function of the difference of two potentials 

 

If we consider the harmonic function defined by the difference of two potentials (1) 

in which one of them is specified on the smooth boundary of a simply connected do-

main and the other is specified on the surface of the full sphere located inside of this 

domain, when both potentials are equal to the same constant inside this domain and 

inside this full sphere, we obtain the limit expressions of the normal derivative from 

outside of the domain at the point N (Fig. 1a): 

 0 02 ( ) 2 0,N c     (5) 

since the harmonic function outside the domain has the smallest values equal to zero at 

the tangency point N and at the infinitely distant boundary. 

Indeed, the potential (1) with density 0= c , 0 > 0c , specified at the full sphere’s 

boundary, is equal inside the full sphere to the value in the center (3), and monotonically 

decreases to zero from the boundary of this full sphere towards any infinitely distant 

point. Therefore, at all points of the boundary of the domain (Fig. 1a), with the excep-

tion of the point N, the values of the potential specified on the boundary of the full 

sphere are less than (3) but larger than zero, and at the point N the value is equal to (3). 

Therefore, taking into account (4), condition (5) is satisfied since the difference of the 

potentials on the boundary of the domain is greater than zero or equal to it and at the 

infinitely distant boundary is zero, and this difference, being a harmonic function  

outside the domain, reaches the maximum and minimum values at the boundary of  

the definitional domain and cannot have negative values. Therefore, the limit value  

of the normal derivative of the potential’s difference at the point N from outside of the 

domain (Fig. 1a) cannot be negative (5). 

Let us increase the radius of the full sphere so that the tangency at the point N  

is preserved and the potential specified at its boundary is equal to the same constant 

inside the full sphere. Then, the value of 0c  will decrease inversely to the ratio of current 

and original radiuses (3), the second item of the sum (5) will decrease. Starting with  

a certain value of the radius, inequality (5) will cease to be satisfied. This is possible if 

N N N 
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the full sphere ceases to be completely located in the domain (Fig. 1c), the potential’s 

difference will have negative values on the boundary of the union of the domain and 

the full sphere at the points of the full sphere outside of the domain. Therefore, for the 

inscribed full sphere the inequality (5) goes over into the equality (Fig. 1b). By this 

equality we can determine φ0 through sequentially inscribing of a full sphere at a point 

of the boundary of the domain, by the value of the radius of the inscribed full sphere 

and the value of the given constant equal to the potentials. 

The given algorithm for determining the values of φ0 for a simply connected do-

main with a smooth boundary, 1S C , can be used for a piecewise-smooth boundary as 

it is applicable in the process of approach of rounding radius at unregular (angular) 

points of a piecewise-smooth boundary to zero. The potential obtained in this way will 

be equal to a given constant at all points of the simply connected domain with a piece-

wise-smooth boundary but will not have representation (1) at some irregular points  

of the boundary, at which the integral in (1) diverges due to the presence of singularity 

of the φ0. (Since the values of φ0 are inversely proportional to the radius of the in-

scribed full sphere, 0| |  , if the radius tends to zero. At some such points, the de-

gree of singularity of φ0 allows us to calculate (1).) 

(The function φ0 is used in physics. If we will locate the electrical charges interact-

ing according to Coulomb’s law on an electric conductor, they will be distributed on 

the surface of the electric conductor in accordance with the density φ0 with an accuracy 

to a coefficient, generating a constant electrical potential inside the conductor. The 

analysis carried out in this section shows that the electric charges on the electrical con-

ductor occupying a simply connected domain with a piecewise smooth boundary S  

in vacuum cannot be in a stable state if there is no integral 
0 ( ) p

S
p dS  (if it diverges). 

They will flow out from the conductor until the total amount of the charges will be zero.) 

 

2. Logarithmic potential equal to a constant inside  

of a simply connected two-dimensional domain 

 

The algorithm given in the previous section for the Newtonian potential in the 

three-dimensional case cannot be repeated for the logarithmic potential (6) because it 

does not satisfy the radiation condition in the two-dimensional case and does not ap-

proach zero at the infinitely distant boundary:  

 
1 1

( , ) = ln ( ) ,
( , )

q
S

V p q dS
r p q

 
  

  
  (6) 

where ( , )r p q  is the distance between the points 1 2( , )q y y  and 1 2( , )p x x , 
2 2

1
= ( ) .i ir x y  

Let us use the three-dimensional problem for generalization for the two-dimensional 

problem. Since the potential 0( , )V p   is equal to a constant inside of the simply con-

nected domain, the section of a body elongated along the axis 3x  with a constant cross 

section corresponds to the two-dimensional problem in the plane 1 2Ox x  (Fig. 2). 

Let us consider the integration element of the infinitely elongated domain with a 

constant cross section (Fig. 2):  

 
3 = ( , ) / cos( ) .qdS r p q d dL   (7) 
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Let the point  1 2, ,0p z z  be the observation point,  1 2 3, ,q y y y  be the integration 

point,  1 2 3, ,a a a a  be the difference of coordinates: =i i ia z y , =1,2,3i , and 

 1 2, ,0pq y y  be the intermediate point (Fig. 3). In Fig. 3, dL is the element of integration 

along the perimeter of the cross section in 1 2Ox x . The angle α is located in a plane paral-

lel to the axis 3x  passing through the points ,p q  and is measured from the plane 1 2Ox x . 

 

 

Fig. 2. Domain elongated along the axis 
3x  with a constant cross section 

 

Let us consider expression (2) equal to a zero constant in the domain (Fig. 2). Since 

the values of φ0 found by the algorithm described in the previous section are the same 

in each transverse section, parallel to the plane 1 2Ox x , far from the L-shaped ends,  

and the influence of the integrals of L-shaped ends at the points of the plane 1 2Ox x  

approaches zero at the approach of the extended along 3Ox  size infinity, we can con-

sider expression (2) for the potential equal to a constant inside the domain (Fig. 2), 

when its size extended along the axis 3x  approaches infinity. In this expression, the 

integral over the surface extended along the axis 3x  will remain only, let us denote this 

surface as 3S , the integrals of the L-shaped ends will become zero. 
 

 

Fig. 3. Element of integration 3 = ( , ) / cos( )qdS r p q d dL   

x1 
x3 

x2 

x1 

x3 

x2 

q 

qp 
α p 
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The expression corresponds to the element of integration over the infinite surface 

3S  of the domain infinitely extended along the axis 
3x  (Fig. 2):  

0 1 1 2 2

3 02

( )
= ( ) =

( , ) ( , ) cos( )
q

p

q a n a n
dS q d dL

n r p q r p q

  
   

  
 

1 1 2 2

02

( )cos( )
= ( ) ,

( , )
p

p

a n a n
q d dL

r p q

 
    

where (7) and the equality ( , ) = ( , ) / cos( )pr p q r p q   are taken into account (Fig. 3). 

(When the points p and q are located on the straight line parallel to 3Ox , their two other 

coordinates coincide, and the expression in the brackets is equal to zero, hence the con-

tribution to the integral sum is zero.) Therefore, the integral in (2) on the infinite  

surface 3S  infinitely extended along the axis 3x  (Fig. 2) is equal to 

 / 2
0 1 1 2 2

3 02/2
3

( ) ( )cos( )
= ( ) =

( , ) ( , )
q p

S L
p p

q a n a n
dS q dLd

n r p q r p q





   
   

  
    

  / 2 1 1 2 2 1 1 2 2

/2 0 02 2
= sin( ) | ( ) = 2 ( ) .

( , ) ( , )
p p

L L
p p

a n a n a n a n
q dL q dL

r p q r p q





 
       (8) 

It is easy to see that the last expression (8) coincides with the expression of the  

integral of the normal derivative of the logarithmic potential (6). Thus, in the limit, we 

have received the expressions of the limiting values of the normal derivative of the 

logarithmic potential (6) at the boundary of the two-dimensional domain, which coin-

cides with the cross section of the three-dimensional domain (Fig. 2): 

 0 0

0 0

3

( , ) ( , ) 1 1
= = ( ) ln ( ) =lim

( , )
q

SS
p p p

V p V p
p q dS

n n n r p q

 



        
       

           
  

 1 1 2 2

0 02

1
= ( ) ( ) ,

( , )
p

L
p

a n a n
p q dL

r p q


  

 
 (9) 

where the integral exists in the sense of the principal value at the points on the smooth 

parts of a piecewise-smooth boundary (the calculation of the summand outside the in-

tegral in (9) is similar to the calculation of 12 2

1

( )

S
R

p d
dx

x d



   in [12, p. 70]), that is, 

 0 0

0

( , ) ( , )
= 0,  = 2 .

p p

V p V p

n n

 

      
    

       

 (10) 

Since (10) were obtained by generalization of the three-dimensional case, the potential 

equal to a constant inside a simply connected two-dimensional domain has no represen-

tation (6) at some irregular points of the two-dimensional boundary where 0| |  . 

Thus, in the two-dimensional case, we can use the algorithm for finding the density 

function φ0 of the logarithmic potential 0( , )V p   (6), equal to a constant inside of the 

two-dimensional simply connected domain with a piecewise-smooth boundary, similar 

to finding φ0 in the three-dimensional case; instead of inscribed full spheres, we have  

to use inscribed circles. 
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3. Conformal mapping of the interior (exterior)  

of a circle onto the interior (exterior) of a polygon 

 

Conformal mapping of the interior (exterior) of a circle onto the interior (exterior) 

of a polygon can be performed by the function [5, p. 179] 

 
( 1)( 1) ( 1)1 2

11 2
0

( ) = ( ) ( )  . . . ( ) ,
z

n
n

z
z C z e z e z e dz C

    
      (11) 

where k  are the interior (exterior) angles of the corners of the polygon measured  

in radians divided by π, 0 < < 2k ; ke  are the points of the unit circle corresponding 

to the vertices of the polygon, = 1ke ; and 10 , ,z C C  are some constants. 

In (9), from the equality of the derivative of the Newtonian potential to zero in the 

limiting case the equality to zero of the derivative of the logarithmic potential follows; 

however, we do not know the value of constant to which the logarithmic potential with 

the density φ0 is equal inside of the two-dimensional simply connected domain of  

the cross section (Fig. 2). If we set the logarithmic potential with the unit density at  

the boundary of a unit circle, equal to its value in the center, inscribed in the domain  

of the form of a polygon with rounded corners (Fig. 4), and require that the logarithmic 

potential specified on the boundary of this domain has to be equal to the same constant, 

the densities of these potentials at the tangent point will not coincide. That is, the densi-

ty of the potential φ0 on the boundary of the domain at the tangent point will differ 

from the unit density at the boundary of the circle by the coefficient κ. At a different 

point of the boundary of the domain (Fig. 4), φ0 will be equal to κ/R, where R is the 

radius of the inscribed circle at this point. 
 

 

Fig. 4. Polygon with rounded corners 
   

If we obtain the conformal mapping of the interior of the unit circle (Fig. 4) onto 

the interior of the domain (Fig. 4), the sources of the logarithmic potential at the 

boundary of the circle will be distributed along the boundary of the domain and generate 

inside the domain the same constant potential. The total amount of the sources before 

and after the mapping will be equal to 2π. That is,  

2

0
0 0 0

( ) = =  = 2 ,
( )

J J

q qq dL dL d
R q


      

where J is the perimeter of the boundary of the domain. This corresponds to the re-

placement of the integration variable: 

( )
= .q

R q
dL d


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Consequently,  

 
0

= ,
( )

L

qdL
R q


  (12) 

where L is the distance along the boundary of the considered simply connected domain, 

α is the angle of the sector of the unit circle corresponding to L before the mapping, and  

0

1
= 2 / .

( )

J

qdL
R q

    

Let the boundary of the domain (Fig. 4) be divided into N elements with the begin-

ning and the end in the middles of the adjacent polygon legs (N is equal to the number 

of vertices of the polygon). Thus, the element with the number i corresponding to the 

contour 1 1AA BC C  of the polygon legs adjacent at the angle i  with the length iL  (Fig. 5) 

corresponds to the integral 

1 2

0

1 1
= = ln ln

( ) sin( / 2)cos( / 2)

L i ii
ii q i

i i

b b
D dL c

R q a a

    
                 

 (1 ) ,i i i iv g    

where 
= 1 , < ,

= 0 , > ,

i i

i i

  

  

 

the first summand ic  is the value of the integral over the arc 1 1A BC  (if <i  , =i ic  ); 

the second summand is the value of the integral over the parts of the segments of 

straight lines 1 1[ ], [ ]AA C C , having symmetric by i  part of the segment of the straight 

line on the adjacent polygon leg: 1 1i ib b , 2 2i ib b  (Fig. 5); the third summand iv  is 

the value of the integral over the part of 1[ ]AA  or 1[ ]C C  for which there is no the 

symmetric by i  part of the straight line on the adjacent polygon leg1; the fourth sum-

mand is the value of the integral over 1[ ]AA  and 1[ ]C C  in the case >  ; the value  

of a is assumed to be the same for all elements. 

Indeed, if the segment 1[ ]AA  has a symmetric segment on the adjacent polygon leg 

1 1=i ib b  (Fig. 5), it corresponds to the integral [13, p. 253–254] in the local coordinate 

system (Fig. 6): 

   
1

1 12 2
1

, ( ) 1 ( ) = ln ,
sin( / 2)cos( / 2)

bi i

a
i i

b
f x y x y x dx

a

 
      

  (13) 

where ( )y x  is the equation of the line 1[ ]AA : ( ) = tan( / 2)iy x x  ; 

 
1 1

, ( ) = =
( ) sin( / 2)i

f x y x
R q x

. 

The expression for 1[ ]C C  is similar to (13), where 1ib  is replaced by 2ib , 2 2i ib b  

(Fig. 5). 

                                           
1 For the case shown in Fig. 5, the third summand is equal to zero. The third summand is larger 

than zero, for example, if the half of the length of one of the two considered adjacent polygon 

legs is larger than the length of the other. 
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Fig. 5. The line 
1 1AABC C  of the boundary of the polygon with rounded corners. 

 

Fig. 6. The integration over the line 
1AA . 

 

We get the coefficient 
=1

= 2 /
N

jj
D   , and the value of the angle of the unit  

circle (12) corresponding to the line 1 1AA BC C  is =i iD  . 

Let us consider the limit expression for i  when 0a . Since at this approach 

ln(1/ )a   and the values of 1 2, ln( ), ln( ), , (1 )i i i i i i ic b b v g    are finite, we  

obtain 

0 0 =1

=1

1
= =  2 = 2 / ,lim lim

sin( / 2)cos( / 2) sin( / 2)cos( / 2)

N
i i

i i jN
a a ji i j j

j

j

D

D
 


    

   



 

=1

= 2 , > 0
N

i i

i

    if < , = 0i i    if > .i   

As the integral (13) and the similar integral for 2ib  at <i   approach the same 

value tending towards infinity as 0a  when the rest summands in the expression  

of iD  are finite, the angular coordinates in radians on the unit circle correspond to the 

vertices of the polygon before the mapping: 

1 1 1 1= / 2 , = / 2 / 2 , 2  .i i i i i N          

B a
 

A 

C1 

C 

βi/2 

b
i1

 A1 b
i2

 

2
b

i1
 

βi/2 

βi/2 

A 

bi1 

A1 

a 

y 

x 
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These coordinates i  are the parameters of the Schwarz–Christoffel integral (11). 

Since we know these parameters, we can easily determine the values of the constants 

10 , ,z C C . Thus, the parameter problem of the conformal mapping of the interior  

(exterior) of a circle onto the interior (exterior) of a polygon is solved. 

 

Conclusion 

 

The paper presents the solution by the method of potential of the parameter problem 

of the conformal mapping of the interior (exterior) of a circle onto the interior (exterior) 

of a polygon which has been sought for more than 150 years. This solution for the first 

time was published in [14] and discussed in [15]. 

The primary formulation of the potential method is given in the works of  

A.M. Lyapunov (1857–1918) [16]. It was created with the aim of finding the condi-

tions for existence and uniqueness of solutions of the Dirichlet and Neumann problems, 

there was no purpose to solve the problems numerically at that time. Therefore, the 

restrictions that the considered boundary conditions have to be the Dirichlet conditions 

or the Neumann conditions on a smooth boundary of a simply connected domain 

seemed not very rigid. With the advent of available computers, these conditions have 

become too rigid for numerical calculations in which the boundary conditions are  

usually mixed, and the greatest interest is the calculations of the points in which the 

gradient of the required solution has a singularity – irregular points of a piecewise-

smooth boundary and points at which the boundary conditions change their type. In the 

two-dimensional case, these points could be considered by mapping of the solution for 

a half-plane onto a wedge; in the three-dimensional case, there was no such algorithm. 

This led to a gradual extinction of interest in the potential method as a numerical tool. 

The paper [12] contains the previously unknown form of a harmonic function  

in spherical coordinates and its representation by the potentials of a double or simple 

layer, which allows us to use the potential method for numerical calculations of the 

Dirichlet, Neumann, and mixed Dirichlet–Neumann problems on a piecewise-smooth 

boundary. That is, the main drawback of the traditional formulation of the method is 

eliminated. The author hopes to show that other reasons of unpopularity of the potential 

method can be eliminated also. 
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