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In this work, a fundamental possibility of obtaining a high-entropy ceramic (HfTiCN)-TiB2 composite material by 
the coupled self-propagating high-temperature synthesis is shown. To search for a stable fixed composition of the 
HfTiCN compound, the USPEX code was used with the CASTEP interface at 0K. According to the XRD analysis, 
the obtained SHS product is represented by HfTiCN phase (60 wt%) and TiB2 phase (40 wt%). Based on the 
results of XRD, elemental analysis, and the heat pattern of combustion of the Hf-Ti-C-N-B powder mixture, a 
probable mechanism for the formation of the (HfTiCN)-TiB2 composite material during the coupled self- 
propagating high-temperature synthesis was proposed.   

1. Introduction 

The continuous development of materials science irreversibly entails 
the discovery of new materials and compounds. Along with this, the 
theoretical base is also developing. However, some seemingly funda
mental and traditional paradigms cannot be applied to certain materials, 
in particular to high-entropy alloys (HEAs) [1] and high-entropy ce
ramics (HECs) [2]. As suggested, high-entropy materials are a mixture of 
5 or more elements that form a single-phase compound (high-entropy 
materials have their own diffraction pattern), the Gibbs free energy of 
which is less than the Gibbs free energy of all possible existing com
pounds of these elements. An unexpected and extremely attractive 
feature of high-entropy materials is that their final properties are not 
equal to the average properties of the components, but often either 
exceed them, or are extraordinary and new. For example, (HfNbTaTiZr) 
C high-entropy ceramics have oxidation resistance at 800 ◦C compared 
to binary carbides, which have oxidation resistance only at 200 ◦C [3–5]. 
In general, high-entropy materials and, in particular, high-entropy ce
ramics can be used as functional and structural materials (Perovskite 
oxides [6,7], (HfMoTaTi)(BC)–SiC [8], (MoNbTaTiW)Si2 [9]), materials 
for energy storage ((MgCoNiCuZn)O and derivatives [10,11]), thermo
electrics ((AgBiGe)Se [12], (Cu5GeMgSnZn)S9 [13]). 

Despite the successful application in many works of thermodynamic 
calculations to assess the existence of high-entropy (and any other) 
compounds, they may not always be truly correct. A striking example of 

this statement is the study of aluminum-magnesium boride AlMgB14 
[14–17]. Despite the unconditionally stable and repeatedly proven ex
istence of this compound, thermodynamic calculations performed using 
the AFLOW utility [18] show its absence. In turn, another more prom
ising approach is to predict the existence of thermodynamically stable 
compounds within the framework of Ab initio calculations using the 
USPEX code. Using this approach, a lot of new materials were discov
ered, in particular, superconducting materials based on 
lanthanum-yttrium ternary hydrides and others [19]. It should be noted 
that using classical packages for Ab initio calculations (VASP, CASTEP, 
QUANTUM ESPRESSO, etc.), the authors generate cubic supercells with 
given crystal lattice parameters. An important advantage of using 
USPEX as applied to high-entropy ceramics is that it generates all kinds 
of input files of the structure, not limited to cubic and hexagonal 
close-packed lattices, traditional for HECs [2], which opens up the 
possibility of searching for new non-standard compositions. 

The search for high-entropy ceramics also includes the search for 
high-entropy composites. In Ref. [8], a high-entropy composite 
(HfMoTaTi)(BC)–SiC was obtained, the hardness of which was 35.4 GPa 
(by 48% higher than the theoretical value). It is important to note that 
the use of elements with high melting point (in particular, hafnium) as 
initial materials requires the use of spark plasma sintering [20–22] or 
hot pressing to obtain dense bulk samples. Moreover, there are com
pounds with a higher melting point. In 2015, as a result of theoretical 
studies (USA), it was found that a material based on hafnium, carbon 
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and nitrogen (HfCN) can have a melting point of more than 4200 ◦C 
[23]. In 2019, a team of Russian scientists (MISiS) obtained a type of 
hafnium carbonitride with the chemical formula HfC0.5N0.35 [24]. 

As an alternative method for obtaining high-entropy composites, the 
method of self-propagating high-temperature synthesis (SHS) can be 
used. Today, SHS is an extremely effective method for the production 
nitrides, carbides, and borides [25–33]. In our previous works, we 
proposed two new methods for the production of aluminum-magnesium 
boride AlMgB14. The first method is a thermochemical-coupled SHS of 
AlMgB14–TiB2 composite materials from a (Al12Mg17–B)-(Ti + 2B) 
powder mixture. The advantage of this method is that AlMgB14 is formed 
due to the strongly exothermic reaction of titanium and boron (4250 
kJ/kg, Tad = 3193K), i.e. without the supply of additional heat from 
external sources. The second method is the so-called chemical furnace: 
(Al12Mg17–B) sample is placed in a highly exothermic mixture of tita
nium and silicon, the heat from which (as in the first method) is spent on 
the formation of AlMgB14. In both cases, high-purity powder materials 
were obtained, which were then successfully consolidated by spark 
plasma sintering. Based on the foregoing, we assume that, due to the 
extremely high reaction temperatures, the SHS method can be success
fully applied to obtain high-entropy ceramic composite materials from 
elements with a high melting point. 

In this work, the elements of Hf, Ti, B, C and N were used as the initial 
components. Thus, the purpose of this work is to study the high-entropy 
ceramic composite of the Hf-Ti-C-N-B system obtained by self- 
propagating high-temperature synthesis. 

2. Materials and methods 

2.1. Raw components 

Powders of hafnium, titanium, boron and carbon were used as initial 
materials. Dispersion and purity of the initial powders are presented in 
Table 1. 

2.2. Experimental part 

The initial components were mixed in the ratio (wt%): 32Ti + 8C +
26.7Hf + 3.3B. This composition was chosen for the following reasons. 
Titanium and carbon are mixed in a stoichiometric ratio at which tita
nium carbide is formed. Hafnium and boron were mixed in a stoichio
metric ratio at which hafnium diboride is formed. The stoichiometric 
ratio of elements was taken to maximize the release of heat, which is 
sufficient for the implementation of coupled exothermic reactions. 
However, since the initial titanium powder was slightly finer than the 
hafnium powder, the TiC to HfB2 ratio was increased in the initial 
mixture. The resulting powder mixture were cold-pressed into speci
mens with a diameter of 23 mm and a mass of 20 g. The pressure was 25 
MPa. The obtained samples were placed in a constant pressure reactor, 
which was then evacuated. After evacuation, the reactor was filled with 
gaseous nitrogen to a pressure of 3.5 MPa for subsequent nitriding of the 
samples during SHS. Nitrogen of special purity (GOST 9293-74, 99.99%) 
was used in this work. The synthesis reaction was initiated by heating 
the upper surface of the sample with a molybdenum spiral. 

2.3. Characterization 

To measure the combustion temperature, tungsten-rhenium ther
mocouple WR5/20 was introduced into the sample. The registration of 
the signal in the form of diffraction patterns on a computer was recorded 
by multichannel measuring-regulators “TPM-138” (OWEN) and an NL- 
8AI meter (from RealLab). Subsequent processing was performed 
using the “OWEN MANAGER ORM v.1” and “RealLab” programs. X-ray 
structural studies of the obtained synthesis products were performed on 
a Shimadzu 6000 diffractometer with CuKα-radiation. To determine the 
phase composition, the lattices of the PDF4+ crystallographic database 
and the predicted structures of the Hf-Ti-C-N system were used (the 
details of the calculations are given in the section “Computational de
tails”). The microstructure of the obtained synthesis products was 
determined using a QUANTA 200 3D microscope equipped with an 
energy dispersive attachment (EDS). 

2.4. Computational details 

The prediction of the fixed composition of the HfTiCN compound 
was performed using the USPEX code [34–37] with the CASTEP [38] 
interface at 0K. The search for stable and quasi-stable configurations was 
carried out among compounds with different space groups (2–230). In 
CASTEP calculations, ultrasoft pseudopotentials were used with a 
plane-wave cutoff energy of 400 eV. All stable structures were optimized 
with force convergence during the relaxation to 10− 6 eV/Å. In the 
USPEX calculations, the following parameters were chosen: the initial 
population size was 50, the total generation number was 35, the number 
of structures per generation was 45. FracGene (fraction of the generation 
produced by heredity), fracRand (fraction of the generation produced 
randomly from space groups), fracAtomsMut (fraction of the generation 
produced by sofmutation) was 0.5, 0.3 and 0.2, respectively. The pre
dicted HfTiCN structure with the lowest energy was used for X-ray 
diffraction analysis and identification of the phase composition. The 
phase composition was refined using the Rietveld method. In this work, 
the CASTEP program code [38] was used to calculate the energies of the 
reference and refined crystal lattices within the framework of the den
sity functional theory (DFT) using the generalized-gradient approxi
mation (GGA). 

3. Results and discussion 

The XRD pattern of the obtained combustion products of the Hf-Ti-C- 

Table 1 
Purity and dispersion of the starting powders.  

Powder Purity, % Dispersion, μm 

Hafnium (Hf) >99.0 <300.0 
Titanium (Ti) >99.0 <280.0 
Boron (B) >99.0 <0.6 
Carbon (С) >99.0 <0.8  

Fig. 1. a) Experimental XRD pattern of the combustion products of the Hf-Ti-C- 
N-B system, b) reference XRD pattern of the HfTiCN compound. 
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N-B system is shown in Fig. 1. According to the XRD results, the TiB2 and 
HfTiCN phases were found in the combustion products. It was found that 
the predicted HfTiCN compound (Fig. 1b) approximates well the 
experimental XRD pattern of the obtained material (Fig. 1a). 

Table 2 shows the reference and refined parameters of the HfTiCN 
and TiB2 phases (structural parameters, volume and lattice energy). The 
reference and refined lattices are slightly different. The HfTiCN crystal 
lattice has a P4/MMM space group, while the TiB2 crystal lattice has a 
P6/MMM space group. 

According to the Rietveld method, the HfTiCN phase content in the 
obtained SHS products is approximately 60 wt%, and the TiB2 phase 
content is approximately 40 wt%. Fig. 2 shows 3D images of the HfTiCN 
and TiB2 lattices after the refinement of the structural parameters by the 
Rietveld method. 

SEM images of the microstructure of the combustion products are 
shown in Fig. 3a and b. It was found that the structure of the SHS 
products is represented by dark and light particles. EDS analysis showed 
that the elements of boron and titanium dominate in the dark areas, 
which corresponds to the TiB2 phase. The elements of Hf, C, N, and Ti 
were found in the bright areas, which corresponds to the HfTiCN phase. 
The elemental analysis results are in good agreement with the results of 
X-ray structural analysis. Based on the obtained data, it was found that 
during SHS synthesis, boron particles react with titanium particles and 
form the TiB2 phase. In this case, a clear interface is formed between the 
TiB2 and HfTiCN particles. This is confirmed by the mapping results 
(Fig. 3c–h). 

Fig. 4 shows a heat pattern obtained during the coupled self- 
propagating high-temperature synthesis of the Hf-Ti-C-N-B composite 
mixture. Based on the obtained heat pattern, XRD results and elemental 
analysis, a probable mechanism for the formation of the (HfTiCN)-TiB2 
composite material was proposed. 

The heating of the spiral initiates an exothermic reaction in the upper 
layer of the sample. Heat from this reaction is transferred to the main 
part of the sample by conductive and convective transfer. Under the 

influence of heat, titanium particles melt, followed by saturation with 
boron and carbon particles. Since the enthalpy of formation of titanium 
diboride (− 321.5 kJ/mol) [39] is lower than the enthalpy of formation 
of titanium carbide (− 133.7 kJ/mol) [40], after saturation of the tita
nium melt with boron and carbon, an exothermic reaction of the TiB2 
formation occurs. During the exothermic reaction, a large amount of 
heat is released, characterized by a sharp increase in temperature to 
2250 ◦C (a peak 1 on the heat pattern). The heat released during the 
exothermic reaction is consumed to melt the hafnium particles and 
dissolve the remaining carbon particles in the resulting melt. Moreover, 
the obtained melt is saturated with gaseous nitrogen, after which an 
exothermic reaction of the HfTiCN formation occurs with the release of 
heat, characterized by an increase in temperature to 2100 ◦C (peaks 2–3 
on the heat pattern). A peak 4 characterizes the completion of the syn
thesis processes and the cooling of the obtained SHS products. After 
cooling, a composite structure is formed in the synthesis products, 
consisting of titanium diboride particles distributed between HfTiCN 
particles. 

4. Conclusion 

In this work, the fundamental possibility of obtaining the high- 
entropy ceramic (HfTiCN)-TiB2 composite by self-propagating high- 
temperature synthesis is shown. Ab initio calculations showed the ex
istence of the stable high-entropy HfTiCN compound with the P4/MMM 
space group. According to the results of X-ray diffraction analysis, the 
content of the HfTiCN and TiB2 phases in the obtained composite is 
approximately 60 and 40 wt%, respectively. According to the obtained 
SEM images and the results of elemental analysis, the microstructure of 
the composite is represented by two phases: TiB2 and HfTiCN, which 
have a clear interface between each other. Based on the obtained results, 
a probable mechanism for the formation of the (HfTiCN)-TiB2 composite 
was proposed. 

Table 2 
Structural parameters of the crystal lattices in the combustion products.  

Phase State a, Å c, Å α = β γ V, Å3 E, eV 

HfTiCN Reference 3.119 4.459 90.00 90.00 43.391 − 2442.29 
Refined 3.071 4.357 90.00 90.00 41.105 − 2441.87 

TiB2 Reference 3.029 3.228 90.00 120.00 25.655 − 1760.71 
Refined 2.997 3.218 90.00 120.00 25.034 − 1760.69  

Fig. 2. 3D images of the HfTiCN (a) and TiB2 (b) lattices.  
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