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Abstract

We present a survey of several recent results on parameter es-
timation for partially observed linear systems and the construc-
tion of adaptive Kalman-Bucy filtration equations. It is sup-
posed that the observation equation contains small noise of level
e and the properties of estimators are described in the asymp-
totics € — 0. The adaptive filter is constructed in several steps.
First we propose a nonparametric estimator of the quadratic
variation of the derivative of the observations. Then we use this
estimator for construction of One-step MLE-process. Finally,
this estimator-process is substituted in the filtration equations.

Keywords: Kalman-Bucy filter; Volatility estimation; Adap-
tive filtration; One-step MLE-process.

MLE and BE.
Consider a partially observed linear system
dX; = f () Yidt +eo (t) AW, Xo=0, 0<t<T (1)
dY; = a (9,1) Yidt + b (9,t) dVi, Yo = yo, (2)
where f(-),0(-),a(-) and b(-) are known, smooth functions, while W7,
and V; are two independent Wiener processes. We have to estimate
¥ € © = (a, B) from continuous time observations X7, given that the
process (Y3, 0 < ¢ < T) is unobservable (hidden).
The likelihood ratio functlon 1s

L(9,XT) —exp{/ ACULACT) ( /f ey ;2 )th}.

Here m (¥,t) = Ey (Y;5|XS7 0 < s <) is solution of the equatlons.
Kalman—Bucy filter.

dm (0, 1) = {a(ﬂ,t)W}m(ﬂ,t)dt

20(1)2

Y (197 t) / (197 t)
20 (0)2

o (@,1) _ ¥ (@, 0)* f (@,1)° 2
ot 2a (9,t) (ﬁ,t)—w+b(ﬁvt) )
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where y (9,t) = Ey (m (0, t) — ;).
The MLE 1. and BE 9. are defined by usual relations
. ~ Ip (9) L(9, XT)dv
LW, XT) = sup L(9, XT i _Jo
(Ve, X7) sup (0, X7), <= W) L, XT)ad

The model under study is of special interest When € — 0 because,

gll}(l){f (19’ t) mm (197 t) + f (19’ t) m (19’ t)} =0,

T 2
o[ 0
1. () = / o (t) 2 [819 {f (W, t)ym (¥,t)}| dt — 0.
0
In addition we have the convergence in distribution

e V2 (0,8) i (9,) + F (0, )m (9, 1)} = n (0,1) &,
where n (J,t) is a det. f. and & are i.i.d. N (0,1/2). We expect
T

el (V) = / n(9,t)% €2 dt.

0
As it happens, however, this integral does not exist and we have instead,

as e — 0,
T

1
S (9) — To (9) = 5/ n (9, 1)
0
Limit model. Suppose that ¢ = 0, then we obtain the system
doe = f(0,0)Yadt,  2p=f(9,0)Ys, ap=f(9,0) 0,

Question: is it possible to estimate ¥ by observations z;,0 <t < T
without error?

Recall that by It6’s formula, we have

t t
CA / Zda, + / b(0, ) f (9, 5)% ds
0 0
and the function . ,
U, = (2})° —2/ 2lda, :/ b(d,s) f(0,s)ds = K (9,¢)

is deterministic. Theo“observed” %unction W, defines ¥ without error.
For example, the estimator 9* defined by the equation K (9*,t) = U,
is without error, i.e., ¥* = 9.

Let us denote S(9,t) = f (9,t) b(,t), set

T
G (9,9) = /0 [S(ﬁsz 5(19(0; Jl dt,

9
0
0010 1500]

Ip (9) =

and introduce the conditlons
For any v > 0,

ﬂtrge ‘19711191(5>VG(19,190) >0 and égf@ Iy (9) > 0.
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We have the lower minimax bound

lim lim  sup & 'Eyg|9f —92 =1y (9) " .
02050 |9—o| <6

Theorem 1. The MLE 195 and the BE 9. are consistent, and asymp-
totically normal, i.e.,

Do — 1 J. — Do
— ~N (0,1, ) : .
e = N (01 (00) =
Moreover the moments converge, i.e., for any p > 0
~ p ~ P
) ¥ — o . ¥ — Vg
ig% Eﬁo E\/g = Eﬁo |C|pa ili% E190 E\/g = E190 K‘p

and both estimators are asymptotically efficient.

For the proof see [1].
Quadratic variation estimation. Let us consider the linear two-
dimensional partially observed system
dX;: = f(t) Yedt + g0 (t) AW, Xo=0, 0<t<T, (3)
dYi=a(t)Yidt+b()dV;, Yo=0, 0<t<T, (4)
where the Wiener processes V;,0 <t < T and W;,0 <t < T are sup-
posed to be independent. The solution Y7 = (¥;,0 <t < T) can not
be observed directly and we have available the observations X7 =
(X¢,0<t<T) only. Here a(-),b(-),f(-),o0(-) € C' are unknown
functions and ¢ € (0, 1] is a small parameter.
Our first goal is to construct a consistent (¢ — 0) estimator \i/T,E, 0<
7 < T of the function

\I/T—/OTf(s)Qb(s)st, 0<7<T. (5)

Then we show that this estimator \ilw can be useful in the construction
of the estimators of the parameters ¢ in the case of models (1), (2) with
() = F(9,8) or b(t) = b (9, 1).

The construction of the estimators is based on the following prop-
erties of the model (3), (4).

t
sup |X; — x| — O, Ty = / f(s)Ysds.
0<t<T 0

We have

dz
d—tt:f(t)Yt, zo = 0.

If we formally calculate the derivative
00X,y
—_— = f; (WY,
at | _ fe ()Y,
and then calculating the quadratic variation (f; (1) Y;) = V.. we obtain
the desired function ¥... The construction of the estimator of ¥, is a
discrete time modification of these two steps.
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Introduce the statistic

re—1 2

> X, — X Xi1s. — Xy

Ve (r)= ) ( T R “) . 0<r<T
i=0 € g

Here t; = i¢p., N;r e = {i}, the rates . — 0,0 — 0 will be defined

later.

Let us explain why this statistic can be a consistent estimator of
.. We have

X, - X, 1 tit1+0e tit1+0e
fiatde T Mt _ 2 Fo ()Y, ds + = oo dW..
O Oc tit1 Oc tita
Hence if we take €6§1/2 — 0, then

X, — Xy,
tl+1+6:5 tit1 = fti+1 (19) Y’ti+1 +o (1) ?
€

Rets Z R f @)Y, +o(1)

and
|ftl+1 ft ( )| SCSDE

Further, formally we erte
Nyo—1

v, (T): Z (fti+1( ) tit1 ft ( )}/ti)2+0(1)

N-e—1
Z ft z+1_}/ti)2+0(1)

Nt,s

tit1 titn 9
; fo, (9 (/t w0 Vds+ [ bs(deS) rol)

i

_ Nfl fu (0)? ( / t b (9) dvs)2 +o(1)

75_1

Z Je ( (9)* (tir — 1) + 0 (1)
— /T fso ()2 by (0)ds = 0.

0
We have the estimates
Nyo—1

Z ft Y:fl+1 _Yrtl]2
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and
Nyo—1

W = Z fro (9)% by, (0)? (tig1 — ti)| < Cope.
i=0

If we put 6. = €9, p. = €' then the equation

O €

— =P =

Pe : VRVR
gives us the values ¢ =1 and [ = 1/3, i.e.,

be=c¢ and Pe = el/3,
Hence ti+1 =1; + 61/3,
Neell rx X X X\
tiv1+e — t; ti+e — t;
\Ij ) = +1 +1 i i ;
(=3 (P :
and
Nyo—1

Ey |V, (T) - Z ftz‘ (19>2 [Yrti+1 - }/21]2 < 051/3'
1=0

The regularity conditions:
A. The functions a(-),b(-) € CV[0,7] and f (-),0(-) € C? [0,7].

Theorem 2. Let the condition A be fulfilled then for any p > 0 there
exist a constant C' > 0 such that

a p
Ey ‘xp (r) — szT‘ < CePl3,

Reark that it is possible to prove the asymptotic normality
3 (B (7) — Wy ) = N (0, D).
Parameter estimation.
Consider the partially observed linear system
dY: = a (t) Ydt + b (9, t) dV4, Yy =0, (6)
dX; = f (9,t) Yidt +eo (t) AW, Xo=0. (7)

Substitution estimator 9. .
The functions f (-), b(:) are supposed to be known and the functions
a(-), o () are unknown. Define the function
T

W, (19):/0 F@,0°b0,8)7dt, de(a,Bf)=6.
We have .
xi/,w):z/o (£ 0000 @.0) + 7 (0,00 (0.0)] 7 (9.0)b (9. 1) .
Condition B.

_ By. The functions W, (¥) has two continuous derivatives W, (9),
U, (9) wr.t 9.
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By. For a given T we have

inf |, (9)] > 0.

Inf |0, (9)] >0 (8)
By condition (8) the function ¥, (-) is monotone. Without loss of

generality we suppose that it is increasing.
Introduce the notation

. X, — X, Xpe — X0\ 2
\I/T,E = Z ( t1+1+6€ b t1+€€ tl) 5 t2+1 =1; + 51/3
i=0

Y = inf W, (19) , Yp = sup ¥, (19) s Ym = Vs (Oé) , Y =V (/6) )
9e0 9EO

GW)=9'¥), Ym<ty<ty, a<G@)<p,
Br={w: oo <}, Bu={w: W= vum},

B= {w D Y < U, < 1/JM}, e =G(U..),

The substitution estimator (SE) is introduced as follows
Ure = allyp, y + 1Ly + Blz,,)-
Roughly speaking
\ij‘r,s - \IIT ('lg‘r,s) .
It has the following properties.

Theorem 3. Suppose that the conditions A and B are fulfilled. Then
for any p > 0 there exists a constant C = C (p) > 0 such that
supe "By |0, —9|" < C. (9)
€O
Ezample 1. Suppose that we have the model of observations (6),(7),
where f (9,t) =9f (t),0 € (o, B),a0 > 0, b(¥,t) = b(t) and all corre-
sponding conditions are fulfilled. Then

:ﬁQ/OTf(t)zb t)?
o= ([ 17007 dt)_m.

This estimator is consistent and has the rate of convergence ¢

Ezample 2. Consider this model with b (9,t) = \/h (t) + Jdg (t) and
f(09,¢) = f(t). Suppose that the functions h () and g (-) are positive
and a > 0. Then

and SE

1/3

/f 1)+ dg ()] dt

= (wew /f )(/f ou)
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Hence the SE is

boe=(woe= [Tr@rnwa) ([ 102w dt)l .

This estimator is consistent and has the rate of convergence /3
One-step MLE-process v; _, 7 <t <T.
Suppose that we have slightly different partially observed system
dY; = a (¥,t) Yedt + b (9, t) dV4, Yo =0,
dXt = f(’lg,t) Yidt-‘ré‘o‘ (t) (H/Vvt7 XO =0.
As before the process X7 = (X;,0 <t < T) is observable and Y7 is
hidden. All functions a(-),b(-),f(-) and o (-) are supposed to be
known. The parameter ¥ € © = (a, ) is unknown and has to be
estimated by observations X 7.
One way is to use the MLE 19775. Remind that the MLE is defined
by the equation
L(fr.c, X7) = sup L(9, X7),

YEO
where the likelihood ratio function is
T M (9,t M (9,t
LW, X7)=-exp ( ’2) dX,; — gdt Y€ O.
o £20(t) 0 220 (t)?

Here M (¢,t) = f(9,t)m (9,t), the function o (-) is supposed to be
positive.

The random process (conditional expectation) m; = m(¥,t) =
Ey (Y;] X5,0 < s <'t) satisfies the equation of the Kalman-Bucy fil-

tration: m (99, 0) = o,
V001 (0.)

dmt =a (’19, t) mtdt + )2 [dXt — f (19, t) mtdt] 5

e2o (t
9y (9,1)
ot
with initial value v (¢,0) = 0. It was shown that this estimator is
consistent, asymptotically normal

=2a (1, )y (9,1) — (19’?2 é§f’t>2 +b(9,1)%,

/A _ TS ,1)?

V2 (. -0 17 (99) " ITﬁ:/ S
€ ( 5 O)ﬁN(O’ (Vo) ) = 35w How
and asymptotically efficient. Here S (¥,t) = f (9,¢) b (9, 1).

Introduce notation: 7 <t <T

S, s)? g
It — ’ e = _te v
T (19> /7— 25 (19 S) ( )d57 ft, \/g ’
he=bret g / Mress) (4%, _ 0i(d,...5)ds)].
1 S (o, )
dw
= T (00) W (&).
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We have to define the random processes

M(ST,@ s)=1f (197’5, s) m (197,5, s)
and

M(&T,E,S):f:(@r,a,s)m( 7,5 S )+f( T,Es S )m(’gr,as)

Conditions C.
C1. For any to € (7,1
inf I' (9) > 0.
YEO
Co. The functions f (-),o (-) are separated from zero and the func-
tions f(+),b(-) have two continuous derivatives w.r.t. 9.

Proposition 1. Let the conditions A,B,C be fulfilled then the One-step
MLE -process ¥ ., 7 <t <T is consistent: for any v >0

t,er
Py, ( sup [9; . — o] > 1/> — 0,
to<t<T
the random process & o, tg < t < T converges in distribution in the
measurable space (C [to, T|, AB]) to the Gaussian process
19:6 - 190 -1
—te — 0 g, ~N (O,It 9 )
\/E gt gt T( 0)
Adaptive filtration.
Note that

Yt b(V,1) o (t)b(0,1)
ﬁt Cte WCh

where Ct,t € (0,T] are mdependent Gaussian random variables, (; ~
N (0,1).

We have for any, say, continuous function A (t)

T
5*1/2/ (my —Yy)h (t)dt — 0
0

and
el/T( —Y)?h(t) dt—>/ 719)&
' 2f (0,t) h ()
Introduce the equations of adaptive filtration

dri (t) = —qe (9F ., t) i (t) dt + 7 i) £ e, )dXt, m (0) = yo,

20 (t)?
oy (9,t) v (9,6 f(9,8)° 2 B
o —2a(19,t)7(19,t)—W b(9,1)%,~(9,0) = 0.
Here
_@n T
qe (197 t) = 2 (t)2 (79’ t)

and we suppose that Riccati equation can be solved before the experi-
ence.
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The error of approximation of m; = m (¥g, t) is
my — 1 (1) N b(ﬁo,t)f(ﬂo,f)yt _ b(Vo,t) Vo (t)
Ve o (t) f (00,1) b (U0, 1)
where (;,t € (0,T] are independent standard Gaussian r.v.’s.
This limit together with
-Y, o(t)b(0,t
=Y fowbw.y)
Ve 2f (9,1)
allows us to describe the error of approximation of Y; by m (¢):
m(t) — Y
F
It is possible to give this couple of equations in recurrent form too

dm (t) = ¢ (19:6’ ) T (t) dt + M

Ct gta

dXt7 Th(o) = Yo,

20 (t)?
: V(1) f (952:1)°
w_m(ﬁta’t)@(t)—w+b(ﬁ:8’) ¥ (0) =o.

It was shown that 7 (t) — m (9o, t) = /2O, (1).

Remarks.

1. The rate of convergence ¢. = €™ of the preliminary estimator
for the construction of a consistent One-step MLE-process has to be
such that m € (4, 2] Recall that the proposed SE 9, has ¢. = e!/3.

2. It is possible to study this construction supposing that 7 =
7. — 0 sufficiently slow. We need just to provide for the preliminary
estimator 197575 the convergence

Eg [0, —o|* < c*m
where m € (1 I 2] This will allow us to prove the asymptotic efficiency
of the One-step MLE-process for all ¢t € (0, 7.
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Kyrosing FO.A. (Vuusepcurer Jle-Mana, JTle-Man, @pannus, Tom-
CKUIi TOCyJapCTBEHHBIN yHUBepcuTeT, Tomck, Poccus, 2022) Craru-
CTHKA CKPBITBIX MapKOBCKMX IPOIECCOB (HENpPEepbIBHOE Bpe-
Msl)

Annoramusa. I[Ipeacrasisiem 0630p HECKOJBKUX HEIABHUX PE3YIIhb-
TATOB IO OIIEHNBAHUIO [TAPAMETPOB YaCTUIHO HAOJIIOIAEMbIX JIMHEHHBIX
CHCTEM U IOCTPOEHUIO a/IAIITUBHBIX ypaBHeHn! dunbrpanyn Kanvana-
Brrocu. Ilpeanosiaraercsi, 9To ypaBHeHUe HaOJIIOIEHUs] COIEPKUT Ma-
JIBII TIIyM YPOBHS €, & CBOMCTBA OIEHOK OINUCHIBAIOTCS B ACHMIITOTHKE
e — 0. AganTuBHbIil GUIBTP CTPOUTCS B HECKOJIBKO 3TamoB. CHada-
Jia TpeJjlaraeM HellapaMeTPUIECKyIO OIEHKY KBAaIPATHIHON BAPUAIIUU
[IPOU3BOIHON HABJIIOEHU. 3aTeM UCIIOIB3YEeM STy OIEHKY JJIst TOCTPO-
enus omHomarosoro MLE-mporiecca. Hakoner, 3TOT OIEeHOYHBINH TTPO-
[IECC TIOJICTABJISIETCS] B YPABHEHUST (DUIHTPAIIMIH.

Kurouessie ciioBa: duisrp Kanmana-Berocu, ornenka BosaTuib-
HOCTH, ajanTtuBHas duiabTpanus, ognomarossii MLE-mporecc.
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