МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Международная лаборатория статистики случайных процессов и количественного финансового анализа

Международная научная конференция «Робастная статистика и финансовая математика — 2022»

(04-05 июля 2022 г.)

Сборник статей

Под редакцией д-ра физ.-мат. наук, профессора С.М. Пергаменщикова, канд. физ.-мат. наук, доцента Е.А. Пчелинцева

Томск

Издательский Дом Томского государственного университета 2022

Statistics of hidden Markov processes (continuous time) ¹

Kutoyants Yu.A.

Le Mans University, Le Mans, France, Tomsk State University, Tomsk, Russia, e-mail: Yury.Kutoyants@univ-lemans.fr

Abstract

We present a survey of several recent results on parameter estimation for partially observed linear systems and the construction of adaptive Kalman-Bucy filtration equations. It is supposed that the observation equation contains small noise of level ε and the properties of estimators are described in the asymptotics $\varepsilon \to 0$. The adaptive filter is constructed in several steps. First we propose a nonparametric estimator of the quadratic variation of the derivative of the observations. Then we use this estimator for construction of One-step MLE-process. Finally, this estimator-process is substituted in the filtration equations.

Keywords: Kalman-Bucy filter; Volatility estimation; Adaptive filtration; One-step MLE-process.

MLE and BE.

Consider a partially observed linear system

$$dX_t = f(\vartheta, t) Y_t dt + \varepsilon \sigma(t) dW_t, \quad X_0 = 0, \quad 0 \le t \le T$$
 (1)

$$dY_t = a(\vartheta, t) Y_t dt + b(\vartheta, t) dV_t, \quad Y_0 = y_0,$$
(2)

where $f(\cdot), \sigma(\cdot), a(\cdot)$ and $b(\cdot)$ are known, smooth functions, while W_t , and V_t are two independent Wiener processes. We have to estimate $\vartheta \in \Theta = (\alpha, \beta)$ from continuous time observations X^T , given that the process $(Y_t, 0 \le t \le T)$ is unobservable (hidden).

The likelihood ratio function is

$$L(\vartheta, X^{T}) = \exp \left\{ \int_{0}^{T} \frac{f(\vartheta, t) m(\vartheta, t)}{\varepsilon^{2} \sigma(t)^{2}} dX_{t} - \int_{0}^{T} \frac{f(\vartheta, t)^{2} m(\vartheta, t)^{2}}{2\varepsilon^{2} \sigma(t)^{2}} dt \right\}.$$

Here $m(\vartheta,t) = \mathbf{E}_{\vartheta}\left(Y_t|X_s, 0 \le s \le t\right)$ is solution of the equations:

Kalman-Bucy filter.

$$dm(\vartheta, t) = \left\{ a(\vartheta, t) - \frac{\gamma(\vartheta, t) f(\vartheta, t)^{2}}{\varepsilon^{2} \sigma(t)^{2}} \right\} m(\vartheta, t) dt + \frac{\gamma(\vartheta, t) f(\vartheta, t)}{\varepsilon^{2} \sigma(t)^{2}} dX_{t},$$

$$\frac{\partial \gamma\left(\vartheta,t\right)}{\partial t}=2a\left(\vartheta,t\right)\gamma\left(\vartheta,t\right)-\frac{\gamma\left(\vartheta,t\right)^{2}f\left(\vartheta,t\right)^{2}}{\varepsilon^{2}\sigma(t)^{2}}+b\left(\vartheta,t\right)^{2},$$

¹The work was supported by the RSF, project no 20-61-47043.

where
$$\gamma(\vartheta, t) = \mathbf{E}_{\vartheta} (m(\vartheta, t) - Y_t)^2$$
.

The MLE $\hat{\vartheta}_{\varepsilon}$ and BE $\tilde{\vartheta}_{\varepsilon}$ are defined by usual relations

$$L(\hat{\vartheta}_{\varepsilon}, X^T) = \sup_{\vartheta \in \Theta} L(\vartheta, X^T), \qquad \qquad \tilde{\vartheta}_{\varepsilon} = \frac{\int_{\Theta} \vartheta p\left(\vartheta\right) L(\vartheta, X^T) \mathrm{d}\vartheta}{\int_{\Theta} p\left(\vartheta\right) L(\vartheta, X^T) \mathrm{d}\vartheta}.$$

The model under study is of special interest when $\varepsilon \to 0$ because, $\lim_{\varepsilon \to 0} \{ f(\vartheta, t) \, \dot{m}(\vartheta, t) + \dot{f}(\vartheta, t) \, m(\vartheta, t) \} = 0,$

$$\varepsilon^{2} \mathbf{I}_{\varepsilon} \left(\vartheta \right) = \int_{0}^{T} \sigma \left(t \right)^{-2} \left[\frac{\partial}{\partial \vartheta} \left\{ f \left(\vartheta, t \right) m \left(\vartheta, t \right) \right\} \right]^{2} \mathrm{d}t \to 0.$$

In addition we have the convergence in distribution

$$\varepsilon^{-1/2}\left\{f\left(\vartheta,t\right)\dot{m}\left(\vartheta,t\right)+\dot{f}\left(\vartheta,t\right)m\left(\vartheta,t\right)\right\}\Longrightarrow n\left(\vartheta,t\right)\,\xi_{t},$$

where $n(\vartheta,t)$ is a det. f. and ξ_t are i.i.d. $\mathcal{N}(0,1/2)$. We expect

$$\varepsilon I_{\varepsilon}(\vartheta) \Longrightarrow \int_{0}^{T} n(\vartheta, t)^{2} \xi_{t}^{2} dt.$$

As it happens, however, this integral does not exist and we have instead, as $\varepsilon \to 0$,

$$\varepsilon I_{\varepsilon}(\vartheta) \longrightarrow I_{0}(\vartheta) = \frac{1}{2} \int_{0}^{T} n(\vartheta, t)^{2} dt.$$

Limit model. Suppose that $\varepsilon = 0$, then we obtain the system

$$dx_t = f(\vartheta, t) Y_t dt, \qquad x'_t = f(\vartheta, t) Y_t, \quad x'_0 = f(\vartheta, 0) y_0,$$

$$dY_t = a(\vartheta, t) Y_t dt + b(\vartheta, t) dV_t, \quad Y_0 = y_0$$

Question: is it possible to estimate ϑ by observations $x_t', 0 \le t \le T$ without error?

Recall that by Itô's formula, we have

$$(x_t')^2 = 2 \int_0^t x_s' dx_s' + \int_0^t b(\vartheta, s)^2 f(\vartheta, s)^2 ds$$

and the function

$$\Psi_t = (x_t')^2 - 2\int_0^t x_s' dx_s' = \int_0^t b(\vartheta, s)^2 f(\vartheta, s)^2 ds \equiv K(\vartheta, t)$$

is deterministic. The "observed" function Ψ_t defines ϑ without error. For example, the estimator ϑ^* defined by the equation $K(\vartheta^*,t) = \Psi_t$ is without error, i.e., $\vartheta^* = \vartheta$.

Let us denote $S(\vartheta, t) = f(\vartheta, t) b(\vartheta, t)$, set

$$G\left(\vartheta,\vartheta_{0}\right)=\int_{0}^{T}\frac{\left[S\left(\vartheta,t\right)-S\left(\vartheta_{0},t\right)\right]^{2}}{2S\left(\vartheta,t\right)\sigma\left(t\right)}\mathrm{d}t,$$

$$I_{0}(\vartheta) = \int_{0}^{T} \frac{S(\vartheta, t)}{2\sigma(t)} \left[\frac{\partial}{\partial \vartheta} \ln S(\vartheta, t) \right]^{2} dt$$

and introduce the conditions:

For any $\nu > 0$,

$$\inf_{\vartheta_{0}\in\Theta}\inf_{|\vartheta-\vartheta_{0}|>\nu}G\left(\vartheta,\vartheta_{0}\right)>0\quad\text{and}\quad\inf_{\vartheta\in\Theta}\mathrm{I}_{0}\left(\vartheta\right)>0.$$

We have the lower minimax bound

$$\lim_{\delta \to 0} \lim_{\varepsilon \to 0} \sup_{|\vartheta - \vartheta_0| < \delta} \varepsilon^{-1} \mathbf{E}_{\vartheta} |\vartheta_{\varepsilon}^* - \vartheta|^2 = \mathrm{I}_0 \left(\vartheta\right)^{-1}.$$

Theorem 1. The MLE $\hat{\vartheta}_{\varepsilon}$ and the BE $\tilde{\vartheta}_{\varepsilon}$ are consistent, and asymptotically normal, i.e.,

$$\frac{\hat{\vartheta}_{\varepsilon} - \vartheta_{0}}{\sqrt{\varepsilon}} \Longrightarrow \zeta \sim \mathcal{N}\left(0, I_{0}\left(\vartheta_{0}\right)^{-1}\right), \quad \frac{\tilde{\vartheta}_{\varepsilon} - \vartheta_{0}}{\sqrt{\varepsilon}} \Longrightarrow \zeta.$$

Moreover the moments converge, i.e., for any p > 0

$$\lim_{\varepsilon \to 0} \mathbf{E}_{\vartheta_0} \left| \frac{\hat{\vartheta}_{\varepsilon} - \vartheta_0}{\sqrt{\varepsilon}} \right|^p = \mathbf{E}_{\vartheta_0} \left| \zeta \right|^p, \qquad \lim_{\varepsilon \to 0} \mathbf{E}_{\vartheta_0} \left| \frac{\tilde{\vartheta}_{\varepsilon} - \vartheta_0}{\sqrt{\varepsilon}} \right|^p = \mathbf{E}_{\vartheta_0} \left| \zeta \right|^p$$

and both estimators are asymptotically efficient

For the proof see [1].

Quadratic variation estimation. Let us consider the linear twodimensional partially observed system

$$dX_t = f(t) Y_t dt + \varepsilon \sigma(t) dW_t, \qquad X_0 = 0, \quad 0 \le t \le T,$$
 (3)

$$dY_t = a(t) Y_t dt + b(t) dV_t, \quad Y_0 = 0, \quad 0 \le t \le T,$$
 (4)

where the Wiener processes $V_t, 0 \le t \le T$ and $W_t, 0 \le t \le T$ are supposed to be independent. The solution $Y^T = (Y_t, 0 \le t \le T)$ can not be observed directly and we have available the observations $X^T = (X_t, 0 \le t \le T)$ only. Here $a(\cdot), b(\cdot), f(\cdot), \sigma(\cdot) \in \mathcal{C}^1$ are unknown functions and $\varepsilon \in (0, 1]$ is a *small* parameter.

Our first goal is to construct a consistent $(\varepsilon \to 0)$ estimator $\Psi_{\tau,\varepsilon}, 0 \le \tau \le T$ of the function

$$\Psi_{\tau} = \int_{0}^{\tau} f(s)^{2} b(s)^{2} ds, \qquad 0 < \tau \le T.$$
 (5)

Then we show that this estimator $\hat{\Psi}_{\tau,\varepsilon}$ can be useful in the construction of the estimators of the parameters ϑ in the case of models (1), (2) with $f(t) = f(\vartheta, t)$ or $b(t) = b(\vartheta, t)$.

The construction of the estimators is based on the following properties of the model (3), (4).

$$\sup_{0 \le t \le T} |X_t - x_t| \longrightarrow 0, \qquad x_t = \int_0^t f(s) Y_s \, \mathrm{d}s.$$

We have

$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = f(t) Y_t, \qquad x_0 = 0.$$

If we formally calculate the derivative

$$\left. \frac{\partial X_t}{\partial t} \right|_{\varepsilon=0} = f_t \left(\vartheta \right) Y_t$$

and then calculating the quadratic variation $\langle f_t(\tau) Y_{\tau} \rangle = \Psi_{\tau}$ we obtain the desired function Ψ_{τ} . The construction of the estimator of Ψ_{τ} is a discrete time modification of these two steps.

Introduce the statistic

$$\Psi_{\varepsilon}\left(\tau\right) = \sum_{i=0}^{N_{\tau,\varepsilon}-1} \left(\frac{X_{t_{i+1}+\delta_{\varepsilon}} - X_{t_{i+1}}}{\delta_{\varepsilon}} - \frac{X_{t_{i}+\delta_{\varepsilon}} - X_{t_{i}}}{\delta_{\varepsilon}}\right)^{2}, \qquad 0 < \tau \leq T.$$

Here $t_i = i\varphi_{\varepsilon}, N_{\tau,\varepsilon} = \left[\frac{\tau}{\varphi_{\varepsilon}}\right]$, the rates $\varphi_{\varepsilon} \to 0, \delta_{\varepsilon} \to 0$ will be defined later.

Let us explain why this statistic can be a consistent estimator of Ψ_{τ} . We have

$$\frac{X_{t_{i+1}+\delta_{\varepsilon}} - X_{t_{i+1}}}{\delta_{\varepsilon}} = \frac{1}{\delta_{\varepsilon}} \int_{t_{i+1}}^{t_{i+1}+\delta_{\varepsilon}} f_s\left(\vartheta\right) Y_s \, \mathrm{d}s + \frac{\varepsilon}{\delta_{\varepsilon}} \int_{t_{i+1}}^{t_{i+1}+\delta_{\varepsilon}} \sigma_s \, \mathrm{d}W_s.$$

Hence if we take $\varepsilon \delta_{\varepsilon}^{-1/2} \to 0$, then

$$\frac{X_{t_{i+1}+\delta_{\varepsilon}} - X_{t_{i+1}}}{\delta_{\varepsilon}} = f_{t_{i+1}} \left(\vartheta\right) Y_{t_{i+1}} + o\left(1\right),$$

$$\frac{X_{t_{i}+\delta_{\varepsilon}} - X_{t_{i}}}{\delta} = f_{t_{i}} \left(\vartheta\right) Y_{t_{i}} + o\left(1\right)$$

and

If
$$\left| f_{t_{i+1}} \left(\vartheta \right) - f_{t_i} \left(\vartheta \right) \right| \leq C \varphi_{\varepsilon}$$
. Further, formally we write

$$\Psi_{\varepsilon}(\tau) = \sum_{i=0}^{N_{\tau,\varepsilon}-1} \left(f_{t_{i+1}}(\vartheta) Y_{t_{i+1}} - f_{t_{i}}(\vartheta) Y_{t_{i}} \right)^{2} + o(1)$$

$$= \sum_{i=0}^{N_{\tau,\varepsilon}-1} f_{t_{i}}(\vartheta)^{2} \left(Y_{t_{i+1}} - Y_{t_{i}} \right)^{2} + o(1)$$

$$= \sum_{i=0}^{N_{t,\varepsilon}-1} f_{t_{i}}(\vartheta)^{2} \left(\int_{t_{i}}^{t_{i+1}} a_{s}(\vartheta) Y_{s} ds + \int_{t_{i}}^{t_{i+1}} b_{s}(\vartheta) dV_{s} \right)^{2} + o(1)$$

$$= \sum_{i=0}^{N_{\tau,\varepsilon}-1} f_{t_{i}}(\vartheta)^{2} \left(\int_{t_{i}}^{t_{i+1}} b_{s}(\vartheta) dV_{s} \right)^{2} + o(1)$$

$$= \sum_{i=0}^{N_{\tau,\varepsilon}-1} f_{t_{i}}(\vartheta)^{2} b_{t_{i}}(\vartheta)^{2} \left(t_{i+1} - t_{i} \right) + o(1)$$

$$\longrightarrow \int_{0}^{\tau} f_{s}(\vartheta)^{2} b_{s}(\vartheta)^{2} ds = \Psi_{\tau}.$$

We have the estimates

$$\mathbf{E}_{\vartheta} \left| \Psi_{\varepsilon} \left(\tau \right) - \sum_{i=0}^{N_{\tau,\varepsilon} - 1} f_{t_i} \left(\vartheta \right)^2 \left[Y_{t_{i+1}} - Y_{t_i} \right]^2 \right| \\ \leq C \left[\sqrt{\frac{\delta_{\varepsilon}}{\varphi_{\varepsilon}}} + \varphi_{\varepsilon} + \frac{\varepsilon}{\sqrt{\delta_{\varepsilon} \varphi_{\varepsilon}}} \right],$$

and

$$\left| \Psi_{\tau} - \sum_{i=0}^{N_{\tau,\varepsilon}-1} f_{t_i} (\vartheta)^2 b_{t_i} (\vartheta)^2 (t_{i+1} - t_i) \right| \leq C \varphi_{\varepsilon}.$$

If we put $\delta_{\varepsilon} = \varepsilon^q, \varphi_{\varepsilon} = \varepsilon^l$ then the equation

$$\sqrt{\frac{\delta_{\varepsilon}}{\varphi_{\varepsilon}}} = \varphi_{\varepsilon} = \frac{\varepsilon}{\sqrt{\delta_{\varepsilon}\varphi_{\varepsilon}}}$$

gives us the values q = 1 and l = 1/3, i.e.,

$$\delta_{\varepsilon} = \varepsilon$$
 and $\varphi_{\varepsilon} = \varepsilon^{1/3}$.

Hence $t_{i+1} = t_i + \varepsilon^{1/3}$,

$$\Psi_{\varepsilon}(\tau) = \sum_{i=0}^{N_{\tau,\varepsilon}-1} \left(\frac{X_{t_{i+1}+\varepsilon} - X_{t_{i+1}}}{\varepsilon} - \frac{X_{t_{i}+\varepsilon} - X_{t_{i}}}{\varepsilon} \right)^{2},$$

and

$$\mathbf{E}_{\vartheta} \left| \Psi_{\varepsilon} \left(\tau \right) - \sum_{i=0}^{N_{\tau,\varepsilon} - 1} f_{t_i} \left(\vartheta \right)^2 \left[Y_{t_{i+1}} - Y_{t_i} \right]^2 \right| \leq C \, \varepsilon^{1/3}.$$

The regularity conditions:

 $\mathcal{A}. \ \ \textit{The functions} \ a\left(\cdot\right), b\left(\cdot\right) \in \mathcal{C}^{(1)}\left[0,\tau\right] \ \textit{and} \ f\left(\cdot\right), \sigma\left(\cdot\right) \in \mathcal{C}^{(2)}\left[0,\tau\right].$

Theorem 2. Let the condition A be fulfilled then for any p > 0 there exist a constant C > 0 such that

$$\mathbf{E}_{\vartheta} \left| \hat{\Psi}_{\varepsilon} \left(\tau \right) - \Psi_{\tau} \right|^{p} \leq C \, \varepsilon^{p/3}.$$

Reark that it is possible to prove the asymptotic normality

$$\varepsilon^{-1/3} \left(\hat{\Psi}_{\varepsilon} \left(\tau \right) - \Psi_{\tau} \right) \Longrightarrow \mathcal{N} \left(0, D^2 \right).$$

Parameter estimation.

Consider the partially observed linear system

$$dY_t = a(t) Y_t dt + b(\vartheta, t) dV_t, Y_0 = 0, (6)$$

$$dX_t = f(\vartheta, t) Y_t dt + \varepsilon \sigma(t) dW_t, \qquad X_0 = 0.$$
 (7)

Substitution estimator $\bar{\vartheta}_{\varepsilon}$.

The functions $f(\cdot)$, $b(\cdot)$ are supposed to be known and the functions $a(\cdot)$, $\sigma(\cdot)$ are unknown. Define the function

$$\Psi_{\tau}(\vartheta) = \int_{0}^{\tau} f(\vartheta, t)^{2} b(\vartheta, t)^{2} dt, \qquad \vartheta \in (\alpha, \beta) = \Theta.$$

We have

$$\dot{\Psi}_{\tau}(\vartheta) = 2 \int_{0}^{\tau} \left[\dot{f}(\vartheta, t) b(\vartheta, t) + f(\vartheta, t) \dot{b}(\vartheta, t) \right] f(\vartheta, t) b(\vartheta, t) dt.$$
Condition \mathcal{B} .

 \mathcal{B}_{1} . The functions $\Psi_{\tau}\left(\vartheta\right)$ has two continuous derivatives $\dot{\Psi}_{\tau}\left(\vartheta\right)$, $\ddot{\Psi}_{\tau}\left(\vartheta\right)$ w.r.t. ϑ .

 \mathcal{B}_2 . For a given τ we have

$$\inf_{\vartheta \in \Theta} \left| \dot{\Psi}_{\tau} \left(\vartheta \right) \right| > 0. \tag{8}$$

By condition (8) the function $\Psi_{\tau}(\cdot)$ is monotone. Without loss of generality we suppose that it is increasing.

Introduce the notation

$$\begin{split} \hat{\Psi}_{\tau,\varepsilon} &= \sum_{i=0}^{N_{\tau,\varepsilon}-1} \left(\frac{X_{t_{i+1}+\varepsilon} - X_{t_{i+1}}}{\varepsilon} - \frac{X_{t_{i}+\varepsilon} - X_{t_{i}}}{\varepsilon} \right)^{2}, \quad t_{i+1} = t_{i} + \varepsilon^{1/3}, \\ \psi_{m} &= \inf_{\vartheta \in \Theta} \Psi_{\tau} \left(\vartheta \right), \; \psi_{M} = \sup_{\vartheta \in \Theta} \Psi_{\tau} \left(\vartheta \right), \; \psi_{m} = \Psi_{\tau} \left(\alpha \right), \; \psi_{M} = \Psi_{\tau} \left(\beta \right), \\ G \left(\psi \right) &= \Psi_{\tau}^{-1} \left(\psi \right), \quad \psi_{m} < \psi < \psi_{M}, \qquad \alpha < G \left(\psi \right) < \beta, \\ \mathbb{B}_{m} &= \left\{ \omega : \quad \hat{\Psi}_{\tau,\varepsilon} \leq \psi_{m} \right\}, \qquad \mathbb{B}_{M} = \left\{ \omega : \quad \hat{\Psi}_{\tau,\varepsilon} \geq \psi_{M} \right\}, \\ \mathbb{B} &= \left\{ \omega : \quad \psi_{m} < \hat{\Psi}_{\tau,\varepsilon} < \psi_{M} \right\}, \qquad \eta_{\varepsilon} = G(\hat{\Psi}_{\tau,\varepsilon}), \end{split}$$

The substitution estimator (SE) is introduced as follows

$$\dot{\vartheta}_{\tau,\varepsilon} = \alpha \mathbb{I}_{\{\mathbb{B}_m\}} + \eta_{\varepsilon} \mathbb{I}_{\{\mathbb{B}\}} + \beta \mathbb{I}_{\{\mathbb{B}_M\}}.$$

Roughly speaking

$$\hat{\Psi}_{\tau,\varepsilon} = \Psi_{\tau} \left(\check{\vartheta}_{\tau,\varepsilon} \right).$$

It has the following properties.

Theorem 3. Suppose that the conditions A and B are fulfilled. Then for any p > 0 there exists a constant C = C(p) > 0 such that

exists a constant
$$C = C(p) > 0$$
 such that
$$\sup_{\vartheta \in \Theta} \varepsilon^{-p/3} \mathbf{E}_{\vartheta} \left| \check{\vartheta}_{\tau,\varepsilon} - \vartheta \right|^p \le C. \tag{9}$$

Example 1. Suppose that we have the model of observations (6),(7), where $f(\vartheta,t) = \vartheta f(t)$, $\vartheta \in (\alpha,\beta)$, $\alpha > 0$, $b(\vartheta,t) = b(t)$ and all corresponding conditions are fulfilled. Then

$$\Psi_{\tau}(\vartheta) = \vartheta^{2} \int_{0}^{\tau} f(t)^{2} b(t)^{2} dt$$

and SE

$$\check{\vartheta}_{\tau,\varepsilon} = \sqrt{\Psi_{\tau,\varepsilon}} \left(\int_0^{\tau} f(t)^2 b(t)^2 dt \right)^{-1/2}.$$

This estimator is consistent and has the rate of convergence $\varepsilon^{1/3}$.

Example 2. Consider this model with $b\left(\vartheta,t\right)=\sqrt{h\left(t\right)+\vartheta g\left(t\right)}$ and $f\left(\vartheta,t\right)=f\left(t\right)$. Suppose that the functions $h\left(\cdot\right)$ and $g\left(\cdot\right)$ are positive and $\alpha>0$. Then

$$\Psi_{\tau}(\vartheta) = \int_{0}^{\tau} f(t)^{2} \left[h(t) + \vartheta g(t) \right] dt$$

and

$$\vartheta = \left(\Psi_{\tau}\left(\vartheta\right) - \int_{0}^{\tau} f\left(t\right)^{2} h\left(t\right) dt\right) \left(\int_{0}^{\tau} f\left(t\right)^{2} g\left(t\right) dt\right)^{-1}.$$

Hence the SE is

$$\check{\vartheta}_{\tau,\varepsilon} = \left(\Psi_{\tau,\varepsilon} - \int_0^{\tau} f(t)^2 h(t) dt\right) \left(\int_0^{\tau} f(t)^2 g(t) dt\right)^{-1}.$$

This estimator is consistent and has the rate of convergence $\varepsilon^{1/3}$.

One-step MLE-process $\vartheta_{t,\varepsilon}^{\star}, \tau < t \leq T$.

Suppose that we have slightly different partially observed system

$$dY_t = a(\vartheta, t) Y_t dt + b(\vartheta, t) dV_t, Y_0 = 0,$$

$$dX_t = f(\vartheta, t) Y_t dt + \varepsilon \sigma(t) dW_t, X_0 = 0.$$

As before the process $X^T = (X_t, 0 \le t \le T)$ is observable and Y^T is All functions $a(\cdot), b(\cdot), f(\cdot)$ and $\sigma(\cdot)$ are supposed to be known. The parameter $\vartheta \in \Theta = (\alpha, \beta)$ is unknown and has to be estimated by observations X^T .

One way is to use the MLE $\hat{\vartheta}_{\tau,\varepsilon}$. Remind that the MLE is defined by the equation

$$L(\hat{\vartheta}_{\tau,\varepsilon}, X^{\tau}) = \sup_{\vartheta \in \Theta} L(\vartheta, X^{\tau}),$$

where the likelihood ratio function is

$$L\left(\vartheta,X^{\tau}\right) = \exp\left\{\int_{0}^{\tau} \frac{M\left(\vartheta,t\right)}{\varepsilon^{2}\sigma\left(t\right)^{2}} \, \mathrm{d}X_{t} - \int_{0}^{\tau} \frac{M\left(\vartheta,t\right)^{2}}{2\varepsilon^{2}\sigma\left(t\right)^{2}} \mathrm{d}t\right\}, \qquad \vartheta \in \Theta.$$

Here $M(\vartheta,t) = f(\vartheta,t) m(\vartheta,t)$, the function $\sigma(\cdot)$ is supposed to be positive.

The random process (conditional expectation) $m_t = m(\vartheta, t) =$ $\mathbf{E}_{\vartheta}\left(Y_{t} | X_{s}, 0 \leq s \leq t\right)$ satisfies the equation of the Kalman-Bucy filtration: $m(\vartheta, 0) = y_0$,

$$dm_{t} = a(\vartheta, t) m_{t} dt + \frac{\gamma(\vartheta, t) f(\vartheta, t)}{\varepsilon^{2} \sigma(t)^{2}} [dX_{t} - f(\vartheta, t) m_{t} dt],$$

$$\frac{\partial \gamma\left(\vartheta,t\right)}{\partial t}=2a\left(\vartheta,t\right)\gamma\left(\vartheta,t\right)-\frac{\gamma\left(\vartheta,t\right)^{2}f\left(\vartheta,t\right)^{2}}{\varepsilon^{2}\sigma\left(t\right)^{2}}+b\left(\vartheta,t\right)^{2},$$

with initial value $\gamma(\vartheta,0)=0$. It was shown that this estimator is consistent, asymptotically normal

$$\varepsilon^{-1/2}\left(\hat{\vartheta}_{\tau,\varepsilon}-\vartheta_{0}\right)\Longrightarrow\mathcal{N}\left(0,\mathbf{I}^{\tau}\left(\vartheta_{0}\right)^{-1}\right),\ \mathbf{I}^{\tau}\left(\vartheta\right)=\int_{0}^{\tau}\frac{\dot{S}\left(\vartheta,t\right)^{2}}{2S\left(\vartheta,t\right)\sigma\left(t\right)}\mathrm{d}t$$
 and asymptotically efficient. Here $S\left(\vartheta,t\right)=f\left(\vartheta,t\right)b\left(\vartheta,t\right).$

Introduce notation:
$$\tau < t \le T$$

$$I_{\tau}^{t}(\vartheta) = \int_{\tau}^{t} \frac{\dot{S}(\vartheta, s)^{2}}{2S(\vartheta, s)\sigma(s)} ds, \qquad \xi_{t,\varepsilon} = \frac{\vartheta_{t,\varepsilon}^{\star} - \vartheta_{0}}{\sqrt{\varepsilon}},$$

$$\vartheta_{t,\varepsilon}^{\star} = \check{\vartheta}_{\tau,\varepsilon} + \frac{1}{I_{\tau}^{t}(\check{\vartheta}_{\tau,\varepsilon})} \int_{\tau}^{t} \frac{\dot{M}(\check{\vartheta}_{\tau,\varepsilon}, s)}{\varepsilon\sigma(s)^{2}} \left[dX_{s} - M(\check{\vartheta}_{\tau,\varepsilon}, s) ds \right],$$

$$\xi_{t} = \frac{1}{I_{\tau}^{t}(\vartheta_{0})} \int_{\tau}^{t} \frac{\dot{S}(\vartheta_{0}, s)}{\sqrt{2S(\vartheta_{0}, s)\sigma(s)}} dw(s).$$

We have to define the random processes

$$M(\check{\vartheta}_{\tau,\varepsilon},s) = f\left(\check{\vartheta}_{\tau,\varepsilon},s\right) m\left(\check{\vartheta}_{\tau,\varepsilon},s\right)$$

and

$$\dot{M}(\check{\vartheta}_{\tau,\varepsilon},s) = \dot{f}\left(\check{\vartheta}_{\tau,\varepsilon},s\right) m\left(\check{\vartheta}_{\tau,\varepsilon},s\right) + f\left(\check{\vartheta}_{\tau,\varepsilon},s\right) \dot{m}\left(\check{\vartheta}_{\tau,\varepsilon},s\right)$$

Conditions C.

 C_1 . For any $t_0 \in (\tau, T]$

$$\inf_{\vartheta \in \Theta} \mathbf{I}_{\tau}^{t_0} \left(\vartheta \right) > 0.$$

 C_2 . The functions $f(\cdot)$, $\sigma(\cdot)$ are separated from zero and the functions $f(\cdot)$, $b(\cdot)$ have two continuous derivatives w.r.t. ϑ .

Proposition 1. Let the conditions $\mathcal{A},\mathcal{B},\mathcal{C}$ be fulfilled then the One-step MLE -process $\vartheta_{t,\varepsilon}^{\star}, \tau < t \leq T$ is consistent: for any $\nu > 0$

$$\mathbf{P}_{\vartheta_0} \left(\sup_{t_0 \leq t \leq T} \left| \vartheta_{t,\varepsilon}^{\star} - \vartheta_0 \right| \geq \nu \right) \longrightarrow 0,$$

the random process $\xi_{t,\varepsilon}, t_0 \leq t \leq T$ converges in distribution in the measurable space $(\mathcal{C}[t_0, T], \mathcal{B}])$ to the Gaussian process

$$\frac{\vartheta_{t,\varepsilon}^{\star} - \vartheta_{0}}{\sqrt{\varepsilon}} \Longrightarrow \xi_{t}, \qquad \qquad \xi_{t} \sim \mathcal{N}\left(0, I_{\tau}^{t} \left(\vartheta_{0}\right)^{-1}\right)$$

Adaptive filtration.

Note that

$$\frac{m_t - Y_t}{\sqrt{\varepsilon}} = \sqrt{\frac{\sigma(t) b(\vartheta, t)}{f(\vartheta, t)}} \zeta_{t, \varepsilon} + o(1) \Longrightarrow \sqrt{\frac{\sigma(t) b(\vartheta, t)}{2f(\vartheta, t)}} \zeta_t,$$

where $\zeta_t, t \in (0, T]$ are independent Gaussian random variables, $\zeta_t \sim \mathcal{N}(0, 1)$.

We have for any, say, continuous function h(t)

$$\varepsilon^{-1/2} \int_0^T (m_t - Y_t) h(t) dt \longrightarrow 0$$

and

$$\varepsilon^{-1} \int_{0}^{T} (m_{t} - Y_{t})^{2} h(t) dt \longrightarrow \int_{0}^{T} \frac{\sigma(t) b(\vartheta, t)}{2 f(\vartheta, t) h(t)} dt.$$

Introduce the equations of adaptive filtration

$$d\hat{m}(t) = -q_{\varepsilon} \left(\vartheta_{t,\varepsilon}^{\star}, t\right) \hat{m}(t) dt + \frac{\gamma \left(\vartheta_{t,\varepsilon}^{\star}, t\right) f\left(\vartheta_{t,\varepsilon}^{\star}, t\right)}{\varepsilon^{2} \sigma(t)^{2}} dX_{t}, \ \hat{m}(0) = y_{0},$$

$$\frac{\partial \gamma\left(\vartheta,t\right)}{\partial t} = 2a\left(\vartheta,t\right)\gamma\left(\vartheta,t\right) - \frac{\gamma\left(\vartheta,t\right)^{2}f\left(\vartheta,t\right)^{2}}{\varepsilon^{2}\sigma\left(t\right)^{2}} + b\left(\vartheta,t\right)^{2},\gamma\left(\vartheta,0\right) = 0.$$

Here

$$q_{\varepsilon}(\vartheta, t) = \frac{\gamma(\vartheta, t) f(\vartheta, t)^{2}}{\varepsilon^{2} \sigma(t)^{2}} - a(\vartheta, t)$$

and we suppose that Riccati equation can be solved before the experience.

The error of approximation of $m_t = m(\vartheta_0, t)$ is

$$\frac{m_t - \hat{m}(t)}{\sqrt{\varepsilon}} \Longrightarrow \frac{b(\vartheta_0, t) \dot{f}(\vartheta_0, t)}{\sigma(t)} Y_t - \frac{\dot{b}(\vartheta_0, t) \sqrt{\sigma(t)}}{\sqrt{f(\vartheta_0, t) b(\vartheta_0, t)}} \zeta_t \xi_t,$$

where $\zeta_t, t \in (0, T]$ are independent standard Gaussian r.v.'s.

This limit together with

$$\frac{m_t - Y_t}{\sqrt{\varepsilon}} \Longrightarrow \sqrt{\frac{\sigma(t) b(\vartheta, t)}{2f(\vartheta, t)}} \zeta_t,$$

allows us to describe the error of approximation of Y_t by $\hat{m}(t)$:

$$\frac{\hat{m}(t)-Y_t}{\sqrt{\varepsilon}}$$
.

It is possible to give this couple of equations in recurrent form too

$$d\tilde{m}(t) = -q_{\varepsilon} \left(\vartheta_{t,\varepsilon}^{\star}, t\right) \tilde{m}(t) dt + \frac{\hat{\gamma}(t) f\left(\vartheta_{t,\varepsilon}^{\star}, t\right)}{\varepsilon^{2} \sigma(t)^{2}} dX_{t}, \quad \tilde{m}(0) = y_{0},$$

$$\frac{\partial \hat{\gamma}\left(t\right)}{\partial t} = 2a\left(\vartheta_{t,\varepsilon}^{\star},t\right)\hat{\gamma}\left(t\right) - \frac{\hat{\gamma}\left(t\right)^{2}f\left(\vartheta_{t,\varepsilon}^{\star},t\right)^{2}}{\varepsilon^{2}\sigma\left(t\right)^{2}} + b\left(\vartheta_{t,\varepsilon}^{\star},t\right)^{2},\ \hat{\gamma}\left(0\right) = 0.$$

It was shown that $\hat{m}(t) - m(\vartheta_0, t) = \sqrt{\varepsilon}O_p(1)$.

Remarks.

- 1. The rate of convergence $\phi_{\varepsilon} = \varepsilon^m$ of the preliminary estimator for the construction of a consistent One-step MLE-process has to be such that $m \in (\frac{1}{4}, \frac{1}{2}]$. Recall that the proposed SE $\check{\vartheta}_{\varepsilon}$ has $\phi_{\varepsilon} = \varepsilon^{1/3}$.
- 2. It is possible to study this construction supposing that $\tau = \tau_{\varepsilon} \to 0$ sufficiently slow. We need just to provide for the preliminary estimator $\bar{\vartheta}_{\tau_{\varepsilon},\varepsilon}$ the convergence

$$\mathbf{E}_{\vartheta} \left| \bar{\vartheta}_{\tau_{\varepsilon},\varepsilon} - \vartheta \right|^{2} \le C \varepsilon^{2m}$$

where $m \in (\frac{1}{4}, \frac{1}{2}]$. This will allow us to prove the asymptotic efficiency of the One-step MLE-process for all $t \in (0, T]$.

References

- [1] Kutoyants Yu.A. On parameter estimation of hidden Ornstein Uhlenbeck process, // J. Multivariate Analysis. 2019. V. 169. No. 1. P. 248–263.
- [2] Kutoyants Yu.A. Quadratic variation estimation of hidden Markov process and related problems, 2022, submitted.

Кутоянц Ю.А. (Университет Ле-Мана, Ле-Ман, Франция, Томский государственный университет, Томск, Россия, 2022) **Статистика скрытых марковских процессов (непрерывное время)**

Аннотация. Представляем обзор нескольких недавних результатов по оцениванию параметров частично наблюдаемых линейных систем и построению адаптивных уравнений фильтрации Калмана-Бьюси. Предполагается, что уравнение наблюдения содержит малый шум уровня ε , а свойства оценок описываются в асимптотике $\varepsilon \to 0$. Адаптивный фильтр строится в несколько этапов. Сначала предлагаем непараметрическую оценку квадратичной вариации производной наблюдений. Затем используем эту оценку для построения одношагового МLЕ-процесса. Наконец, этот оценочный процесс подставляется в уравнения фильтрации.

Ключевые слова: фильтр Калмана-Бьюси, оценка волатильности, адаптивная фильтрация, одношаговый MLE-процесс.