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Abstract. In this paper, we consider semi-Markov flow as a bit-level
model of traffic. Each request of the flow brings some arbitrary dis-
tributed amount of information to the system. The current paper aims
to investigate the amount of information received in semi-Markov flow
during time unit. We use the asymptotic analysis method under the limit
condition of growing time of observation to derive the limiting probabil-
ity distribution of the amount of information received in the flow and
build the approximation of its prelimit distribution function.
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1 Introduction

In telecommunication systems, the models of arrivals usually capture the struc-
ture of traffic from a packet-level point of view. Despite the interest in traf-
fic models, few studies take into account packet length. Traffic modeling is
focused on capturing such properties of telecommunication flows as burstiness,
self-similarity and long-range dependence [5,13–15].

The idea of modeling arrivals together with the size of packets described in
paper [4]. Authors use batch Markovian arrival process (BMAP) to model packet
size as a size of the batch. In paper [12], authors build the model of traffic based
on discrete-time BMAP model using two counting processes: the number of
arriving packets and the number of bytes in those packets. Both processes in
the model are affected by the state of the underlying Markov chain. More ideas
of using packet size in traffic modeling are described in [3]. In some cases, for
example, in papers [10,11], the model cannot be investigated when the input
process describe only the number of received packets.

Resource flows are applicable in such area of research as queueing systems
with random resource requirements. In such systems, each request of the flow
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has some random requirement on the resources [1,2,6]. Similar resource systems
are described in papers [7,8].

We propose semi-Markov flow as a model of bit-level traffic, which allows
us to take into account the length of packets in telecommunication systems.
In our model, packets arrivals are driven by the semi-Markov process and the
lengths of packets follow the arbitrary distribution. To research the model, we
use the asymptotic analysis method under the limit condition of the growing time
of the flow observation. We build a Gaussian approximation of the cumulative
distribution function of the amount of information received in the flow.

We have organized the paper as follows. In Sect. 2, we present a mathematical
model of semi-Markov flow. Section 3 is devoted to the derivation of the balance
equation for the probability distribution of the process describing the amount
of information received in the flow. In Sect. 4, we investigate the model using
the asymptotic analysis method under the limit condition of growing time and
build a Gaussian approximation. In Sect. 5, we show the numerical experiments
and the area of applicability of the approximation. Section 6 is dedicated to the
concluding remarks.

2 Mathematical Model of Semi-markov Flow

Semi-Markov flow is determined by semi-Markov matrix A(x). Elements Akν(x)
of the matrix has the following from:

Akν(x) = P{ξ(n + 1) = ν, τ(n + 1) < x|ξ(n) = k}. (1)

We also take into account that

P = A(∞), (2)

where P is the transition matrix of embedded Markov chain ξ(n) at the moments
of state changes of the semi-Markov process. Moments tn of arrivals in semi-
Markov flow we determine as follows:

tn+1 = tn + τ(n + 1).

Further, we use semi-Markov process k(t), which is defined by equality

k(t) = ξ(n + 1), if tn < t ≤ tn+1 = tn + τ(n + 1). (3)

Each request of the flow brings some random amount of information with arbi-
trary distribution given by cumulative distribution function B(x).

We denote S(t) as the amount of information received in semi-Markov flow
during time t. The problem is to derive the probability distribution of process
S(t).

We also denote z(t) as the residual time of next arrival in the flow and
consider three-dimensional process {k(t), S(t), z(t)}.
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3 Balance Equation for the Probability Distribution
of the Flow State

Three-dimensional process {k(t), S(t), z(t)} is Markovian. Thus, we consider the
function

Pk(s, z, t) = P{k(t) = k, S(t) < s, z(t) < z}
and derive balance equation

∂Pk(s, z, t)
∂t

=
∂Pk(s, z, t)

∂z
− ∂Pk(s, 0, t)

∂z
+

K∑

ν=1

s∫

0

∂Pν(s − x, 0, t)
∂z

dB(x)Aνk(z),

(4)

where
∂Pk(s, 0, t)

∂z
=

∂Pk(s, z, t)
∂z

∣∣∣
z=0

.

We introduce partial characteristic functions

Hk(u, z, t) =

∞∫

0

ejusdsPk(s, z, t)

and denote vector characteristic function

H(u, z, t) = {H1(u, z, t),H2(u, z, t), ...,HK(u, z, t)},

identity matrix I and vector of ones e. After that, we rewrite Eq. (4) together
with additional equation obtained taking the limit by z → ∞

∂H(u, z, t)
∂t

=
∂H(u, z, t)

∂z
− ∂H(u, 0, t)

∂z
{I − A(z)B∗(u)},

∂H(u, t)
∂t

e =
∂H(u, 0, t)

∂z
{B∗(u) − 1}e, (5)

where B∗(u) =
∞∫
0

ejuxdB(x) is the characteristic function of the amount of

information in one request of the semi-Markov flow and H(u, t) = H(u,∞, t).
We cannot solve system (5) directly. Thus, we use asymptotic analysis

method to investigate the amount of information received in the flow per time
unit.

4 Asymptotic Probability Distribution

We introduce the equality t = τT , where τ ≥ 0 and T is an infinite parameter, as
the limit condition of growing time. Solving system (5) in the limit by T → ∞,
we formulate the following theorem.
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Theorem 1. For characteristic function H(u, t) = EejuS(t) = H(u, t)e in the
limit condition of growing time, the following equality holds:

lim
t→∞

{
H(u, t) − exp

(
juκ1t +

(ju)2

2
κ2t

)}
= 0, (6)

where
κ1 =

b1
rA1e

, (7)

κ2 =
b2

rA1e
+ 2b1g′(0)e. (8)

Here b1 and b2 are the first and second raw moments of distribution function
B(x), matrices A1 and A2 are determined by formulas

A1 =

∞∫

0

(P − A(x))dx,

A2 =

∞∫

0

x2dA(x).

Vector g′(0) is the solution of the inhomogeneous system of equations

g′(0)(I − P) = κ1(r − R),

g′(0)A1e =
b1
2

rA1e
(rA2e)2

− b1.

Vector r is the steady state probability distribution of embedded Markov chain
ξ(n), which is the solution of the system

r = rP,

re = 1.

Vector R is the steady-state probability distribution of semi-Markov process k(t),
which is given by formula

R =
rA1

rA1e
.

Proof. In system (5), we denote
1
T

= ε and make the following substitutions:

τ = εt, u = εw, H(u, z, t) = F(w, z, τ, ε). (9)

We obtain

ε
∂F(w, z, τ, ε)

∂τ
− ∂F(w, z, τ, ε)

∂z
=

∂F(w, 0, τ, ε)
∂z

{A(z)B∗(εw) − I} ,
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ε
∂F(w, z, τ, ε)

∂τ
e =

∂F(w, z, τ, ε)
∂z

{B∗(εw) − 1} e. (10)

After that, we take the limit by ε → 0 in the first equation of system (10) taking
into account that B∗(0) = 1, which yields

∂F(w, z, τ)
∂z

=
∂F(w, 0, τ)

∂z
{I − A(z)} .

The idea of the asymptotic analysis method, which is outlined in paper [9], is to
present the solution of the last equation in the following form:

F(w, z, τ) = Φ(w, τ)R(z), (11)

where R(z) is the steady-state distribution of two-dimensional process
{k(t), z(t)}, which satisfies the equality

R(z) = R′(0)

z∫

0

(P − A(x))dx.

Here
R′(0) =

r
rA1e

,

matrix A1 is given by

A1 =

∞∫

0

(P − A(x))dx,

vector r is the steady-state distribution of the embedded Markov chain, which
is the solution of the system

r = rP,

re = 1. (12)

Consider the second equation of system (10), making the decomposition of
B∗(εw) into the Taylor series up to O(ε2) :

ε
∂F(w, τ, ε)

∂τ
e = jwεb1

∂F(w, 0, τ, ε)
∂z

e + O(ε2),

where b1 is the mean packet length. Substituting the solution (11) into the last
equation, we take the limit by ε → 0 and obtain

∂Φ(w, τ)
∂τ

= jwb1Φ(w, τ)R′(0)e.

It is easy to see that the solution of the last equation is given by

Φ(w, τ) = ejwκ1τ .
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Here κ1 has the following form:

κ1 =
b1

rA1e
,

which coincides with (7).
Making substitutions w =

u

ε
and τ = εt reverse to (9), we obtain the equality

ejwκ1τ = ejuκ1t.

For the more detailed analysis, we make the following substitution in system
(5):

H(u, z, t) = ejuκ1tH1(u, z, t). (13)

Substituting (13) into system (5), we obtain the system of equations for charac-
teristic function H1(u, z, t):

∂H1(u, z, t)
∂t

+ juκ1H1(u, z, t) =
∂H1(u, z, t)

∂z
+

∂H1(u, z, t)
∂z

{A(z)B∗(u) − I} ,

∂H1(u, z, t)
∂t

e + juκ1H1(u, z, t)e =
∂H1(u, z, t)

∂z
{B∗(u) − 1} e. (14)

We denote
1
T

= ε2 and make the following substitutions in system (14):

τ = ε2t, u = εw,H1(u, z, t) = F1(w, z, τ, ε). (15)

We obtain the system of equations

ε2
∂F1(w, z, τ, ε)

∂τ
+ jεwκ1F1(w, z, τ, ε)

=
∂F1(w, z, τ, ε)

∂z
− ∂F1(w, 0, τ, ε)

∂z
{I − A(z)B∗(εw)} ,

ε2
∂F1(w, τ, ε)

∂τ
e + jεwκ1F1(w, τ, ε)e =

∂F1(w, 0, τ, ε)
∂z

{B∗(εw) − 1} e. (16)

We will seek the solution of system (16) in the following form:

F1(w, z, τ, ε) = Φ(w, τ) {R(z) + jεwf(z)} + O(ε2), (17)

which we substitute into (16):

jεwκ1R(z) = R′(z) + jεwf ′(z) − R′(0) {I − A(z)(1 + jεwb1)}

−jεwf ′(0) {I − A(z)} + O(ε2).

After that, we present the last equation as follows:

f ′(z) − f ′(0) {I − A(z)} = κ1 [R(z) − rA(z)] . (18)
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According to the superposition principle, we present the solution of Eq. (18)
as the sum:

f(z) = CR(z) + g(z), (19)

which we substitute into (18):

g′(z) − g′(0) {I − A(z)} = κ1 [R(z) − rA(z)] . (20)

Since g(z) by virtue of (19) is a particular solution of (18), then we assume
that it satisfies the additional condition g(∞)e = 0. We take the limit by z → ∞
in Eq. (20) and obtain

g(∞) =

∞∫

0

g′(0) {I − A(z)} dz − κ1

∞∫

0

(rA(z) − R(z))dz.

For the improper integral, we set the integrand as z → ∞ equal to zero:

g′(0)(I − P) − κ1(r − R) = 0, (21)

where R = R(∞) is the vector of steady-state distribution of semi-Markov
process k(t), which satisfies the system of equations

R =
rA1

rA1e
,

Re = 1. (22)

Taking back to Eq. (21), we represent it as follows:

g′(0)(I − P) = κ1(r − R).

The obtained system of linear algebraic equations has unlimited number of solu-
tions. Thus, we apply the additional condition, which we derive from the equality

0 = g(∞)e =

∞∫

0

{g′(0)(I − A(z)) − κ1(rA(z) − R(z))} dz e.

Taking (21) into account, we can transform the last equality:

0 = g(∞)e =

∞∫

0

{g′(0)(I − A(z)) + κ1r(P − A(z)) + κ1(R(z) − R)} dze

= g′(0)

∞∫

0

(P − A(x))dxe + κ1

∞∫

0

(R(x) − R)dxe + κ1r

∞∫

0

(P − A(x))dxe

= g′(0)A1e − κ1

∞∫

0

(R − R(x))dxe + b1.



Semi-markov Resource Flow as a Bit-Level Model of Traffic 227

Here the integral can be transformed as follows:

∞∫

0

(R − R(x))dx = (R − R(x))x
∣∣∣
∞

0
+

∞∫

0

xdR(x)

= R′(0)

∞∫

0

x(I − A(x))dx = R′(0)

∞∫

0

(I − A(x))d
x2

2

= R′(0)

⎧
⎨

⎩(I − A(x))
x2

2

∣∣∣
∞

0
+

∞∫

0

x2

2
dA(x)

⎫
⎬

⎭ =
1
2
R′(0)A2 =

rA2

rA2e
.

Here matrix A2 is given by

A2 =

∞∫

0

x2

2
dA(x).

Finally, we have the system of linear algebraic equations with a solution

g′(0)(I − P) = κ1(r − R),

g′(0)A1e =
b1
2

rA2e
(rA1e)2

− b1. (23)

After that, we consider the second equation of system (16), in which we
substitute decomposition (17):

ε2
∂Φ(w, τ)

∂τ
+ jwεκ1Φ(w, τ)(1 + jwεC)

= Φ(w, τ)
{
R′(0)

[
jwεb1 +

(jwε)2

2
b2

]
− jwεf ′(0)(−jwεb1)

}
e + O(ε3).

By simple transformations, we obtain

∂Φ(w, τ)
∂τ

+ (jw)2κ1Φ(w, τ)C = Φ(w, τ)
{

(jw)2

2
R′(0)b2 + (jw)2b1f ′(0)

}
e.

By the virtue of (19), we can write

∂Φ(w, τ)
∂τ

+ (jw)2κ1Φ(w, τ)C

= Φ(w, τ)
{

(jw)2

2
R′(0)b2 + (jw)2b1(CR′(0) + g′(0))

}
e,

from which we obtain

∂Φ(w, τ)
∂τ

= Φ(w, τ)
(jw)2

2

{
b2

rA1e
+ 2b1g′(0)e

}
.
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Denoting

κ2 =
b2

rA1e
+ 2b1g′(0)e, (24)

which coincides with (8), we derive the solution of differential equation above

Φ(w, τ) = exp
{

(jw)2

2
κ2τ

}
.

From substitutions (15), we make the reverse substitutions

w =
u

ε
, τ = ε2t,

which yields

Φ(w, τ) = exp
{

(jw)2

2
κ2τ

}
= exp

{
(ju)2

2ε2
κ2ε

2t

}
= exp

{
(ju)2

2
κ2t

}
.

Finally, in (13), we set z → ∞ and obtain the asymptotic characteristic function

h1(u, t) = exp{juκ1t} exp
{

(ju)2

2
κ2t

}
= exp

{
juκ1t +

(ju)2

2
κ2t

}
.

As we can see, the distribution of the amount of information received in
semi-Markov flow is asymptotically Gaussian with mean κ1t and variance κ2t.

We note that by setting b1 = 1 and b2 = 1, we obtain the case when the
amount of information in a packet is deterministic and equal to one. Thus, the
obtained result is valid for the number of packet arrivals in the flow.

Since Gaussian distribution allows negative values, we propose the following
approximation for distribution function of the amount of information received
in the flow during time t:

FApprox(x, t) =
G(x, t) − G(0, t)

1 − G(0, t)
, (25)

where G(x, t) is the Gaussian distribution function with mean κ1t and variance
κ2t.

5 Numerical Example

We set semi-Markov matrix as follows:

A(x) = P ◦ G(x),

where P is the transition matrix of the embedded Markov chain ξ(n) and G(x)
is the matrix of conditional distributions of the process τ(n), operation ◦ is
Hadamard product of matrices.
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Matrix P is given by

P =
[
0.95 0.05
0.8 0.2

]
.

The elements of matrix G(x) are gamma distribution functions with shape
parameters α11 = 0.005, α12 = 0.01, α21 = 0.1, α22 = 1 and scale parameter
β = 1. We assume that the amount of information in one packet is deterministic
and equals to b1 = 1.5.

Figures 1, 2, 3 show the distribution function of the amount of information
received in semi-Markov flow via simulation (solid line) compared with asymp-
totic results (dash line) for t = 20, t = 50 and t = 75.

Fig. 1. The distribution function of the amount of information received in semi-Markov
flow and its asymptotic approximation for t = 20

Table contains the values of Kolmogorov distance

Δ = max
0≤x<∞

∣∣∣FSim(x, t) − FApprox(x, t)
∣∣∣

between empirical distribution function obtained via simulation FSim(x, t) and
asymptotic cumulative distribution function FApprox(x, t) of the amount of infor-
mation received in the flow during time t given by (25) (Table 1).
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Fig. 2. The distribution function of the amount of information received in semi-Markov
flow and its asymptotic approximation for t = 50

Fig. 3. The distribution function of the amount of information received in semi-Markov
flow and its asymptotic approximation for t = 75

Table 1. Kolmogorov distance between empirical distribution function of the amount
of information in the buffer and its asymptotic approximation

t = 10 t = 20 t = 50 t = 75 t = 100

Δ 0.0817 0.0768 0.0766 0.0758 0.0752
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6 Conclusion

We have considered the bit-level traffic model in form of semi-Markov flow. For
the amount of information received in the flow, we have obtained the limiting
probability distribution under the limit condition of growing time of observation.
We have derived the explicit formula for the mean and variance of Gaussian
distribution. Since the distribution of the packet length in the model is arbitrary,
the results are applicable for the number of packets arrivals when we set the size
of each packet is equal to one.
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