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Abstract 
The proposed universal digital simulators of random processes based on their Markov models are considered as capable of 
generating sequences of samples of unlimited duration. It is shown that a simple Markov chain allows generating the random 
numbers with a specified two-dimensional probability distribution of the neighboring values while a doubly connected Markov 
model makes it possible to get the three-dimensional random numbers. The parameters of the model are determined from 
either a known probability density or experimental samples of the simulated random process. It is demonstrated that the 
simulation algorithms do not require complex mathematical transformations and that they can be implemented using a simple 
element base. To change the properties of the generated random processes one needs to reload the memory device with a pre-
formed data array. The block diagrams of the simulators are studied and the probabilistic and correlation characteristics of the 
generated random processes are determined. It is established that with these simulators a high accuracy of convergence of the 
probability distributions of the selected model and the histograms of the generated sample sequences is ensured. In the 
common studies, one can hardly find the results that can surpass by their efficiency the ones that the proposed simulation 
algorithms demonstrate accounting for their non-problematic hardware implementation (the minimum computational costs) 
and the simplicity of reconfiguring the Markov model based simulators for generating new random processes. The introduced 
simulators can be used in the design, development and testing of the multi-purpose electronic equipment, with different 
meters and the devices for simulating radio paths. 

Keywords: Random-number generator; Markov model; matrix of transition probabilities; probability density; statistical 
simulation 
 
 

1. Introduction 
Software or hardware generators of random 
information or interference signals with the specified 

probabilistic properties are used in solving various radio 
engineering problems, in the design, study and testing 
of equipment, to control devices for simulating radio 
channels with specific types of additive and 
multiplicative interferences, etc. (Law & Kelton, 2000; 
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Bardis, Markovskyi, Doukas, & Karadimas, 2009; 
Pchelintsev & Pergamenshchikov, 2019; Radchenko, 
Tokarev, Makarov, Gulmanov, & Melnikov, 2020). 

In analog noise generators (Dobkin & Hamburger, 
2014), thermal noise processes in electronic elements 
are used, their statistical properties are close to the 
Gaussian probability distribution. The disadvantages 
of such generators are the difficulty of providing the 
specified probabilistic characteristics (especially, 
multidimensional ones) with high accuracy and 
stability. Digital simulators can be designed based on 
the transformation of equiprobable random numbers 
(Devroye, 1986) obtained, for example, using a long 
M-sequence generator (Lee & Kim, 2002). However, in 
this case, there are computational difficulties while 
implementing nonlinear operations, especially for 
two-dimensional probability distributions. 

The digital simulators of random processes based 
on their Markov models are largely devoid of the 
disadvantages mentioned above as it is described in 
(Glushkov, Menshikh, Khohlov, Bokova, & Kalinin, 
2017; Glushkov, Kalinin, Litvinenko, & Litvinenko, 
2020; Chernoyarov, Litvinenko, Matveev, Dachian, & 
Melnikov, 2020). 

2. The Markov models of the random 
processes 

Our study begins with focusing on the continuous 
random process  and the corresponding discrete 
random process with the samples  ( ) are 
considered. Here n ( ) is the current number 

of the sample, N is the sample size,  the number 
of quantization levels, m is the analog-to-digital 
converter (ADC) width. The process is the Markov one 
(Dynkin, 2006), if the current value  depends upon 
the previous values , , …,  only. The value 
R is called the model connectivity. The Markov model 
is convenient for simulating various random processes 
and, in many cases, it is approximately applicable even 
when the simulated process is not the Markov one. 

In a simple (simply connected) Markov chain, when 
, the value of the current sample  depends 

upon the previous value  ( ) only, so 
that the corresponding Markov model is described by 
the two-dimensional square matrix  of transition 
probabilities and the column matrix  of the 
probabilities of the initial values . 

If the two-dimensional probability density  
of the process  is known, then, for the specified 
ADC quantization thresholds, one gets 

 (1) 

and thus the joint probability distribution  of 
the values  and  can be determined as 
follows 

. (2) 

Then, for the transition probabilities  and the 

probabilities of the initial values , one obtains 

 or . (3) 

If the experimental sampling  of the 
discrete random process values from the ADC output is 
observed, then under a large sample size N, the 
empirical simply connected model can be built. For 
this purpose, the numbers  of transitions of the 
process values from the previous  to the 
current  ones should be calculated over the 
complete sampling . Then the estimates of 
the joint probabilities  are found in the 
following way , and the next step 
is to calculate the probabilities ,  according to (3). 

In the doubly connected Markov model ( ), 
the value of the current sample  depends upon 
the values of the two previous samples  and 

, where . The model is 
described by the three-dimensional matrix  of 
transition probabilities and the column matrix  of 
the probabilities of the initial values . With the 
known three-dimensional probability density 

 of the process  and the thresholds  
(1), the joint probability distribution of the values 

,  and  is determined as 

, (4) 

while the transition probabilities  and the 

probabilities of the initial values  – as 

,  .  
(5) 

The empirical doubly connected Markov model can 
be built based on the experimental sampling of the 
random process samples ,  by calculating 
the numbers  of the transitions of the process 
values from the previous ,  to the 
current  ones by means of determining both 
the joint probability  and the 
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probabilities ,  (5). 

3. The simulator of the random processes 
based on the simple Markov chain 

In order to implement the simulator based on a simple 
Markov model specified by the matrix of transition 
probabilities , the matrix of the two-dimensional 
probability distribution function is calculated as 
follows 

. (6) 

The block diagram of the simulator is shown in 
Figure 1. The clock generator (CG) producing the 
pulses with the frequency  starts the random or 
pseudo-random number generator (RNG). The RNG 
forms a sequence of K-bit independent and 
equiprobable binary codes coming to the bus  of the 
least significant bits of the storage device (SD) 
address. The most significant bits of the address bus 

 determine the previous sample value  
from the register (RG) output. 

In the SD cells by the addresses , the 
precomputed minimum binary m-bit codes j 
( ) are saved, for which, while the 
values of the binary codes i ( ) and v 
( ) are specified, the inequality 

 (7) 

is satisfied. Here  are determined according to (6). 

By the next CG pulse, the value j from the SD output 
is poked into the RG and then it is fed both to the bus 

 as the previous process value  and then 
passes to the digital output of the simulator as the 
current value  for this cycle. 

 
Figure 1. The block diagram of the simulator of the random signal 
with the specified two-dimensional probability distribution 

 
Figure 2. The algorithm for software implementation of the 
simulator based on the simple Markov chain 

If the analog random process  is to be generated 
at the output of the simulator, then the value  
should be passed through a digital-to-analog 
converter (DAC). 

In Figure 2, the block diagram of the algorithm for 
the software implementation of the simulator is 
presented. Here the operation  means reading 
data from the SD array at the address A, in accordance 
with (7). 

As an example, one considers the Gaussian random 
process with the two-dimensional probability density 
(for two points in time , ) of the form (Robinson, 
1985) 

 (8) 

Here the notations are the following:  is the mean 
value (mathematical expectation),  is the 
dispersion, and  is the 
correlation coefficient of the process . 

In Figure 3a, the example of the joint probability 
distribution (2) calculated using the function (8) is 
presented for the case when , , , 

, and  in (1), while in Figure 3b and 
Figure 3c one can see the three-dimensional diagrams 
of the matrices of transition probabilities  (3) and 

probability distribution  (6). 

The results of statistical simulation of the digital 
simulator of the Gaussian random process (8) can be 
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seen in Figures 4. Here there are presented the 
generated time realization of random process samples 
(a); the estimation of the joint probability distribution 
of the neighboring pairs of samples (b); the histogram 
of the one-dimensional probability density of the 
simulated random process, which is drawn by vertical 
lines, and its corresponding theoretical values, which 
are marked by points (c); the experimental values 

 of the correlation coefficient of the generated 
samples, which are traced by vertical lines, and the 
corresponding theoretical values, which are shown by 
dotted line (d). 

 
a) 

 
b) c) 

Figure 3. The probability characteristics of the Gaussian random 
process: a) the two-dimensional probability density; b) the diagram 
of the matrix of transition probabilities; c) the diagram of the matrix 
of the probability distribution function 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 4. The results of the statistical simulation: a) the time 
realization of the random process; b) the estimate of the joint 
probability distribution of the neighboring pairs of samples; c) the 
histogram and the theoretical values of the one-dimensional 
probability density of the random process; d) the experimental and 
theoretical values of the correlation coefficient of the samples 

In Figure 4a, the mean value of the samples  is 
equal to  that, according to (1), corresponds 
to the zero quantization level of the signal. 

It follows from these Figures that the simulation 
results are in good agreement with the specified 
theoretical random process model. 

4. The simulators of the random processes 
based on the doubly connected Markov 
model 

The block diagram of the simulator of random signals 
based on the doubly connected Markov model is 
shown in Figure 5. 
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Figure 5. The block diagram of the simulator of the random signal 
with the specified three-dimensional probability distribution 

According to the signals with the frequency  from 
the CG with a frequency, the RNG generates binary K-
bit independent random numbers  with a uniform 
probability distribution. These numbers determine the 
least significant bits of the SD address bus . 

The joint probability distribution of the three 
neighboring samples  (4) is used to calculate 
the matrix of the three-dimensional probability 
distribution function: 

.  

The SD cells with the addresses 
 contain the smallest values of j 

( ) which are pre-calculated for all 

 and for each pair k, i and satisfy the 
inequality 

.  

The values  saved in the register RG2 and 
 occupying the high-order bits of the SD 

address bus form the code j at the SD output. This code 
is poked into the register RG1 by the CG pulse and it is 
now both the output signal of the simulator and the 
code i that is transmitted through the bus  and is 
also recorded in the register RG2 forming the code k 
for the next cycle. Then the process is repeated. 

The block diagram of the algorithm for the software 
implementation of the simulator of the random 
process based on the doubly connected Markov model 
is shown in Figure 6. 

As an example, one considers the simulation of the 
Gaussian random process  with the specified 
three-dimensional probability density (for the three 
points in time , , ) (Robinson, 1985) 

 

where  is the mean value,  is the dispersion of the 
simulated random process, while  is the 

determinant of the normalized correlation matrix 

, 

. 

(9) 

The joint probability distribution of the three 
neighboring samples is calculated according to (4) and 
for its graphical imaging in three-dimensional space it 
is advisable to present the matrix  as the 
discrete function of two coordinates . 

In Figures 7, the three-dimensional diagrams 
 are drawn for the different matrices of 

the correlation coefficients (9):  and 
 (Figure 7a) or  (Figure 7b). 

In Figures 8a and 8b, the corresponding level lines 
are plotted. 

 
Figure 6. The algorithm for software implementation of the 
simulator based on a doubly connected Markov model 

As it can be seen, these are multimodal surfaces, the 
width and slope of which in the plane of variables is 
determined by the correlation matrix (9). Finally, in 
Figures 9, for the two indicated cases the results of the 
statistical simulation are presented of the simulator 
operation (the realizations of simulated process 
samples and the estimates of the correlation 
matrices). 
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a) 

 
b) 

Figure 7. The three-dimensional diagrams of the joint probability 
distribution of the simulated process samples for specified 
correlation coefficients r12=r23=0.1 and r13=0.5 (a) or r13=0.8 (b) 

 
a) 

 
b) 

Figure 8. The level lines of the joint probability distribution of the 
simulated process samples for specified correlation coefficients 
r12=r23=0.1 and r13=0.5 (a) or r13=0.8 (b) 

 
a) 

 
b) 

Figure 9. The realizations of simulated process samples and the 
estimates of the correlation matrices for specified correlation 
coefficients r12=r23=0.1 and r13=0.5 (a) or r13=0.8 (b) 

When , the mean value of the samples  
shown in Figures 8 is equal to 16 that in this case 
corresponds to the zero quantization level of the 
signal in (1). 

It follows from these Figures that the simulation 
results are in good agreement with the specified 
theoretical random process model. 

The transition from a simple Markov model to a 
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doubly connected one expands the possibilities of 
reproducing the probabilistic properties of the 
simulated random signals based on either theoretical 
expressions for a multidimensional probability 
density or according to the results of the random 
process experimental sampling processing. This does 
not increase complexity of the software or hardware 
implementation of the simulator. 

If necessary, the Markov models of higher 
connectivity can be similarly used. 

5. Conclusions 

The possibilities of software and hardware 
implementation of the simulators of the random 
processes based on their simple and doubly connected 
Markov model are considered. It is shown that the 
introduced simulators provide a high speed of discrete 
sample generation due to the small specific number of 
the simple arithmetic operations required. The model 
for simulating the random process is changed by 
reloading the storage device with a previously 
calculated data array. In addition, the realizations of 
the random processes of unlimited duration can also 
be simulated. 

The simulators based on the multiply connected 
Markov models allow reproducing the fine structure of 
the probabilistic links of the simulated random 
processes. The possibility of building the models by 
means of the experimental realizations of the random 
processes is also provided. 

It should be noted that, strictly speaking, the 
proposed simulators make it possible to generate 
random processes that can be considered as Markov 
processes. Otherwise, only an approximate simulation 
of a random process with the specified statistical 
characteristics can be implemented. 
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