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Abstract The radiation of photons by electrons is investi-
gated in the framework of quantum electrodynamics up to
the second order in the coupling constant e. The N -particle,
coherent, and thermal initial states are considered and the
forms of the electron wave packets are taken into account.
The explicit expressions for the intensity of radiation and the
inclusive probability to record a photon are obtained. It is
found that there are three processes in this order of perturba-
tion theory where the electron wave packet radiates coher-
ently and can be regarded as a charged fluid even on integrat-
ing over the final states of the electron, i.e., in considering
the inclusive probabilities and intensity of radiation. These
processes are stimulated radiation by an electron, coherent
radiation from a beam of particles, and reradiation of a photon
in the Compton process. We obtain the explicit expressions
for the intensity of radiation and the inclusive probability
to record a photon for these processes. As particular cases,
we consider: stimulated transition radiation produced by an
electron wave packet traversing a mirror and backlighted by
a laser wave, reradiation of photons in a coherent state by an
electron wave packet. In the latter case, we deduce that the
wave packet of a single electron can be endowed with the
susceptibility tensor and this tensor has the same form as for
an electron plasma in the small recoil limit.

1 Introduction

There is a long-lived and actively debated problem regard-
ing the radiation of photons by electron wave packets. A
naive interpretation of this process inspired by the original
Schrödinger interpretation of the wave function suggests that
the electron wave packets should radiate as a charged fluid
on average [1–9]. On the other hand, there are the direct
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calculations in the framework of quantum electrodynamics
(QED) and the experiments showing that this is not the case
[10–20], at least, for certain processes when the so-called
inclusive radiation probabilities are considered, i.e., only the
quantum numbers of radiated photons are measured, whereas
the escaping electrons and other particles are unobserved.
The present-day consensus (see, e.g., [20,21]) consists in
that there are a few QED processes where the inclusive radi-
ation probability can be obtained by considering the electron
wave packet as a charged fluid. As a rule, in most radiation
processes a great amount of information about the profile of
the wave packet of a radiating particle is lost in the inclusive
radiation probability. In the present paper, we systematically
investigate the inclusive radiation probabilities in QED up to
the second order in the coupling constant e and list all such
processes where the electron wave packet radiates coherently
as some kind of a charged fluid on average.

It was argued in [11] that coherent radiation from a beam
of charged particles strongly depends on the forms of wave
packets of particles constituting the beam. The explicit for-
mulas for such coherent radiation showing that it is deter-
mined by the Dirac currents of particle wave functions were
derived in [22] in the leading order of perturbation theory. The
technical reason for appearance of coherent radiation from
particle wave packets is the presence of through lines in the
Feynman diagrams for the expansion of the S-matrix. On
squaring the transition amplitude, these diagrams give rise to
interference terms depending on the diagonal of the transition
currents which, in turn, result in contributions to inclusive
probabilities corresponding to coherent radiation from parti-
cle wave packets. It turns out that apart from coherent radia-
tion from a beam of charged particles there are two other pro-
cesses in the second order perturbation theory where coher-
ent radiation from an electron wave packet can be observed.
These processes are stimulated radiation created by an elec-
tron wave packet [4–6,8,9] and reradiation of photons by an
electron wave packet in the Compton scattering. As for the
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latter process, due to the fact that the electron wave packet
can be regarded as a charged fluid in this process, the electron
wave packet possesses an electric susceptibility. The suscep-
tibility tensor coincides with the susceptibility tensor of an
electron plasma in the small recoil limit despite the fact that
only one electron participates in the process.

In considering scattering of particles as plane waves, in
particular, in evaluating the cross-section, the diagrams with
through lines and, more generally, the disconnected contri-
butions to the S-matrix are excluded [23]. The disconnected
contributions to the S-matrix vanish almost everywhere in the
momentum space and so, for scattering of particles with wave
functions possessing definite momenta, they can be omitted.
In particular, by definition, only the connected part of the
S-matrix contributes to the invariant amplitude M for plane
waves since otherwise |M |2 appearing in the cross-section is
not defined. However, the disconnected contributions to the
S-matrix become relevant when scattering of wave packets
of a general form is studied. In this case, these contributions
are of the same order of magnitude as those coming from the
connected part of the S-matrix. Moreover, such terms change
the familiar coupling constant orders of contributions of the
processes to the observed probabilities. For example, for scat-
tering of a plane-wave photon by a plane-wave electron in
a vacuum (the Compton process), the leading contribution
of the perturbation theory to the cross-section is of the order
e4. Notwithstanding, as we shall show, the leading nontrivial
contribution to the inclusive probability to record a photon
scattered by an electron wave packet with nontrivial struc-
ture is of the order e2. In particular, these reasonings imply
that the general formulas presented, for example, in Sect. 4.1
of [24], in Sect. 2 of [25], and in Sect. 3 of [26], where the
S-matrix for scattering of wave packets of a general form
is given in terms of the plane-wave invariant amplitude M ,
have to be refined.

The paper is organized as follows. In Sect. 2, we start with
a formal statement of the scattering problem and list all the
contributions to the inclusive radiation probability in QED up
to the second order in e. We specify the initial states and the
projector realizing the measurement in the final state. As the
initial states of photons, we consider the coherent and thermal
states. As for the electron initial states, we take the N -particle
Fock state and the thermal one. Then evaluation of the inclu-
sive probability is reduced to evaluation of the correspond-
ing traces, which is readily performed in the Bargmann-Fock
representation. Thus we obtain the general formulas for all
the second order contributions to the inclusive probability to
record a photon and to the radiation intensity. In particular,
we correct the formulas of [27], where among other things
the radiation of photons at finite temperature was studied, and
introduce the general formula for the effective polarization
tensor. The nonperturbative approach to take into account
the photons in the initial coherent state with large ampli-

tude – the so-called Furry picture – is also considered in
this section. Section 3 is devoted to a detailed description
of stimulated radiation produced by electron wave packets.
For definiteness, we consider stimulated transition radiation
from a Dirac particle wave packet crossing an ideally con-
ducting plate irradiated by a laser wave. Note that stimulated
transition radiation was also studied in [28,29] where the
profiles of particle wave packets and the disconnected con-
tributions to the S-matrix were not taken into account. In
this section, we derive the explicit expression for the radi-
ation intensity and show that this process can be employed
for imaging the profile of an electron wave function by using
the developed methods of noninvasive diagnostics of beams
of charged particles. We also deduce the selection rules for
this process when the one-particle density matrix possesses
certain symmetries. In Sect. 4, we investigate reradiation of
photons by electrons. We establish that in this process, in the
given order of perturbation theory, the electron wave packet
can be regarded as a charged fluid and find the susceptibil-
ity tensor of this fluid. The symmetries of the one-particle
density matrix give rise to the selection rules for reradiated
photons as in the case of a dispersive medium with the same
symmetries. In Conclusion we summarize the results.

We adopt the following notation. We denote by indices
A, B, . . . the pair (μ, x), where μ is the space-time index
and x is the point of the space-time. The Greek indices α,
β, ᾱ, β̄, . . . denote the quantum numbers of particle states.
The summation (integration) over repeated indices is always
understood unless otherwise stated. We also suppose that
the quantum states of particles are normalized to unity in
some sufficiently large volume V . As for the expansion of
quantum fields in terms of the mode functions, we use the
agreements chosen in the paper [22]. In order to conform
the notations of [22] and [30], we use interchangeably the
star and the bar as the sign of complex conjugation. The bar
over the Dirac spinor means as usual the Dirac conjugate.
Furthermore, wherever it does not lead to misunderstanding,
we use the matrix notation. For example,

āa ≡ a∗a ≡ a∗
αaα, d̄ Dd ≡ d∗Dd ≡ d∗

αDαᾱdᾱ,

etc. (1)

The operators acting in the Fock space are denoted by letters
with carets. We use the system of units such that h̄ = c = 1
and e2 = 4πα, where α is the fine structure constant. The
Minkowski metric is taken with the mostly minus signature.

2 Inclusive probability

In order to find the intensity of radiation and the inclusive
probability to record a photon, it is convenient to employ the
Bargmann-Fock representation [31]. A brief synopsis of the
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main relations of this formalism can be found in Appendix A
of the paper [30]. For the reader convenience, we collect the
most frequently used formulas in Appendix A. The density
matrices of photons and electrons are specified in Appendix
B. Some details of the bulky calculations arising in evaluating
inclusive probabilities are removed to Appendix C.

2.1 Initial and final states

We suppose that the electrons and the photons are uncorre-
lated and the positrons are absent in the initial state, viz., the
density matrix of the initial state is

R̂ = R̂ph ⊗ R̂e ⊗ |0〉e+〈0|e+ , (2)

where R̂ph is the density matrix of photons, R̂e is the den-
sity matrix of electrons, and |0〉e+ is the vacuum state for
positrons. As the initial states of photons, we consider the
coherent and thermal states. The general formulas that will
be given in Sects. 2.2, 2.3, 3, 4 are valid for an arbitrary ini-
tial state of electrons. The explicit expressions for the den-
sity matrices R̂ph and R̂e that we will use are presented in
Appendix B.

The projector to the states in the Fock space containing
at least one particle in the states singled out by the projector
Dαᾱ in the one-particle Hilbert space takes the form

P̂ph = 1̂− : exp(−ĉ†Dĉ):=ĉ†Dĉ + · · · , D† =D, (3)

where as usual the colons surrounding an expression mean
the normal ordering. Below, we will not use the property
D2 = D. Besides, we denote D̃ := 1 − D. Notice that the
operator P̂ph commutes with the particle number operator.

We consider such processes where, in the final state, only
photons are recorded or the intensity of radiation of photons
with given energy and other quantum numbers is detected.
Thus the measurement in the final state is specified by the
projector

P̂ = P̂ph ⊗ 1̂e ⊗ 1̂e+ , (4)

where P̂ph has the form (3) with ĉ†
γ and ĉγ being the creation-

annihilation operators of a photon with quantum numbers γ .
We also suppose that either D is diagonal in the energy basis
or the operator D is taken at the instant of time t = 0 and so,
for t = tout , it becomes

Dαᾱ(out) = Dαᾱe
−i(k0α−k0ᾱ )tout . (5)

It follows from expressions (3), (4) that the intensity of radi-
ation, ID , in the mode with quantum numbers γ is a linear
part of the inclusive probability to record a photon, PD , with
respect to the operator D, where Dαᾱ = k0γ prγαᾱ (no sum-
mation over γ ) and prγαᾱ is the projector to the state with
quantum numbers γ . Henceforth, we shall use this property
in order to obtain ID from PD . Besides, we will take into

account only the leading terms in the coupling constant and
assume that the vacuum is stable.

2.2 Perturbative treatment of photons in the initial state

2.2.1 Contributions to the S-matrix

The radiation of a photon by an electron in the external field
or in the presence of the dispersive medium is described by
the operator,

V̂ = V γ̄
ᾱα â

†
ᾱ âα ĉ

†
γ̄ − V †γ

ᾱα â
†
ᾱ âα ĉγ ,

V γ̄
ᾱα := −i〈ᾱ, e−| ĵ A|α, e−〉ēγ̄

A, (6)

of the first and higher orders in the coupling constant e. Here
ĵ A is the current density operator, â†

ᾱ , âα are the creation-
annihilation operators of electrons, |α, e−〉 is the one-particle
electron state with quantum numbers α, and eγ

A are the mode
functions of the photon quantum field. For example, in a
vacuum, these functions can be chosen in the form of plane
waves,

eγ

A = e(λ)
μ (k)√
2k0V

e−ikν xν

, (7)

where e(λ)
μ (k) are the polarization vectors and γ = (λ,k),

λ = 1, 2.
Apart from the operator (6), there exists the operator

Ê = Eγ

ᾱβ̄
â†
ᾱ b̂

†
β̄
ĉγ , Eγ

ᾱβ̄
:= −i〈β̄, e+; ᾱ, e−| ĵ A|0〉eγ

A, (8)

where b̂†
β is the positron creation operator, of the first order

in the coupling constant. However, this operator gives the
second order contribution for the processes we consider.

The Compton process is specified by the operators,

Ŵ = Ŵ1 + Ŵ2 + Ŵ3, W γ̄ γ
1ᾱα = 2W AB

ᾱα ēγ̄

Ae
γ

B,

Ŵ1 = W γ̄ γ
1ᾱα â

†
ᾱ âα ĉ

†
γ̄ ĉγ , W γ1γ2

2ᾱα = W AB
ᾱα eγ1

A eγ2
B ,

Ŵ2 = W γ1γ2
2ᾱα â†

ᾱ âα ĉγ1 ĉγ2 , W γ̄1γ̄2
3ᾱα = W AB

ᾱα ēγ̄1
A ēγ̄2

B ,

Ŵ3 = W γ̄1γ̄2
3ᾱα â†

ᾱ âα ĉ
†
γ̄1
ĉ†
γ̄2

,

(9)

of the second order in the coupling constant. Here we have
introduced the notation

W AB
ᾱα = −1

2
〈ᾱ, e−| : ĵ A ĵ B : |α, e−〉. (10)

Of the same order are the contributions of the mass operator,

M̂ = Mᾱα â
†
ᾱ âα, (11)
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and the polarization operator,

�̂ = �̂1 + �̂2 + �̂3, �
γ̄ γ
1 = 2�ABēγ̄

Ae
γ

B,

�̂1 = �
γ̄γ
1 ĉ†

γ̄ ĉγ , �
γ1γ2
2 = �ABeγ1

A eγ2
B ,

�̂2 = �
γ1γ2
2 ĉγ1 ĉγ2 , �

γ̄1γ̄2
3 = �ABēγ̄1

A ēγ̄2
B ,

�̂3 = �
γ̄1γ̄2
3 ĉ†

γ̄1
ĉ†
γ̄2

,

(12)

where

�AB = −1

2
〈0|T { ĵ A ĵ B}|0〉. (13)

Moreover, the process of scattering of an electron by an elec-
tron,

Ĉ = Cᾱβ̄βα â
†
ᾱ â

†
β̄
âβ âα,

Cᾱβ̄βα = −1

2
〈β̄, e−; ᾱ, e−| : ĵ A ĵ B : |α, e−;β, e−〉

×〈0|T { ÂA ÂB}|0〉, (14)

is also of the second order.
Then the expansion of the S-matrix with respect to the

coupling constant is given by

Ŝ = 1̂ + V̂ + Ê + Ŵ + �̂ + M̂ + Ĉ + · · · . (15)

The inclusive probability to record a photon in the states
specified by the projector D becomes

PD = Sp(P̂ Ŝ R̂ Ŝ†). (16)

where the operator P̂ is defined in (4). As it has been already
mentioned, the intensity of radiation, ID , is a linear part of
(16) with respect to D.

2.2.2 Contributions to the inclusive probability

The leading term of the perturbation series reads

Sp(P̂ R̂) = Sp(P̂ph R̂ph). (17)

For the coherent state of photons (138), it takes the form (see
Appendices B, C)

Sp(P̂ph R̂ph) = 1 − e−d̄ Dd ≈ d̄ Dd, (18)

where dα is the complex amplitude of the coherent state. As
for the thermal state of photons 140, it turns out to be (see
Appendices B, C)

Sp(P̂ph R̂ph) = 1 − 1

det(1 + nbD)
≈ Sp(nbD). (19)

Hereinafter, the approximate equalities for traces mean that
only linear in D terms are retained.

At the first order in the coupling constant, the inclusive
probability (16) contains the terms

Sp(P̂ V̂ R̂) + c.c. (20)

The first term can be written as

Sp(P̂ V̂ R̂) =
∞∑

N=1

Nρ
(N ,1)
αᾱ

[
V γ̄

ᾱα Sp(P̂ph ĉ
†
γ̄ R̂ph)

−V †γ
ᾱα Sp(P̂ph ĉγ R̂ph)

]
, (21)

where ρ
(N ,1)
αᾱ is the one-particle density matrix.

Recall that if the trace-class operator F̂ is irreducible under
the adjoint action of a unitary symmetry operator exp(iλQ̂),
i.e.,

eiλQ̂ F̂e−iλQ̂ = eiqFλ F̂, ∀λ ∈ R, (22)

and qF �= 0, then

Sp F̂ = 0. (23)

In the differential form, the condition (22) becomes

[Q̂, F̂] = qF F̂ . (24)

Using this property and bearing in mind that P̂ph commutes
with the photon particle number operator, we see that the
contribution (21) vanishes for the initial state R̂ph commuting
with the photon particle number operator.

The most important example of the initial state that does
not commute with the particle number operator is the coher-
ent state of photons (138). In this case,

Sp(P̂ph ĉ
†
γ̄ R̂ph)

= e−d̄d〈d̄|P̂ph ĉ
†
γ |d〉 = e−d̄d δ

δdγ̄

[
ed̄d(1 − e−d̄ Dd)

]

= (d̄ D)γ̄ + (1 − e−d̄ Dd)(d̄ D̃)γ̄ ≈ (d̄ D)γ̄ + (d̄ Dd)d̄γ̄ ,

Sp(P̂ph ĉγ R̂ph) = (1 − e−d̄ Dd)dγ ≈ (d̄ Dd)dγ . (25)

As a result, taking into account only the first two contributions
to (15), we have

PD = (1 − e−d̄ Dd )

⎡

⎣1 −
∞∑

N=1

Nρ
(N ,1)
αᾱ

(V γ̄
ᾱα

(d̄ D)γ̄ + V †γ
ᾱα

(Dd)γ )

⎤

⎦

+
∞∑

N=1

Nρ
(N ,1)
αᾱ

(V γ̄
ᾱα

(d̄ D)γ̄ + V †γ
ᾱα

(Dd)γ ),

ID = (d̄ Dd) +
∞∑

N=1

Nρ
(N ,1)
αᾱ

(V γ̄
ᾱα

(d̄ D)γ̄ + V †γ
ᾱα

(Dd)γ ). (26)

The contribution of unity in the square brackets on the first
line describes the inclusive probability to record a photon in
the initial beam of photons, whereas the whole expression in
the square brackets describes a change (renormalization) of
the background radiation. For the sufficiently small ampli-
tude |dγ |, the expressions for ID and PD are formally the
same. Keeping in mind the definition of D for ID , we con-
clude that PD = ID/k0γ in this case. This happens when the
magnitude of the second term in the square brackets is much
less than unity, which is the case when the perturbation theory
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is applicable, and the average number of detected photons is
also much less than unity. The explicit expression for V γ̄

ᾱα is

given in (6) whereas ρ
(N ,1)
αᾱ is specified in Appendix B.

Notice that, in the coherent state, the average electromag-
netic potential reads

Ac
A = eγ

Adγ + ēγ̄

Ad̄γ̄ , (27)

and the average electric field strength has the form

Ec
A = −i(k0γ e

γ

Adγ − k0γ̄ ē
γ̄

Ad̄γ̄ ). (28)

In fact, these expressions are not zero only for the spatial
values of the space-time index μ entering into A.

Let us define

Ec
γ A := −i(k0γ e

γ

Adγ − k0γ ē
γ

Ad̄γ ), (29)

where there is no summation over γ on the right-hand side.
Then taking Dαᾱ = k0γ prγαᾱ , we obtain

V δ̄
ᾱα(d̄ D)δ̄ + V †δ

ᾱα(Dd)δ = −〈ᾱ, e−| ĵ A|α, e−〉Ec
γ A. (30)

In particular, for the pure initial state of a single electron,
the intensity of radiation is determined by the diagonal of
the current operator, i.e., by the Dirac current of the particle
wave packet [5,6,8,9],

Nρ
(N ,1)
αᾱ (V δ̄

ᾱα(d̄ D)δ̄ + V †δ
ᾱα(Dd)δ) = k0γ (Aγ

cl d̄γ + c.c.)

(no summation over γ ). (31)

The quantity Aγ̄

cl is the amplitude of radiation of a photon
with the quantum numbers γ̄ by the classical Dirac current.
In the leading (first) order in the coupling constant, it is given
by [30,32,33]

Aγ̄

cl := −iρ(1,1)
αᾱ 〈ᾱ, e−| ĵ A|α, e−〉ēγ̄

A

= −ie
∫

dx ϕ̄(x)γ μϕ(x)
e∗(λ)
μ (k)√
2k0V

eikν xν

, (32)

where, in the last equality, it is assumed just for definiteness
that the mode functions of photons are the plane waves in a
vacuum and

ϕ(x) =
∑

α

ϕα〈0|ψ̂(x)|α, e−〉 =
∑

α

ϕαuα(x)

=
∑

s

∫
Vdp
(2π)3

√
m

V p0
us(p)ϕs(p)e−i pν xν

. (33)

In the last equality, it is supposed that the evolution of a
quantum Dirac field obeys the free Dirac equation and us(p)

are the mode functions of the free quantum Dirac field (see
the notation in [22]). If the quantum field satisfies the Dirac
equation in the external field, then the mode functions of the
Dirac field uα(x) and ϕ(x) must be the solutions of the Dirac
equation in this field.

The abovementioned property of the contribution to the
inclusive probability we consider can be used for probing

the form of the wave packet by means of its stimulated radi-
ation. To this end, one can apply the developed techniques
for diagnostics of beams of charged particles [34–36]. Fur-
thermore, one can amplify stimulated radiation from a wave
packet at certain energy harmonics by modulating the profile
of this wave packet, for example, by endowing it with some
periodic structure. We shall consider this contribution to the
inclusive probability to record a photon in detail in Sect. 3.

In the next order of perturbation theory for PD , there are
the following contributions

Sp(P̂ V̂ R̂V̂ †) + Sp(P̂ Ê R̂ Ê†) + [Sp(P̂Ŵ R̂) + Sp(P̂�̂R̂)

+ Sp(P̂ M̂ R̂) + Sp(P̂Ĉ R̂) + c.c.]. (34)

Consider the first term. Substituting the explicit expression
for V̂ , it is not difficult to deduce that

Sp(P̂ V̂ R̂V̂ †) = Sp(P̂ph ĉ
†
γ̄ R̂ph ĉγ )

×
∞∑

N=1

[
Nρ

(N ,1)
αᾱ V †γ

ᾱβ V
γ̄
βα + N (N − 1)ρ

(N ,2)
α2α1|ᾱ1ᾱ2

V †γ
ᾱ2α2

V γ̄
ᾱ1α1

]

+ Sp(P̂ph ĉγ R̂ph ĉ
†
γ̄ )

×
∞∑

N=1

[
Nρ

(N ,1)
αᾱ V γ̄

ᾱβV
†γ
βα + N (N − 1)ρ

(N ,2)
α2α1|ᾱ1ᾱ2

V γ̄
ᾱ2α2

V †γ
ᾱ1α1

]

− Sp(P̂ph ĉ
†
γ̄1
R̂ph ĉ

†
γ̄2

)

×
∞∑

N=1

[
Nρ

(N ,1)
αᾱ V γ̄1

ᾱβV
γ̄2
βα + N (N − 1)ρ

(N ,2)
α2α1|ᾱ1ᾱ2

V γ̄1
ᾱ2α2

V γ̄2
ᾱ1α1

]

− Sp(P̂ph ĉγ1 R̂ph ĉγ2 )

×
∞∑

N=1

[
Nρ

(N ,1)
αᾱ V †γ1

ᾱβ V †γ2
βα + N (N − 1)ρ

(N ,2)
α2α1|ᾱ1ᾱ2

V †γ1
ᾱ2α2

V †γ2
ᾱ1α1

]
.

(35)

The explicit expressions for ρ
(N ,2)
α2α1|ᾱ1ᾱ2

are given in Appendix
B. This formula is the generalization of formula (A.15) of the
paper [22] to the case of the initial state of the system of the
form (2). As far as the coherent initial state of photons (138)
is concerned, we have

Sp(P̂ph ĉ
†
γ̄
R̂ph ĉγ ) = δγ γ̄ + dγ d̄γ̄

−(D̃γ γ̄ + (D̃d)γ (d̄ D̃)γ̄ )e−d̄ Dd ≈
≈ (δγ γ̄ + dγ d̄γ̄ )(d̄ Dd) + Dγ γ̄

+(Dd)γ d̄γ̄ + dγ (d̄ D)γ̄ ,

Sp(P̂ph ĉγ R̂ph ĉ
†
γ̄
) = dγ d̄γ̄ (1 − e−d̄ Dd ) ≈ dγ d̄γ̄ (d̄ Dd),

Sp(P̂ph ĉ
†
γ̄1
R̂ph ĉ

†
γ̄2

) = d̄γ̄1 d̄γ̄2 (1 − e−d̄ Dd ) + (d̄ D)γ̄1 d̄γ̄2e
−d̄ Dd

≈ d̄γ̄1 d̄γ̄2 (d̄ Dd) + (d̄ D)γ̄1 d̄γ̄2 ,

Sp(P̂ph ĉγ1 R̂ph ĉγ2 ) = dγ1dγ2 (1 − e−d̄ Dd ) + dγ1(Dd)γ2e
−d̄ Dd

≈ dγ1dγ2 (d̄ Dd) + dγ1(Dd)γ2 . (36)
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In the approximate expressions, the contributions propor-
tional to (d̄ Dd) are responsible for renormalization of the
intensity of the background radiation.

Let

VDᾱβ := V γ̄
ᾱβ

(d̄ D)γ̄ , V †
Dᾱβ

:= V †γ
ᾱβ

(Dd)γ ,

vᾱβ := V γ̄
ᾱβ

d̄γ̄ − V †γ
ᾱβ

dγ , vDᾱβ := VDᾱβ − V †
Dᾱβ

. (37)

Notice that

vᾱβ = −i〈ᾱ, e−| ĵ A|β, e−〉Ac
A. (38)

Then

Sp(P̂ V̂ R̂V̂ †) =
∞∑

N=1

Nρ
(N ,1)
αᾱ

{[
Dγ γ̄ + D̃γ γ̄ (1 − e−d̄ Dd )

]

×V †γ
ᾱβ

V γ̄
βα − vᾱβvβα(1 − e−d̄ Dd )

+(V †
Dᾱβ

vβα − vᾱβVDβα − V †
Dᾱβ

VDβα)e−d̄ Dd
}

+N (N − 1)ρ
(N ,2)
α2α1|ᾱ1ᾱ2

{[
Dγ γ̄ + D̃γ γ̄ (1 − e−d̄ Dd )

]

×V †γ
ᾱ2α2

V γ̄
ᾱ1α1

− vᾱ2α2vᾱ1α1 (1 − e−d̄ Dd )

−(vᾱ2α2vDᾱ1α1 + V †
Dᾱ2α2

VDᾱ1α1)e
−d̄ Dd

}

≈
∞∑

N=1

Nρ
(N ,1)
αᾱ

{[
Dγ γ̄ + δγ γ̄ (d̄ Dd)

]
V †γ

ᾱβ
V γ̄

βα

−vᾱβvβα(d̄ Dd) + V †
Dᾱβ

vβα − vᾱβVDβα

}

+N (N − 1)ρ
(N ,2)
α2α1|ᾱ1ᾱ2

{[
Dγ γ̄ + δγ γ̄ (d̄ Dd)

]
V †γ

ᾱ2α2
V γ̄

ᾱ1α1

−vᾱ2α2vᾱ1α1(d̄ Dd) − vᾱ2α2vDᾱ1α1

}
. (39)

Recall that the approximate equality sign means that only
linear in D term are kept in the expression. In the case of
small amplitudes |dγ |, in particular, for the vacuum initial
state of photons, the expression is drastically simplified

Sp(P̂ V̂ R̂V̂ †) =
∞∑

N=1

Nρ
(N ,1)
αᾱ Dγ γ̄ V

†γ
ᾱβ V

γ̄
βα

+
∞∑

N=2

N (N − 1)ρ
(N ,2)
α2α1|ᾱ1ᾱ2

Dγ γ̄ V
†γ
ᾱ2α2

V γ̄
ᾱ1α1

. (40)

This formula was obtained in [22], where the main proper-
ties of this expression were also discussed. In particular, the
last term in (40) describes the contribution of coherent radi-
ation produced by the beam of particles. On neglecting the
exchange term, it is determined by the classical Dirac cur-
rents created by the wave packets of particles constituting the
beam as in formula (32).

The first term in (40) describes incoherent radiation from
the beam of particles. The quantum recoil due to radiation of
a photon is essential for this contribution since the sum over
all the final states of a radiating particle appears in it and so

this particle can change its state substantially. Thus, in many
cases, the forms of the wave packets of particles constituting
the beam turn out to be irrelevant for the inclusive probability
to a much extent [10–20,37,38]. In particular, if the conser-
vation laws persisting in the radiation process fix the initial
state of the radiating particle by its final state, then the phase
of the initial wave function in the representation of the quan-
tum numbers corresponding to the conservation laws does
not contribute to the first term in (40). These conservation
laws may be approximate and may be fulfilled only on the
radiation formation length. Notice that the phase of the wave
function can be an arbitrary function of the quantum num-
bers and the shape of the wave packet strongly depends on
this phase.

The mention should also be made that, in the case when
the initial state does not contain photons, only the contri-
bution (40) to the inclusive probability does not vanish for
those orders of the perturbation theory that we study. In other
words, this contribution is responsible for spontaneous radi-
ation created by the beam of particles.

Now we consider the thermal initial state of photons. In
virtue of the property (23), only two of the traces (36) are
different from zero for the thermal state of photons because
the density matrix R̂ph of such a state commutes with the
particle number operator. The nonvanishing traces are

Sp(P̂ph ĉ
†
γ̄ R̂ph ĉγ ) = (1 + nb)γ γ̄ − 1

det(1 + nbD)

× [D̃(1 + nbD)−1(1 + nb)]γ γ̄

≈ (1 + nb)γ γ̄ Sp(nbD)

+ [(1 + nb)D(1 + nb)]γ γ̄ ,

Sp(P̂ph ĉγ R̂ph ĉ
†
γ̄ ) = (nb)γ γ̄ − 1

det(1 + nbD)

× [(1 + nbD)−1nb]γ γ̄

≈ (nb)γ γ̄ Sp(nbD) + (nbDnb)γ γ̄ .

(41)

The term on the fourth line describes the influence of the
presence of a photon gas at finite temperature on the radia-
tion from charged particles. This contribution was obtained
in formula (50) of the paper [27]. The term on the third line
and the first term on the last line of (41) are responsible for
renormalization of the background thermal radiation. The last
term on the last line of (41) describes the effect of absorp-
tion of photons by the radiating system on the intensity of
radiation. As a result,

Sp(P̂ V̂ R̂V̂ †) =
{
(1 + nb)γ γ̄ − 1

det(1 + nbD)
[D̃(1 + nbD)−1

× (1 + nb)]γ γ̄

}

×
∞∑

N=1

[
Nρ

(N ,1)
αᾱ V †γ

ᾱβ V
γ̄
βα + N (N − 1)ρ

(N ,2)
α2α1|ᾱ1ᾱ2

V †γ
ᾱ2α2

V γ̄
ᾱ1α1

]
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+
{
(nb)γ γ̄ − 1

det(1 + nbD)
[(1 + nbD)−1nb]γ γ̄

}
×

×
∞∑

N=1

[
Nρ

(N ,1)
αᾱ V γ̄

ᾱβV
†γ
βα + N (N − 1)ρ

(N ,2)
α2α1|ᾱ1ᾱ2

V γ̄
ᾱ2α2

V †γ
ᾱ1α1

]

≈ {
(1 + nb)γ γ̄ Sp(nbD) + [(1 + nb)D(1 + nb)]γ γ̄

}×

×
∞∑

N=1

[
Nρ

(N ,1)
αᾱ V †γ

ᾱβ V
γ̄
βα + N (N − 1)ρ

(N ,2)
α2α1|ᾱ1ᾱ2

V †γ
ᾱ2α2

V γ̄
ᾱ1α1

]

+ {
(nb)γ γ̄ Sp(nbD) + [nbDnb]γ γ̄

}

×
∞∑

N=1

[
Nρ

(N ,1)
αᾱ V γ̄

ᾱβV
†γ
βα + N (N − 1)ρ

(N ,2)
α2α1|ᾱ1ᾱ2

V γ̄
ᾱ2α2

V †γ
ᾱ1α1

]

(42)

The last term in this expression, standing on the eighth and
ninth lines, which is responsible for the absorption of thermal
photons by the system, was missed in [27].

As for the second term in (34), we obtain

Sp(P̂ Ê R̂ Ê†) = Sp(P̂ph ĉγ R̂ph ĉ
†
γ̄
)

×
⎛

⎝E†γ̄
αβ Eγ

αβ −
∞∑

N=1

Nρ
(N ,1)
ᾱα

E†γ̄
ᾱβ

Eγ
αβ

⎞

⎠ . (43)

The explicit expressions for the first factor in (43) have been
already derived in (36), (41).

The third term in (34) is written as

Sp(P̂Ŵ R̂) =
∞∑

N=1

Nρ
(N ,1)
αᾱ

[
W γ̄ γ

1ᾱα Sp(P̂ph ĉ
†
γ̄ ĉγ R̂ph)

+W γ1γ2
2ᾱα Sp(P̂ph ĉγ1 ĉγ2 R̂ph) + W γ̄1 γ̄2

3ᾱα Sp(P̂ph ĉ
†
γ̄1
ĉ†
γ̄2
R̂ph)

]
. (44)

In the case of the coherent initial state of photons (138), we
come to

Sp(P̂ph ĉ
†
γ̄
ĉγ R̂ph) = (1 − e−d̄ Dd )(d̄ D̃)γ̄ dγ + (d̄ D)γ̄ dγ

≈ d̄γ̄ dγ (d̄ Dd) + (d̄ D)γ̄ dγ ,

Sp(P̂ph ĉγ1 ĉγ2 R̂ph) = (1 − e−d̄ Dd )dγ1dγ2 ≈ dγ1dγ2 (d̄ Dd),

Sp(P̂ph ĉ
†
γ̄1
ĉ†
γ̄2
R̂ph) = d̄γ̄1 d̄γ̄2 − (d̄ D̃)γ̄1(d̄ D̃)γ̄2e

−d̄ Dd

≈ d̄γ̄1 d̄γ̄2 (d̄ Dd)

+(d̄ D)γ̄1 d̄γ̄2 + d̄γ̄1(d̄ D)γ̄2 . (45)

Substituting the explicit expressions for Ŵ1,2,3, we deduce

Sp(P̂Ŵ R̂) =
∞∑

N=1

Nρ
(N ,1)
αᾱ

W AB
ᾱα

×
{
(1 − e−d̄ Dd )[(eAd) + (d̄ D̃ēA)][(eBd) + (d̄ D̃ēB)]

+(d̄ DēA)[2AcB − (d̄ DēB)]
}

≈
∞∑

N=1

Nρ
(N ,1)
αᾱ

W AB
ᾱα

[
AcA A

c
B(d̄ Dd) + 2(d̄ DēA)AcB

]
. (46)

In the case of the thermal initial state of photons, the nonva-
nishing trace is

Sp(P̂ph ĉ
†
γ̄ ĉγ R̂ph) = (nb)γ γ̄ − 1

det(1 + nbD)

× [nb(1 + Dnb)
−1 D̃]γ γ̄

≈ (nb)γ γ̄ Sp(nbD) + [nbD(1 + nb)]γ γ̄ .

(47)

The other traces entering into (46) vanish. Thus,

Sp(P̂Ŵ R̂) = 2
∞∑

N=1

Nρ
(N ,1)
αᾱ

W AB
ᾱα

[
(eBnbēA)

− 1

det(1 + nbD)
(eBnb(1 + Dnb)

−1 D̃ēA)
]

≈ 2
∞∑

N=1

Nρ
(N ,1)
αᾱ

W AB
ᾱα

[
(eBnbēA) Sp(nbD)

+(eBnbD(1 + nb)ēA)
]
. (48)

The interpretation of the terms on the last two lines in the
same as for the contributions considered above. The first term
describes renormalization of the intensity of the background
thermal radiation, while the second term describes the inten-
sity of reradiation of thermal photons by electrons in the
leading order of perturbation theory.

In the same way, the contribution of the polarization oper-
ator is evaluated. For the coherent initial state of photons, we
arrive at

Sp(P̂�̂R̂) = �AB
{
(1 − e−d̄ Dd )[(eAd) + (d̄ D̃ēA)]

×[(eBd) + (d̄ D̃ēB )] + (d̄ DēA)[2AcB − (d̄ DēB )]
}

≈ �AB[AcA A
c
B (d̄ Dd) + 2(d̄ DēA)AcB

]
. (49)

If the initial state of photons is thermal, then

Sp(P̂�̂R̂) = 2�AB
[
(eBnbēA)

− 1

det(1 + nbD)
(eBnb(1 + Dnb)

−1 D̃ēA)
]

≈ 2�AB[(eBnbēA) Sp(nbD) + (eBnbD(1 + nb)ēA)
]
.

(50)

By comparing (46), (48) with (49), (50), we see that the
quantity,

�AB
ef f := �AB + Nρ

(N ,1)
αᾱ W AB

ᾱα , (51)

plays the role of an effective susceptibility tensor. The second
term describes the correction to the vacuum susceptibility
tensor caused by the presence of electrons in the initial state.
This correction is different from zero even in the case N = 1.
In the absence of the external field, the contribution �AB

is removed by renormalization of the electromagnetic field
strength. Then �AB

ef f is determined by the second term in (51).
We shall consider this contribution in more detail in Sect. 4.
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The fifth and sixth terms in (34) give

Sp(P̂ M̂ R̂) + Sp(P̂Ĉ R̂) =
∞∑

N=1

[
Nρ

(N ,1)
αᾱ Mᾱα

+N (N − 1)ρ
(N ,2)
α2α1|ᾱ1ᾱ2

Cᾱ1ᾱ2α2α1

]
Sp(P̂ph R̂ph). (52)

These contributions lead only to renormalization of the inten-
sity of the background radiation. The quantity in the square
brackets describes the correction to the self-energy of the
beam of particles.

2.3 Background electromagnetic field method

Let us consider the case when the initial state of photons is
coherent, (138), and the electromagnetic field correspond-
ing to this state is taken into account nonperturbatively. It is
known [39–41] that the external electromagnetic field can
be treated perturbatively provided the so-called undulator
strength parameter

|ea0/m| 
 1, (53)

where a0 is the typical value of the electromagnetic potential
in the Coulomb gauge in the laboratory frame. If the above
condition is not fulfilled, one needs to employ the background
field method accounting for the external field nonperturba-
tively.

Let us introduce the unitary displacement operator

D̂(d) := eĉ
†d−d̄ ĉ. (54)

Then the initial coherent state of photons is

D̂(d)|0〉ph . (55)

The average of the operator O in the Schrödinger represen-
tation is given by

〈Ô〉 = Sp[ÔÛD̂(d)
(|0〉ph〈0|ph ⊗ R̂e

⊗|0〉e+〈0|e+
)D̂†(d)Û †], (56)

where Û is the evolution operator over an infinite time. This
expression can be rewritten as

〈Ô〉 = Sp(ÔdÛd R̂Û
†
d ), (57)

where

R̂ := |0〉ph〈0|ph ⊗ R̂e ⊗ |0〉e+〈0|e+ ,

Ûd := D̂†(d)ÛD̂(d), Ôd := D̂†(d)ÔD̂(d). (58)

It is clear that

D̂†(d) ÂAD̂(d) = ÂA + Ac
A. (59)

Moreover,

P̂d := D̂†(d)P̂D̂(d) = P̂d
ph ⊗ 1̂e ⊗ 1̂e+ , (60)

where

P̂d
ph = 1̂ − e−d̄ Dde−ĉ†Dd : e−ĉ†Dĉ : e−d̄ Dĉ. (61)

As for the action functional of quantum electrodynamics, we
have

S[A, ψ̄, ψ] → S[A + Ac, ψ̄, ψ]
=
∫

d4x

{
ψ̄( p̂ − e Âc − m)ψ − 1

4
fμν f

μν − eψ̄ Âψ

−1

4
FμνF

μν − 1

2
Fμν f

μν

}
, (62)

where fμν = ∂[μAν] and Fμν = ∂[μAc
ν]. As long as Fμν

satisfies the free Maxwell equations,

∂νFμν = 0, (63)

the last term in (62) is the total derivative. Therefore, in eval-
uating the evolution operator over an infinite time, or the
S-matrix, under the standard assumption that the interaction
is adiabatically switched off for |t | → ∞, one can disre-
gard this term. The penultimate term in (62) is a real number
and it does not affect the averages. As a result, we arrive
at the action functional of quantum electrodynamics in the
Furry picture with the external field Ac

A. In order to take into
account this field, one has to construct a complete set of solu-
tions to the Dirac equation in such an external field (see for
details [30,42,43]).

Thus,

Sp(P̂d
ph R̂ph) = 1 − e−d̄ Dd ≈ (d̄ Dd), (64)

where R̂ph = |0〉ph〈0|ph . Furthermore,

Sp(P̂d V̂ R̂) =
∞∑

N=1

Nρ
(N ,1)
αᾱ VDᾱαe

−d̄ Dd ≈
∞∑

N=1

Nρ
(N ,1)
αᾱ VDᾱα, (65)

and

Sp(P̂d V̂ R̂) + c.c. =
∞∑

N=1

Nρ
(N ,1)
αᾱ (VDᾱα + V †

Dᾱα)e−d̄ Dd

≈
∞∑

N=1

Nρ
(N ,1)
αᾱ (VDᾱα + V †

Dᾱα). (66)

Hereinafter, for brevity, the index d of the operators entering
into the expansion (15) is omitted.
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In the next order of the perturbation theory, we obtain

Sp(P̂d V̂ R̂V̂ †) = [
δγ γ̄ (1 − e−d̄ Dd)

+ (Dγ γ̄ − (Dd)γ (d̄ D)γ̄ )e−d̄ Dd]×

×
∞∑

N=1

[
Nρ

(N ,1)
αᾱ V †γ

ᾱβ V
γ̄
βα

+ N (N − 1)ρ
(N ,2)
α2α1|ᾱ1ᾱ2

V †γ
ᾱ2α2

V γ̄
ᾱ1α1

]

≈ [
δγ γ̄ (d̄ Dd) + Dγ γ̄

] ∞∑

N=1

[
Nρ

(N ,1)
αᾱ V †γ

ᾱβ V
γ̄
βα

+ N (N − 1)ρ
(N ,2)
α2α1|ᾱ1ᾱ2

V †γ
ᾱ2α2

V γ̄
ᾱ1α1

]
.

(67)

Furthermore,

Sp(P̂d Ê R̂ Ê†) = 0, (68)

and

Sp(P̂d Ŵ R̂) = −
∞∑

N=1

Nρ
(N ,1)
αᾱ W γ̄1γ̄2

3ᾱα (d̄ D)γ̄1(d̄ D)γ̄2 ≈ 0,

Sp(P̂d�̂R̂) = −�
γ̄1γ̄2
3 (d̄ D)γ̄1(d̄ D)γ̄2 ≈ 0,

Sp(P̂d M̂ R̂) + Sp(P̂d Ĉ R̂) =
∞∑

N=1

[
Nρ

(N ,1)
αᾱ Mᾱα

+ N (N − 1)ρ
(N ,2)
α2α1|ᾱ1ᾱ2

Cᾱ1ᾱ2α2α1

]
Sp(P̂d

ph R̂ph).

(69)

The contribution on the last trace boils down to renormaliza-
tion of the intensity of the background radiation. As we see,
the nonperturbative approach to take into account the elec-
tromagnetic field in the initial coherent state of photons sim-
plifies considerably the contributions to the inclusive prob-
ability and to the intensity of radiation. However, it implies
the knowledge of the complete set of solutions to the Dirac
equation in the given electromagnetic field.

3 Stimulated radiation from a wave packet

As the example of stimulated radiation produced by a wave
packet, we consider transition radiation from the Dirac
fermion traversing a mirror in the field of a laser wave.
Spontaneous radiation created by the wave packet of a Dirac
fermion falling onto the conducting plate was thoroughly
investigated in [22] (see also [28,29,34,44–46]). In that
paper, it was assumed that the mirror is ideally conducting
and it is placed at z � 0. The wave packet of the particle
moves from right to left. Using formula (21) of the paper

[22], we find

V γ̄
ᾱα = −i

m

V

∫
dxa∗

iλ(x3)ūᾱ

[
eγ i − iμa(k0σ

i0

+ (p j − p′
j )σ

i j )
]
uα

eik0x0−ik⊥x⊥+i(p′
μ−pμ)xμ

√
2Vk0 p0 p′

0

= −i
m

V

∫
dxa∗

iλ(x3)ūᾱ

[
eγ i − iμa(p

′
ν − pν)σ

νi ]

× uα

eik0x0−ik⊥x⊥+i(p′
μ−pμ)xμ

√
2Vk0 p0 p′

0

,

(70)

where α = (s,p) and ᾱ = (s′,p′), m is the particle mass,
μa is the anomalous magnetic moment of the particle, the
vector a∗

iλ(x3) comes from the mode function of a photon
with helicity λ and it takes into account the presence of an
ideal conductor, uα are the plane-wave mode functions of the
free Dirac field (see Sect. 2 of [22]).

Introduce the one-particle density matrix

ρ
(N ,1)

ss′ (p,p′) := V

(2π)3 ρ
(N ,1)
αᾱ ,

∞∑

N=1

∫
dpρ(N ,1)

ss (p,p) = 1. (71)

So long as the particles impinge on the mirror from right
to left, ρ

(N ,1)

ss′ (p,p′) is strongly suppressed for p3 > 0 or
p′3 > 0. Employing formula (26) of the paper [22] (there
is a misprint in this formula: f (λ)

r (k) should be replaced by
f∗(λ)
r (k)), the contribution to the intensity of radiation can be

cast into the form

dFλ(k) :

=
∞∑

N=1

Nρ
(N ,1)
αᾱ V γ̄

ᾱα(d̄ D)γ̄
Vdk
(2π)3

= −
∑

s,s′

∫
dpdp′δ(k0 + p′

0 − p0)δ(k⊥ + p′⊥ − p⊥)

×
∞∑

N=1

Nρ
(N ,1)

ss′ (p, p′) m√
p0 p′

0

×
∑

r

ūs
′
(p′)

[
eγ i − iμa(p′

ν − pν )σ
νi
]
us(p)

p′
3 − p3 + rk3 − i0

f ∗(λ)
ri (k)d∗

λ (k)
√

2(2π)3k0
k0dk,

(72)

where the normalization of the complex amplitude of the
coherent state,

dλ(k) := dγ

√
V

(2π)3 , (73)

is such that the intensity of the backlighting laser wave equals

d I 0
λ (k) = d∗

λ(k)dλ(k)k0dk. (74)
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There is no summation over λ in (72), (74). As a result, the
total intensity of radiation (26) is given by

d Iλ(k) = d I 0
λ (k) + dFλ(k) + dF∗

λ (k). (75)

Comparing the leading term in (75) with the correction
dFλ(k) and also comparing this correction with the subse-
quent terms of the perturbation series, it is not difficult to
see that the higher orders of the perturbation theory can be
neglected provided the strength of the electromagnetic field
created by the beam of particles is much less than the field
strength of the laser wave.

In the case of a pure one-particle initial electron state, i.e.,
N = 1 and ρ

(1,1)

ss′ (p,p′) is a projector, expression (72) can
be written as

dFλ(k) = Aλ
cl (k)d∗

λ(k)k0dk (no summation over λ), (76)

where

Aλ
cl(k) = −i

∫
dxe∗

i (λ,k; x) j i (x),

e∗
i (λ,k; x) = a∗

iλ(x3)√
2(2π)3k0

eik0x0−ik⊥x⊥ , (77)

and

j i (x) = eϕ̄(x)γ iϕ(x) − μa∂ν(ϕ̄(x)σ νiϕ(x)). (78)

The quantity Aλ
cl(k) is the amplitude of radiation of a photon

with quantum numbers (λ,k) by the classical current j i (x).
The general expression for this amplitude is presented in
the first equality in (32). Notice that the contribution to the
intensity of radiation we consider is of the first order in the
coupling constant e. Therefore, up to the terms linear in e,
the radiation intensity can be written in the form

d Iλ(k) = ∣∣dλ(k) + Aλ
cl(k)

∣∣2k0dk. (79)

The complex amplitude dλ(k) can be expressed through the
electromagnetic field of a laser wave as (see, e.g., [30])

dλ(k) =
∫

dxe∗
i (λ,k; x)[k0A

c
i (x) + i Ec

i (x)
]
, (80)

where the Coulomb gauge is implied.
As in the case of radiation created by beams of charged

particles, the symmetries of the current density j i (x) result
in the selection rules in the radiation we consider. Moreover,
the generation of harmonics of coherent radiation is possible
despite the fact that the radiation is produced by a single
particle. In other words, in describing this type of radiation,
one can regard the wave packet of a particle as some kind of
a charged fluid.

Let us consider the most common symmetries of the one-
particle density matrix ρ

(N ,1)

ss′ (p,p′). Recall that the density
matrix (71) is defined at the instant of time t = 0.

1. Translations Ta along the z axis by an arbitrary a. In this
case,

Taρ
(N ,1)T †

a = ρ(N ,1) ⇔ ei(p
′
3−p3)aρ

(N ,1)

ss′ (p,p′)

= ρ
(N ,1)

ss′ (p,p′). (81)

Consequently,

ρ
(N ,1)

ss′ (p,p′) = f (N ,1)

ss′ (p,p′)δ(p3 − p′
3). (82)

Taking into account the delta functions appearing in
expression (72), it is easy to see that the contribution to
transition radiation we consider is absent in this case. In
particular, this type of radiation is absent for an electron
being in an ideal twisted state. Recall that such a state is
an eigenstate for the translation operator along the z axis
[47,48]. Nevertheless, the radiation of this type is present
even for a twisted electron provided that the translation
symmetry along the z axis is violated. This happens, for
example, for wave packets of twisted electrons with Gaus-
sian envelope.

2. Translations Ta along the z axis by a fixed vector. In this
case, it follows from (81) that

ρ
(N ,1)
ss′ (p, p′) =

∞∑

n=−∞
f (N ,1)
n;ss′ (p,p′)δ(p3 − p′

3 − qn), (83)

where q := 2π/a. Assuming that the recoil due to photon
radiation is small,

k0/(p3β3) 
 1, (84)

we can employ formula (B1) of [22]:

p3 − p′
3 = k0(1 − β⊥n⊥)/β3, (85)

where β = p/p0. Then

ρ
(N ,1)
ss′ (p, p′)

=
∞∑

n=−∞
f (N ,1)
n;ss′ (p, p′)δ

(
k0(1 − β⊥n⊥)/β3 − qn

)
. (86)

Only the terms with n � 1 for q > 0 and with n � −1
for q < 0 are nonvanishing in this sum. Substituting this
expansion into (72), we see that, in the case of a suf-
ficiently small dispersion of the velocity β in the wave
packet, the contribution to inclusive probability we con-
sider possesses the energy harmonics that are the same as
those predicted by the classical theory of coherent radia-
tion produced by beams of charged particles (see, e.g.,
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[34]). The violation of periodicity of the wave packet
along the z axis due to, say, Gaussian envelope gives rise to
smearing of the radiation harmonics. The mention should
be made that, in spite of the fact that we refer to the condi-
tion (84) as the small recoil approximation, in fact, there is
no any recoil in the process we consider since this process
is determined by the diagonal of the transition current. The
condition (84) should be regarded as the restriction on the
domain of photon energies measured in the experiment
where the corresponding approximation holds.

3. Rotations Rϕ around the z axis by an arbitrary angle:

Rϕρ(N ,1)R†
ϕ = ρ(N ,1). (87)

Substituting the left-hand side of this equality into (72),
performing the corresponding change of the integration
variables p, p′, and using the covariance of the integrand
of (72), we arrive at

Aλ
cl(k) = Aλ

cl(kϕ), ∀ϕ ∈ R, (88)

where kϕ is the vector k rotated around the z axis by an
angle of ϕ. Therefore, the amplitude Aλ

cl(k) describes the
radiation of twisted photons with the projection of the
total angular momentum m = 0 [49,50]. As a result, the
intensity of radiation has the form of an interference pat-
tern of the incident laser wave with the radiated photons
with m = 0. In the paraxial regime, m = l + λ, where l
is the projection of the orbital angular momentum, so we
have l = −λ. If the incident laser wave is a plane wave
with helicity λ, then the interference pattern is a twisted
spiral with one arm [51] since λ = ±1. The chirality of
this spiral is specified by the sign of l, i.e., in our case, by
the sign of λ.

4. Rotations Rϕr around the z axis by a fixed angle of ϕr =
2π/r , r ∈ Z. In this case,

Aλ
cl(k) = Aλ

cl(kϕn ). (89)

Consequently, the amplitude Aλ
cl(k) describes the radi-

ation of twisted photons with the projection of the total
angular momentum m′ = rk, k ∈ Z [49,50].

5. Helical symmetry:

Tϕ/q Rϕ. (90)

For ϕ = 2π , this symmetry is reduced to translations con-
sidered in item 2. Hence, the one-particle density matrix
takes the form (83) and, consequently, the radiation ampli-

tude can be written as the sum over harmonics

Aλ
cl(k) =

∞∑

n=−∞
Aλ

n(k). (91)

Let us assume for definiteness that the Dirac spinors
appearing in (72) are the eigenvectors for the operator
of the spin projection onto the z axis. Then the density
matrix (83) possesses the helical symmetry provided

f (N ,1)

n;ss′ (pϕ,p′
ϕ) = einϕei(s−s′)ϕ f (N ,1)

n;ss′ (p,p′), (92)

where s, s′ = ±1/2. Substituting this expression into
Aλ

n(kϕ), performing a change of integration variables
dp → dpϕ , dp′ → dp′

ϕ , and taking into account the
transformation laws of spinors and gamma matrices enter-
ing into the integrand, we obtain

Aλ
n(kϕ) = einϕAλ

n(k). (93)

The amplitude of radiation of twisted photon with the
projection of the total angular momentum m′ onto the z
axis is proportional to (see, e.g., formula (6) of [52])

∫ π

−π

dϕ

2π
e−im′ϕAλ

cl(kϕ) =
∞∑

n=−∞
δm′,nAλ

n(k). (94)

As a result, we deduce the selection rules,

p3 − p′
3 ≈ k0(1 − β⊥n⊥)/β3 = qn, m′ = n, (95)

coinciding with the selection rules for transition radiation
from helical beams of charged particles [50,53].

6. Combination of the symmetries 4 and 5. In this case, the
selection rules (95) hold but only those harmonics n are
realized that are a multiple of r .

In conclusion of this section, we give the explicit expres-
sion for dFλ(k) neglecting the recoil due to photon radiation
and setting μa = 0. Using formulas (B.1), (B.4) of the paper
[22] and

ūs
′
(p′)γ μus(p) ≈ δs′s p

μ/m, (96)

we derive

dFλ(k) =
∑

s

∫
dp

∞∑

N=1

Nρ(N ,1)
ss (p,p′)

×2e|β3|β i
[
k3 f

∗(λ)
i + (q3 − k3)δ

3
i f

∗(λ)
3

]

k0
[
(1 − β⊥n⊥)2 − β2

3n
2
3

]
d∗
λ(k)

√
2(2π)3k0

dk,

(97)
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where

qμ := pμ − p′
μ, p′⊥ = p⊥ − k⊥,

p′
3 = p3 − k0(1 − β⊥n⊥)/β3. (98)

Transition and diffraction radiations from conducting (per-
forated) plates are used for noninvasive diagnostics of beams
of charged particles [34–36]. As we see, the same methods
can be employed for mapping the profiles of wave packets
of particles.

4 Susceptibility of an electron wave packet

Another one process where coherent radiation of photons
produced by a wave packet of a single particle is possible is
the Compton scattering. Suppose that the background elec-
tromagnetic field is absent and the initial state is of the form
(2), the photons being in the coherent state (138) with suffi-
ciently small amplitude |dγ | for the perturbation theory to be
applicable. In this case, the nonvanishing contributions to the
inclusive probability to record a photon and to the intensity
of radiation are the leading term of the perturbation series
(17), the contribution of the Compton scattering (44), and
the terms responsible for the self-interaction of the particle
beam (52). In virtue of the energy-momentum conservation
law, only the term withW γ̄ γ

1ᾱα is different from zero in the con-
tribution (44), whereas the nonvanishing term in expression
(52) is the Coulomb term containing Cᾱ1ᾱ2α2α1 . For N = 1,
the latter term is zero. Notice that, contrary to the process
studied in the previous section, noncommutativity of the ini-
tial photon density matrix with the photon number operator
is not necessary for reradiation to occur.

Let us define

N :=
∞∑

N=1

Nρ
(N ,1)
αᾱ W δ̄δ

1ᾱα d̄δ̄dδ

+
∞∑

N=2

N (N − 1)ρ
(N ,2)
α2α1|ᾱ1ᾱ2

Cᾱ1ᾱ2α2α1 . (99)

Then up to the terms of the second order in the coupling
constant, the intensity of radiation of photons with quantum
numbers γ is written as

Iγ = k0γ

∣∣∣∣dγ

√
1 + N +

∞∑

N=1

Nρ
(N ,1)
αᾱ W γ δ

1ᾱαdδ

∣∣∣∣
2

(no summation over γ ). (100)

For small |dγ | and N = 1, one can put N = 0. The terms of
the order e4 in this formula can be omitted to the accuracy
we work. Formula (100) describes the interference of the
incident photon beam with renormalized intensity with the
photons reradiated by the electrons.

It was shown above that, in the case we consider, the effec-
tive susceptibility tensor is equal to

�AB
ef f =

∞∑

N=1

Nρ
(N ,1)
αᾱ W AB

ᾱα =
∞∑

N=1

Nρ
(N ,1)
αᾱ W AB

1ᾱα, (101)

where

W γ̄ γ
1ᾱα = 2W AB

ᾱα ēγ̄

Ae
γ

B . (102)

The quantity W γ̄ γ
1ᾱα is the amplitude of the Compton scatter-

ing.
Bearing in mind our agreement for the normalization of

the mode functions, we have (see, e.g., [54])

W γ̄ γ
1ᾱα = −i(2π)4δ(p + k − p′ − k′)

×e2me(λ)
μ (k)e∗(λ′)

ν (k′)

4V 2
√
k0k′

0 p0 p′
0

ūs
′
(p′)

×
[
γ ν k̂γ μ + 2pμγ ν

pk
+ γ μk̂′γ ν − 2pνγ μ

pk′

]
us(p). (103)

In the small quantum recoil limit, |�k| 
 E , where �k :=
k′ − k and E := p0, it follows from the energy-momentum
conservation law that

k′
0 − k0 = β(k′ − k) ⇔ k′

0 = k0
1 − βn
1 − βn′ ⇔ pk′ = pk.

(104)

Neglecting the higher order corrections with respect to the
recoil parameter, |�k|/E 
 1, and employing the relation
(96), the amplitude (103) can be cast into the form

W γ̄ γ
1ᾱα

= −i(2π)4δ(p + k − p′ − k′)
e2e(λ)

i (k)e∗(λ′)
i (k′)

2V 2
√
k0k

′
0 p0

δss′ .

(105)

Notice that, as in the previous section, there is no recoil in
the process we consider. The condition |�k|/E 
 1 should
be regarded as the restriction on the domain of applicability
of the approximate formula (105). As a result, introducing
the one-particle density matrix (71), we arrive at

�(λ′,k′; λ,k) = −2π ie2 e
(λ)
i (k)e∗(λ′)

i (k′)

2V
√
k0k′

0

×
∑

s

∫
dp
E(p)

δ(p0 + k0 − p′
0 − k′

0)

×
∞∑

N=1

Nρ(N ,1)
ss (p,p − �k)

= −2π ie2 e
(λ)
i (k)e∗(λ′)

i (k′)

2V
√
k0k′

0

〈e−i�kx̂δ(p�k)〉, (106)
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where

�(λ′,k′; λ,k) :=
∞∑

N=1

Nρ
(N ,1)
αᾱ W γ̄ γ

1ᾱα, (107)

and x̂ i = i∂/∂pi .
One can simplify a little expression (106). Suppose that

σeβ

E

 1, (108)

where σe is the characteristic scale of variation of the elec-
tron wave packet in the momentum space. Then E(p) can
be brought out of the integral over p with p replaced by its
average value. Convolving (106) with the wave packet of an
incident photon, we see that the delta function ensuing the
energy conservation law can also be taken outside the average
sign provided

σe

σγ

|�k|
E


 1, (109)

where σγ is the characteristic scale of variation of the incident
photon wave packet in the momentum space. In the comoving
frame, where β vanishes on average, the estimate (109) is a
consequence of the requirement that

δk0 
 σγ , (110)

where δk0 is the variation of k0 for different p in the elec-
tron wave packet at fixed k′

0 as it follows from the energy
conservation law (104). It equals

δk0 ≈ |(k′ − k)δβ| ≈ |k′ − k|σe/E . (111)

Substituting this into (110), we arrive at (109). By taking the
Lorentz transform to the laboratory frame we ascertain that
(109) is valid in this frame as well.

Assuming that the estimates (108), (109) are fulfilled, we
can write

�(λ′, k′; λ,k) = −2π ie2δ(p�k)
e(λ)
i (k)e∗(λ′)

i (k′)
2V

√
k0k

′
0

F(�k),(112)

where

F(�k) := 〈e−i�kx̂〉. (113)

The latter quantity is nothing but the form-factor of the one-
particle probability density

ρ(x) :=
∞∑

N=1

N
∑

s

∫
dpdp′

(2π)3 e
i(p−p′)xρ(N ,1)

ss (p,p′)

=
∫

dk
(2π)3 e

ikxF(k). (114)

In the nonrelativistic limit, β 
 1, or in the reference frame
where the electron is at rest on average, under the fulfillment

of the above assumptions and in the small quantum recoil
limit, we obtain

�(λ′,k′; λ,k)

= −2π iδ(k0 − k′
0)
e2

m

e(λ)
i (k)e∗(λ′)

i (k′)
2Vk0

F(�k), (115)

It is clear that the expressions obtained are also valid in the
case N = 1.

Comparing expression (115) with the amplitude of scatter-
ing of the electromagnetic waves by the susceptibility tensor
χi j (k0; x) (see, e.g., formula (34) of the paper [55]), we see
that in the case we consider

χi j (k0; x) = −e2ρ(x)

k2
0m

δi j , (116)

i.e., we reproduce the standard plasma susceptibility. In par-
ticular, such a susceptibility is inherent to the wave packet
of a single electron. Choosing the normalization (73), the
intensity of radiation (100) in the comoving frame becomes

d Iλ′ (k′) =
∣∣∣∣dλ′ (k′)

√
1 + N − ie2

m

×
∑

λ

∫
dk

2(2π)2k0
δ(k′

0 − k0)F(k′ − k)e∗(λ′)
i (k′)e(λ)

i (k)dλ(k)

∣∣∣∣
2

×k′
0dk

′. (117)

It is not difficult to write the analogous formula in an arbitrary
frame substituting expression (106) in place of the second
term under the modulus sign in (100). As we see, the con-
tribution to the radiation intensity we consider describes the
interference of the incident and reradiated photons and it is of
the order e2. In the case when this interference term is small,
for example, for reflection of the photon from the electron
wave packet (the inverse Compton scattering), it is necessary
to take into account the corrections of the order e4 to the radi-
ation intensity, in particular, the standard contribution to the
differential cross-section of the Compton process.

Just as for scattering of photons by dispersive media
with susceptibility tensor possessing a certain symmetry, the
Compton scattering by electron wave packet obeys the selec-
tion rules following from this symmetry. Let us examine how
these selection rules look like for the symmetries considered
in the previous section.

1. In this case,

�(λ′,k′; λ,k) ∼ δ(k′
3 − k3). (118)

If the one-particle density matrix is invariant under arbi-
trary spatial translations, then

�(λ′,k′; λ,k) ∼ δ(k′ − k). (119)
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The violation of translation symmetry of the one-particle
density matrix on the scale L results in smearing of the
delta function δ(k3 − k′

3). The width of the peak becomes
of the order 2π/L .

2. In this case,

�(λ′,k′; λ,k) =
∞∑

n=−∞
δ(k′

3 − k3 − qn)�n(λ
′,k′; λ,k). (120)

By analogy with an ordinary periodic medium, one may
say that the periodic wave packet imparts the projection of
the momentum �k3 = qn to the scattered photon, i.e., the
Bragg scattering is realized. It is interesting to note that
this resonance scattering occurs even on the wave packet
of a single particle.

3. For the axially symmetric one-particle density matrix,

�(λ′,k′
ϕ; λ,kϕ) = �(λ′,k′; λ,k). (121)

Therefore, on scattering of twisted photons by such a state
of the electrons, the projection of the total angular momen-
tum onto the z axis is conserved: m′ = m.

4. For the one-particle density matrix invariant under rota-
tions Rϕr , we have

�(λ′,k′
ϕr

; λ,kϕr ) = �(λ′,k′; λ,k). (122)

The amplitude of scattering of twisted photons is propor-
tional to

∫ π

−π

dϕ′dϕ

(2π)2 e−im′ϕ′+imϕ�(λ′,k′
ϕ′ ; λ,kϕ)

=
∫ π

−π

dϕ′dϕ

(2π)2 ei(m−m′)ϕ′
eimϕ�(λ′,k′

ϕ′ ; λ,kϕ+ϕ′ )

=
∞∑

n=−∞
δm′,m+nr

∫ π

−π

dϕ

2π
eimϕ fn(λ

′,k′; λ,kϕ), (123)

i.e., the selection rule, m′ = m + nr , n ∈ Z, holds. It is
the same as for scattering of twisted photons by dispersive
media possessing such a symmetry.

5. In consequence of the helical symmetry, the representa-
tion (120) is valid and

�(λ′,k′−ϕ; λ,k−ϕ)ei(k
′
3−k3)ϕ/q = �(λ′,k′; λ,k). (124)

Hence

�n(λ
′,k′; λ,k)einϕ = �n(λ

′,k′
ϕ; λ,kϕ), (125)

and so

∫ π

−π

dϕ′dϕ

(2π)2 e−im′ϕ′+imϕ�(λ′,k′
ϕ′ ; λ,kϕ)

=
∞∑

n=−∞
δm′,m+nδ(k

′
3 − k3 − qn)

×
∫ π

−π

dϕ

2π
eimϕ�n(λ

′,k′; λ,kϕ). (126)

Thus we deduce the selection rules for scattering by heli-
cal media [55].

6. The combination of the symmetries 4 and 5 gives rise to
the selection rules

m′ = m + rn, k′
3 = k3 + qrn, n ∈ Z. (127)

As for the intensity of radiation (117), it represents the
interference pattern of the incident and reradiated twisted
photons.

Notice that in order to observe the coherence effects in
scattering of photons by electron wave packets, it is necessary
that k0 � σe. On the other hand, for k0 ≈ σe,

χi j ≈ −4παN
σe

m
δi j , (128)

in the comoving frame. Keeping in mind that σe 
 m, the
susceptibility of a wave packet of a single particle is rather
small and it is challenging to detect the corresponding coher-
ence effects. For example, for the photon wavelength 0.5 μm,
it follows from (128) that

χi j ≈ −7.1 × 10−8δi j , (129)

when N = 1. If the one-particle probability density ρ(x) is
of the order of 1/r3

B , where rB = 1/(αm) is the Bohr radius,
then the plasma frequency corresponding to (116) for N = 1
equals ωp = 2

√
πα2m ≈ 96.5 eV.

For bound electrons in atoms the process we considered
in this section is the well-known Rayleigh scattering (see,
e.g., Sect. 59 of [56], where the polarizability tensor of an
atom is introduced). The plasma susceptibility also appears in
describing scattering of X-ray photons by electrons in crys-
tals (see, e.g., Sect. 124 of [57]). We showed that the sus-
ceptibility tensor is inherent to a single electron in the state
described by a certain wave function and can be measured in
a series of experiments with the same initial states of the elec-
tron. Of course, the susceptibility tensor can be introduced for
any other particle interacting with an electromagnetic field.
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5 Conclusion

Let us sum up the results. We investigated the processes of
radiation of photons in QED with the initial states of the form
(2) up to the second order in the coupling constant e. We con-
sidered the N -particle, coherent, and thermal initial states of
particles. In these cases, we obtained the general formulas
for the intensity of radiation and the inclusive probability to
record a photon. The background field method for nonper-
turbative treatment of a coherent initial state of photons with
large amplitude was also discussed.

A special attention was paid to the processes where the
wave packets of electrons radiate coherently, i.e., the elec-
tron wave packets can be regarded as some kind of a charged
fluid in these processes. We found the three such processes in
the second order of perturbation theory: stimulated radiation
produced by an electron wave packet [4–6,8,9]; coherent
radiation from N wave packets of particles arranged sym-
metrically, for example, as a bunch train [11,22]; reradiation
by an electron wave packet in the Compton process. In the
last case, the susceptibility tensor of a single electron wave
packet in a vacuum was found.

We studied in detail stimulated transition radiation from
the Dirac particle wave packet traversing a conducting plate
irradiated by a laser wave. We obtained the explicit expres-
sion for the intensity of radiation and proved the selection
rules for this radiation when the one-particle density matrix
possesses certain symmetries. These selection rules appear to
be the same as for transition radiation from beams of charged
particles possessing the same symmetries, even in the case of
stimulated transition radiation from a single electron. There-
fore, this process can be used for mapping the profiles of
electron wave packets employing the same techniques as for
noninvasive diagnostics of beams of charged particles in tran-
sition and diffraction radiations [34–36].

Then we investigated reradiation of photons by electron
wave packets in a vacuum. We showed that this process
is determined by the effective susceptibility tensor (101)
appearing due to the presence of electrons in the initial state.
We derived the explicit expression for this tensor and, as
expected, it proved to be the same as for an electron plasma
in the small recoil limit. However, what was not expected,
this expression turns out to be valid even in the case of a sin-
gle electron. Thus, we found the susceptibility tensor of an
electron wave packet. We also obtained the explicit expres-
sion for the intensity of radiation produced in such a process
and established the selection rules in the case when the one-
particle density matrix possesses certain symmetries. These
selection rules were shown to coincide with the selection
rules for scattering of electromagnetic waves by a disper-
sive medium with the susceptibility tensor having the same
symmetries. In particular, scattering of photons by a peri-
odically modulated one-particle density matrix exhibits the

Bragg resonances even in the case of scattering by a single
electron.

As it has been already mentioned in Introduction, the for-
mal cause for appearance of coherent radiation from a particle
wave packet is the presence of contributions of through lines
of the Feynman diagrams to the inclusive probability. These
lines provide a free evolution of the wave packets of some
particles participating in the process that, in turn, results in a
coherent emission. Such a mechanism for coherent radiation
from a particle wave packet is quite general and also appears
in the processes different from those considered in the present
paper. For example, in scattering of a muon by an electron,
there is the contribution of the order e2 to the inclusive prob-
ability to record a muon that represents an interference of the
incident muon wave function with the correction to it due to
scattering on the electromagnetic field produced by the Dirac
current of the electron wave packet. In other words, this con-
tribution is such as if the electron had moved freely and had
not experienced a recoil.
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A Bargmann–Fock representation

The states in the Bargmann–Fock representation,

�(ā) := 〈ā|�〉, 〈ā|a〉 = eāa, (130)

satisfy the normalization condition

∫
DāDae−āa�̄(ā)�(ā) = 1. (131)
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The functional integral is normalized such that
∫

DāDa exp
{

− 1

2

[
a ā

]
B

[
a
ā

]
+ [

a ā
]
F
}

= exp
{ 1

2 F
T B−1F

}(
det

[
A21 A22

A11 A12

] )−1/2
,

∫
DāDa exp

{1

2

[
a ā

]
B

[
a
ā

]
+ [

a ā
]
F
}

= exp
{ 1

2 F
T B−1F

}
(det B)1/2, (132)

where the first equality is for bosons (ε = 1), whereas the
second one is for fermions (ε = −1). The Grassmann parity
of the column F is equal to (1 − ε)/2. Besides,

B :=
[
A11 A12

A21 A22

]
. (133)

The determinant on the right-hand side of the first equality
in (132) is well-defined if A11, A22 are the Hilbert–Schmidt
operators and A12 − 1 and A21 − 1 are the trace-class oper-
ators. As for fermions, the Gaussian functional integral is
well-defined if the operators out of the diagonal of (133)
are the Hilbert–Schmidt operators and the operators on the
diagonal are of the form 1 + (trace-class). Furthermore, the
Gaussian fermionic functional integral is also well-defined
when one of the matrices,

± B

[
0 1

−1 0

]
, (134)

possesses the properties mentioned above (see for details
[31]). In particular,
∫

DāDae−āa+āη+η̄a = eη̄η. (135)

The trace of the operator in the Bargmann-Fock representa-
tion is given by

Sp Â =
∫

DāDae−aā〈ā| Â|a〉. (136)

Expressions (130), (131), (135), and (136) are valid for both
statistics.

B Explicit expressions for initial states

As the initial states, we take

1. The N -particle Fock state of fermions (electrons)

|�〉 = kϕ1
α1

· · · ϕN
αN

â†
α1

· · · â†
αN

|0〉,
�(ā) = k(ϕ1ā) · · · (ϕN ā), |k|−2 = det(ϕ̄iϕ j ),

(137)

where i = 1, N , j = 1, N .

2. The normalized coherent state of bosons (photons)

�(c̄) = e(c̄−d̄)d , (138)

where dα is a complex amplitude of the coherent state and
d̄d is the average number of particles in this state, c̄α is
the variable of the representation.

3. The density matrix of a general form

〈ā|R̂|a〉

=
∞∑

N ,M=0

1√
N !M !ραN ···α1|ᾱ1···ᾱM āα1 · · · āαN aᾱM · · · aᾱ1 ,

∞∑

N=0

ραN ···α1|α1···αN = 1. (139)

4. The thermal state of noninteracting particles

〈ā|R̂|a〉 = exp(āe−βT ε̃a)/Z ,

ln Z = −ε Sp ln(1 − εe−βT ε̃), (140)

where βT is the reciprocal temperature, ε̃αᾱ := εαᾱ −
μqαᾱ and εαᾱ , qαᾱ are the one-particle operators of energy
and charge, [ε, q] = 0, and μ is the chemical potential,
ε = 1 for the Bose-Einstein statistics and ε = −1 for the
Fermi-Dirac statistics.

Notice that, in the cases 1, 4, the density matrix commutes
with the particle number operator. The density matrix is
defined in the interaction picture at the instant of time t = 0.
At some initial instant of time t = tin , it becomes

〈ā|R̂|a〉
=

∞∑

N ,M=0

1√
N !M !ραN ···α1|ᾱ1···ᾱM āα1 · · · āαN

×aᾱM · · · × aᾱ1e
−i(εα1 +···+εαN −εᾱ1 −···−εᾱM )tin , (141)

where it is assumed that the one-particle states are the sta-
tionary ones.

Let us introduce the one-particle density matrix,

ρ
(N ,1)
αᾱ

:= ραN ···α2α|ᾱα2···αN , Sp(R̂â†
ᾱ
âα) =

∞∑

N=1

Nρ
(N ,1)
αᾱ

,

(142)

and the two-particle density matrix,

ρ
(N ,2)
α2α1|ᾱ1ᾱ2

= ραN ···α3α2α1|ᾱ1ᾱ2α3···αN ,

Sp(R̂â†
ᾱ1
â†
ᾱ2
âα2 âα1) =

∞∑

N=2

N (N − 1)ρ
(N ,2)
α2α1|ᾱ1ᾱ2

. (143)
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In the particular case of the N -particle state of fermions
(137), we have

ρ
(N ,1)
αᾱ

= |k|2
N

N∑

k=1

det

⎡

⎢⎢⎣

ϕ̄1ϕ1 · · · ϕ̄1
ᾱϕk

α · · · ϕ̄1ϕN

.

.

.
.
.
.

.

.

.

ϕ̄Nϕ1 · · · ϕ̄N
ᾱ ϕk

α · · · ϕ̄NϕN

⎤

⎥⎥⎦ ,

ρ
(N ,2)
α2α1 |ᾱ1 ᾱ2

= |k|2
N (N − 1)

×

⎧
⎪⎪⎨

⎪⎪⎩

N∑

k,l=1
l<k

det

⎡

⎢⎢⎣

ϕ̄1ϕ1 · · · ϕ̄1
ᾱ1

ϕl
α1

· · · ϕ̄1
ᾱ2

ϕk
α2

· · · ϕ̄1ϕN

.

.

.
.
.
.

.

.

.
.
.
.

ϕ̄Nϕ1 · · · ϕ̄N
ᾱ1

ϕl
α1

· · · ϕ̄N
ᾱ2

ϕk
α2

· · · ϕ̄NϕN

⎤

⎥⎥⎦ − (α1 ↔ α2)

⎫
⎪⎪⎬

⎪⎪⎭
.

(144)

If

ϕ̄iϕ j ≈ δi j , i, j = 1, N , (145)

then |k|2 ≈ 1 and

ρ
(N ,1)
αᾱ ≈ 1

N

N∑

k=1

ϕk
αϕ̄k

ᾱ, ρ
(N ,2)
α2α1|ᾱ1ᾱ2

= 1

N (N − 1)

N∑′

k,l=1

ϕk
α2

ϕl
α1

ϕ̄l[ᾱ1
ϕ̄k

ᾱ2], (146)

where the prime at the sum sign means that the term with
k = l is excluded and the square brackets at the pair of
indices denote antisymmetrization without the factor 1/2. In
particular, the condition (145) is satisfied when the common
phases of the wave functions ϕi

α are random, uncorrelated,
and equiprobably distributed, i.e.,

ϕi
α = eiξi ϕ̃i

α, 〈ξiξ j 〉 = 0, i �= j, 〈eiξi 〉 = 0, (147)

where ξi are stochastic quantities, and the final expression
for the probability to record a photon is averaged over the
random phases ξi .

As for the thermal state of noninteracting fermions, we
obtain

∞∑

N=1

Nρ
(N ,1)
αᾱ = (n f )αᾱ,

∞∑

N=2

N (N − 1)ρ
(N ,2)
α2α1ᾱ1ᾱ2

= (n f )α1[ᾱ1(n f )α2ᾱ2], (148)

where

(n f )αᾱ := (eβT ε̃ + 1)−1
αᾱ (149)

is the Fermi-Dirac distribution. Similarly, for bosons we have

∞∑

N=1

Nρ
(N ,1)
αᾱ = (nb)αᾱ,

∞∑

N=2

N (N − 1)ρ
(N ,2)
α2α1ᾱ1ᾱ2

= (nb)α1(ᾱ1(nb)α2ᾱ2), (150)

where the parenthesis at the pair of indices mean symmetriza-
tion without the factor 1/2 and

(nb)αᾱ := (eβT ε̃ − 1)−1
αᾱ (151)

is the Bose-Einstein distribution. In the case of photons, the
chemical potential μ = 0 and so ε̃ = ε.

C Traces

In evaluating the one-particle and two-particle density matri-
ces there appear the following expressions. For the N -particle
Fock state (137), the density matrix is

ραN ···α1|ᾱ1···ᾱN = |k|2
N !

×
∑

σ,σ ′∈SN
(−1)ε(σ )+ε(σ ′)ϕσ ′(N )

αN
· · ·ϕσ ′(1)

α1
ϕ̄

σ (1)
ᾱ1

· · · ϕ̄σ (N )
ᾱN

. (152)

Then, it is easy to show that the contractions (142), (143) can
be written in the form (144). As far as the thermal fermionic
states are concerned,

〈ā|R̂e|a〉 = exp(āe−βT ε̃a)/Z , 1/Z = det(1 − n f ), (153)

we have

Sp(R̂eâ
†
ᾱ
âα)

=
∫

DāDaDb̄Db

Z
b̄ᾱaα exp(āa − b̄b + b̄a + āe−βT ε̃b)

= − δ

δη̄α

←−
δ

δηᾱ

∣∣∣
η=η̄=0

∫
DāDaDb̄Db

Z

× exp(āa − b̄b + η̄a + b̄η + b̄a + āe−βT ε̃b). (154)

Using successively formulas (135) and (132), we come to the
first expression in (148). In the same way,

Sp(R̂eâ
†
ᾱ1
â†
ᾱ2
âα2 âα1) =

∫
DāDaDb̄Db

Z
b̄ᾱ1 b̄ᾱ2aα2aα1

× exp(āa − b̄b + b̄a + āe−βT ε̃b)

= δ

δη̄α2

δ

δη̄α1

←−
δ

δηᾱ2

←−
δ

δηᾱ1

∣∣∣
η=η̄=0

∫
DāDaDb̄Db

Z

× exp(āa − b̄b + η̄a + b̄η + b̄a + āe−βT ε̃b), (155)

whence the second expression in (148) follows. The relations
(150) are proved along the same lines.

In order to find the inclusive probabilities, one needs to
evaluate the following traces:
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Sp(P̂ph ĉ
†
γ̄ R̂ph ĉγ ) = e−d̄d δ2

δd̄γ δdγ̄

〈d̄|P̂ph |d〉

= e−d̄d δ2

δd̄γ δdγ̄

(ed̄d − ed̄ D̃d),

Sp(P̂ph ĉγ R̂ph ĉ
†
γ̄ ) = e−d̄d d̄γ̄ dγ 〈d̄|P̂ph |d〉

= d̄γ̄ dγ (1 − e−d̄ Dd),

Sp(P̂ph ĉ
†
γ̄1
R̂ph ĉ

†
γ̄2

) = e−d̄d d̄γ̄2

δ

δdγ̄1

〈d̄|P̂ph |d〉

= e−d̄d d̄γ̄2

δ

δdγ̄1

(ed̄d − ed̄ D̃d),

Sp(P̂ph ĉγ1 R̂ph ĉγ2) = e−d̄d δ

δd̄γ1

〈d̄|P̂ph |d〉dγ1

= e−d̄d δ

δd̄γ1

(ed̄d − ed̄ D̃d)dγ1 ,

Sp(P̂ph ĉ
†
γ̄ ĉγ R̂ph) = e−d̄ddγ

δ

δdγ̄

〈d̄|P̂ph |d〉

= e−d̄ddγ

δ

δdγ̄

(ed̄d − ed̄ D̃d),

Sp(P̂ph ĉγ1 ĉγ2 R̂ph) = e−d̄ddγ1dγ2〈d̄|P̂ph |d〉
= dγ1dγ2(1 − e−d̄ Dd),

Sp(P̂ph ĉ
†
γ̄1
ĉ†
γ̄2
R̂ph) = e−d̄d δ2

δdγ̄1δdγ̄2

〈d̄|P̂ph |d〉

= e−d̄d δ2

δdγ̄1δdγ̄2

(ed̄d − ed̄ D̃d), (156)

where

R̂ph = |d〉〈d̄|e−d̄d . (157)

As for the thermal states of photons,

〈c̄|R̂ph |c〉 = exp(c̄e−βT εc)/Z , Z = det(1 + nb), (158)

we obtain

Sp(P̂ph ĉ
†
γ̄ R̂ph ĉγ ) =

∫
Dc̄DcDd̄Dd

Z
c̄γ̄ dγ

× exp(−c̄c − d̄d + d̄c + c̄e−βT εd)(1 − e−d̄ Dc)

= δ2

δηγ̄ δη̄γ

∣∣∣
η=η̄=0

∫
Dc̄DcDd̄Dd

Z

× exp(−c̄c − d̄d + c̄η + η̄d + d̄c + c̄e−βT εd)(1 − e−d̄ Dc).

(159)

Then applying sequentially formulas (135) and (132), we
arrive at the first expression in (41). Analogously,

Sp(P̂ph ĉγ R̂ph ĉ
†
γ̄ ) =

∫
Dc̄DcDd̄Dd

Z
cγ d̄γ̄

× exp(−c̄c − d̄d + d̄c + c̄e−βT εd)(1 − e−d̄ Dc)

= δ2

δηγ̄ δη̄γ

∣∣∣
η=η̄=0

∫
Dc̄DcDd̄Dd

Z

× exp(−c̄c − d̄d + d̄η + η̄c + d̄c + c̄e−βT εd)(1 − e−d̄ Dc),

(160)

that gives the second expression in (41). Furthermore,

Sp(P̂ph ĉ
†
γ̄
ĉγ R̂ph) =

∫
Dc̄DcDb̄DbDd̄Dd

Z
c̄γ̄ bγ

× exp(−c̄c − b̄b − d̄d + c̄b + d̄c + b̄e−βT εd)(1 − e−d̄ Dc)

= δ2

δηγ̄ δη̄γ

∣∣∣
η=η̄=0

∫
Dc̄DcDb̄DbDd̄Dd

Z

× exp(−c̄c − b̄b − d̄d + c̄η + η̄b + c̄b + d̄c + b̄e−βT εd)

×(1 − e−d̄ Dc), (161)

that results in formula (47). The functional integral under the
sign of variational derivatives with respect to η and η̄ is equal
to the background contribution (19) for η = η̄ = 0.

References

1. I.P. Ivanov, D.V. Karlovets, Detecting transition radiation from a
magnetic moment. Phys. Rev. Lett. 110, 264801 (2013)

2. I.P. Ivanov, D.V. Karlovets, Polarization radiation of vortex elec-
trons with large orbital angular momentum. Phys. Rev. A 88,
043840 (2013)

3. A.S. Konkov, A.P. Potylitsyn, M.S. Polonskaya, Transition radia-
tion of electrons with a nonzero orbital angular momentum. JETP
Lett. 100, 421 (2014)

4. N. Talebi, Schrödinger electrons interacting with optical gratings:
quantum mechanical study of the inverse Smith-Purcell effect. New
J. Phys. 18, 123006 (2016)

5. Y. Pan, A. Gover, Spontaneous and stimulated radiative emission
of modulated free electron quantum wavepackets - semiclassical
analysis. J. Phys. Commun. 2, 115026 (2018)

6. A. Gover, Y. Pan, Dimension-dependent stimulated radiative inter-
action of a single electron quantum wavepacket. Phys. Lett. A 382,
1550 (2018)

7. D. Karlovets, A. Zhevlakov, Intrinsic multipole moments of non-
Gaussian wave packets. Phys. Rev. A 99, 022103 (2019)

8. Y. Pan, A. Gover, Spontaneous and stimulated emissions of a pre-
formed quantum free-electron wave function. Phys. Rev. A 99,
052107 (2019)

9. Y. Pan, A. Gover, Beyond Fermi’s golden rule in free-electron quan-
tum electrodynamics: acceleration/radiation correspondence. New
J. Phys. 23, 063070 (2021)

10. D. Marcuse, Emission of radiation from a modulated electron beam.
J. Appl. Phys. 42, 2255 (1971)

11. D. Marcuse, Transition radiation from a modulated electron beam.
J. Appl. Phys. 42, 2259 (1971)

12. B. Sundaram, P.W. Milonni, High-order harmonic generation: Sim-
plified model and relevance of single-atom theories to experiment.
Phys. Rev. A 41, 6571 (1990)

13. D.G. Lappas, M.V. Fedorov, J.H. Eberly, Spectrum of light scat-
tered by a strongly driven atom. Phys. Rev. A 47, 1327 (1993)

14. J. Peatross, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Photoe-
mission of a single-electron wave packet in a strong laser field.
Phys. Rev. Lett. 100, 153601 (2008)

15. J.P. Corson, J. Peatross, Quantum-electrodynamic treatment of
photoemission by a single-electron wave packet. Phys. Rev. A 84,
053832 (2011)

123



Eur. Phys. J. C           (2022) 82:790 Page 19 of 19   790 

16. M. Ware, E. Cunningham, C. Coburn, J. Peatross, Measured pho-
toemission from electron wave packets in a strong laser field. Opt.
Lett. 41, 689 (2016)

17. A. Angioi, A. Di Piazza, Quantum limitation to the coherent emis-
sion of accelerated charges. Phys. Rev. Lett. 121, 010402 (2018)

18. R. Remez et al., Observing the quantum wave nature of free elec-
trons through spontaneous emission. Phys. Rev. Lett. 123, 060401
(2019)

19. O. Kfir, V. DiGiulio, F.J.G. de Abajo, C. Ropers, Optical coherence
transfer mediated by free electrons. Sci. Adv. 7, eabf6380 (2021)

20. L.J. Wong et al., Control of quantum electrodynamical processes
by shaping electron wavepackets. Nat. Commun. 12, 1700 (2021)

21. A. Pupasov-Maksimov, D. Karlovets, Passage of a vortex electron
over an inclined grating. Phys. Rev. A 105, 042206 (2022)

22. P.O. Kazinski, G.Yu. Lazarenko, Transition radiation from a Dirac-
particle wave packet traversing a mirror. Phys. Rev. A 103, 012216
(2021)

23. S. Weinberg, The Quantum Theory of Fields Vol. 1: Foundations
(Cambridge University Press, Cambridge, 1996)

24. G.L. Kotkin, V.G. Serbo, A. Schiller, Processes with large impact
parameters at colliding beams. Int. J. Mod. Phys. A 7, 4707 (1992)

25. D.V. Karlovets, Scattering of wave packets with phases. JHEP
1703, 049 (2017)

26. I. P. Ivanov, Promises and challenges of high-energy vortex states
collisions, arXiv:2205.00412

27. O.V. Bogdanov, P.O. Kazinski, G.Yu. Lazarenko, Probability of
radiation of twisted photons in the isotropic dispersive medium.
Phys. Rev. A 100, 043836 (2019)

28. L. F. Zaretskiı̆, V. V. Lomonosov, É. A. Nersesov, Stimulated emis-
sion from particles crossing the interface between two media, Kvan-
tovaya Elektronika 7, 2367 (1980) [Sov. J. Quantum Electron. 10,
1379 (1980)]

29. I. G. Ivanter, V. V. Lomonosov, Polarization and angular distribu-
tion of Cherenkov and transition radiations in the field of a strong
electromagnetic wave, Zh. Eksp. Teor. Fiz. 80, 879 (1981) [Sov.
Phys. JETP 53, 447 (1981)]

30. P.O. Kazinski, Inclusive probability of particle creation on classical
backgrounds. Eur. Phys. J. C 80, 734 (2020)

31. F.A. Berezin, Method of Second Quantization (Academic Press,
New York, 1966)

32. R.J. Glauber, Coherent and incoherent states of the radiation field.
Phys. Rev. 131, 2766 (1963)

33. J.R. Klauder, E.C.G. Sudarshan, Fundamentals of QuantumOptics
(Benjamin, New York, 1968)

34. A. P. Potylitsyn, M. I. Ryazanov, M. N. Strikhanov, A. A.
Tishchenko, Diffraction Radiation from Relativistic Particles.
Springer Tracts in Modern Physics, Vol. 239 (Springer, Berlin,
2010)

35. L.G. Sukhikh, G. Kube, A.P. Potylitsyn, Simulation of transition
radiation based beam imaging from tilted targets. Phys. Rev. Accel.
Beams 20, 032802 (2017)

36. L. G. Sukhikh, Measuring dimensions of high energy micrometer
electron beams with the aid of transition radiation, Doctor thesis,
Tomsk Polytechnic University, (2018)

37. V.G. Bagrov, V.V. Belov, A.Yu. Trifonov, Theory of spontaneous
radiation by electrons in a trajectory-coherent approximation. J.
Phys. A: Math. Gen. 26, 6431 (1993)

38. V.V. Belov, D.V. Boltovskiy, A.Yu. Trifonov, Theory of sponta-
neous radiation by bosons in quasi-classical trajectory-coherent
approximation. Int. J. Mod. Phys. B 8, 2503 (1994)

39. V.I. Ritus, Quantum effects of the interaction of elementary parti-
cles with an intense electromagnetic field. J. Sov. Laser Res. 6, 497
(1985)

40. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel,
Extremely high-intensity laser interactions with fundamental quan-
tum systems. Rev. Mod. Phys. 84, 1177 (2012)

41. A. Fedotov et al., Advances in QED with intense background fields,
arXiv:2203.00019

42. W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of
Strong Fields (Springer, Heidelberg, 1985)

43. E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, Quantum Electro-
dynamics with Unstable Vacuum (Springer, Berlin, 1991)

44. G.M. Garibyan, C. Yang, X-Ray Transition Radiation (Armenian
Academy of Science, Yerevan, 1983). ([in Russian])

45. V.A. Bazylev, N.K. Zhevago, Radiation from Fast Particles in a
Medium and External Fields (Nauka, Moscow, 1987). ([in Rus-
sian])

46. V.L. Ginzburg, V.N. Tsytovich, Transition Radiation and Transi-
tion Scattering (Hilger, Bristol, 1990)

47. K.Y. Bliokh et al., Theory and applications of free-electron vortex
states. Phys. Rep. 690, 1 (2017)

48. S.M. Lloyd, M. Babiker, G. Thirunavukkarasu, J. Yuan, Electron
vortices: Beams with orbital angular momentum. Rev. Mod. Phys.
89, 035004 (2017)

49. O.V. Bogdanov, P.O. Kazinski, G.Yu. Lazarenko, Probability of
radiation of twisted photons in the infrared domain. Ann. Phys.
406, 114 (2019)

50. O.V. Bogdanov, P.O. Kazinski, G.Yu. Lazarenko, Probability of
radiation of twisted photons by cold relativistic particle bunches.
Ann. Phys. 415, 168116 (2020)

51. B.A. Knyazev, V.G. Serbo, Beams of photons with nonzero pro-
jections of orbital angular momenta: New results. Phys. Usp. 61,
449 (2018)

52. O.V. Bogdanov, P.O. Kazinski, P.S. Korolev, G.Yu. Lazarenko,
Radiation of twisted photons from charged particles moving in
cholesterics. J. Mol. Liq. 326, 115278 (2021)

53. E. Hemsing, G. Stupakov, D. Xiang, A. Zholents, Beam by design:
Laser manipulation of electrons in modern accelerators. Rev. Mod.
Phys. 86, 897 (2014)

54. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field
Theory (Addison-Wesley, Reading, 1995)

55. P. O. Kazinski, P. S. Korolev, Scattering of plane-wave and twisted
photons by helical media, arXiv:2202.04974

56. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electro-
dynamics (Butterworth-Heinemann, Oxford, 1982)

57. L.D. Landau, E.M. Lifshitz,Electrodynamics of ContinuousMedia
(Pergamon, Oxford, 1984)

123

http://arxiv.org/abs/2205.00412
http://arxiv.org/abs/2203.00019
http://arxiv.org/abs/2202.04974

	Coherent radiation of photons by particle wave packets
	Abstract 
	1 Introduction
	2 Inclusive probability
	2.1 Initial and final states
	2.2 Perturbative treatment of photons in the initial state
	2.2.1 Contributions to the S-matrix
	2.2.2 Contributions to the inclusive probability

	2.3 Background electromagnetic field method

	3 Stimulated radiation from a wave packet
	4 Susceptibility of an electron wave packet
	5 Conclusion
	Acknowledgements
	A Bargmann–Fock representation
	B Explicit expressions for initial states
	C Traces
	References




