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Abstract. The paper is devoted to obtaining estimations of the rate of
convergence of the intensity of an assembly of Poisson flows to the inten-
sity of a stationary Poisson flow. Analysis of the results shows that this
problem should combine analytical and numerical studies. An important
role is played by the Central limit theorem for both random variables and
stochastic processes which is understood in the sense of C-convergence.
Exact asymptotic formulas are derived for intensity of the assembly flow
of identical Poisson flows, and estimations of the convergence rate are
build for the case of non-identical original flows.

Keywords: Assembly of flows · Asymptotic analysis · Central limit
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1 Introduction

In the paper, we analyze the assembly of independent Poisson flows which is
interpreted as connection of customers with the same order numbers taken from
different flows. The assembly processes may be found in computer networks [1],
in conveyor systems for the manufacture of products [2–4], in open queueing
networks with a single input flow, division and merging of customers and with
sufficiently general configuration of network [5,6], in closed queueing networks
with discrete time transitions of batches of customers and dynamic control of
service rates [7]. However, the study of the flow of customers coming out after
the assembly is a very complicated problem.

It is shown in [8] that the average intensity of the assembled flow tends to
the lower of the original Poisson flow intensities while time tends to infinity.
However, computational experiments performed by approximating the Poisson
distribution with a large parameter by a normal distribution showed that it
is possible to improve the obtained estimations of the convergence rate. This
paper is devoted to obtaining, in a certain sense, unimproved estimations of
the convergence rate of the intensity of the assembly flow to the intensity of a
stationary Poisson flow. Analysis of the results shows that this problem should
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combine analytical and numerical methods comparing their results with each
other. Moreover, an important role is played by the Central limit theorem for
both random variables and stochastic processes which is understood in the sense
of C-convergence [9].

The authors are grateful to Professor Anatoly Nazarov from Tomsk State
University for his ideas and advice regarding the research presented in the article,
which made it possible to significantly improve quality of the paper and move
further in the studies.

2 Mathematical Model

Assume that there are r independent stationary Poisson processes (we will call
them as “original flows”) with intensities λ1, . . . , λr. Let us denote an instants
of arrivals in the flows by tk,i, where k is the number of original flow and i is
the order number of the arrival in this flow. The original flows we denote as
Tk = {0 ≤ tk,1 ≤ tk,2 ≤ . . . }, where k = 1, 2, . . . , k = 1, . . . , r. We will call the
flow Ar = {0 ≤ max(t1,1, . . . , tr,1) ≤ max(t1,2, . . . , tr,2) ≤ . . . } as an assembly of
flows T1, . . . , Tr or as an assembly flow.

Denote the number of points in k-th flow in interval [0, t) by nk(t). Then the
number of points in the assembly flow Nr(t) in the interval may be expressed as

Nr(t) = min
k=1,...,r

nk(t). (1)

Flow Ar is not Poisson, because its increments are not independent due to
formula (1).

3 Central Limit Theorem for the Assembly Flow

Suppose that several original flows have minimal intensities: λ = λ1 = . . . =
λs < λs+1 ≤ . . . ≤ λr, s ≤ r. Then the following statement can be proved.

Theorem 1. For any v ∈ (−∞,∞), the following limit relation is true:

P
{

Nr(t) − λt√
λt

> v

}
→
[∫ ∞

v

1√
2π

exp(−u2/2)du

]s

, t → ∞. (2)

Proof. From formula (1) and the independence of flows T1, . . . , Tr, the equality
follows

P {Nr(t) > i} =
r∏

k=1

P {nk(t) > i} . (3)

Then due to the Central limit theorem, we derive

P
{

nk(t) − λt√
λt

> v

}
→
∫ ∞

v

1√
2π

exp(−u2/2)du, for k = 1, . . . , s. (4)
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and

P
{

nk(t) − λt√
λt

> v

}
= P

{
nk(t) − λkt√

λkt
> v

√
λ

λk
− (λk − λ)t

}
≥

P
{

nk(t) − λkt√
λkt

> −(λk − λ)t
}

→ 1, t → ∞, for k = s + 1, . . . , r.

So, we obtain

P
{

nk(t) − λt√
λt

> v

}
→ 1, t → ∞, for k = s + 1, . . . , r. (5)

Using formulas (1), (3)–(5), we derive

P
{

Nr(t) − λt√
λt

> v

}
= P

⎧⎨
⎩

min
k=1,...,r

nk(t) − λt
√

λt
> v

⎫⎬
⎭ =

P
{

min
k=1,...,r

nk(t) − λt√
λt

> v

}
=

r∏
k=1

P
{

nk(t) − λt√
λt

> v

}
→
[∫ ∞

v

1√
2π

exp(−u2/2)du

]s

, t → ∞. (6)

So, the theorem is proved.

Remark 1. The stochastic process
nk(tu) − λtu√

λt
as a function of variable u ≥ 0

tends to Wiener process ξk(u), k = 1, . . . , s while t → ∞. Since process nk(t) is a

process with independent increments, then the stochastic process
nk(tu) − λtu√

λt
is also a process with independent increments. Moreover, while t → ∞, due to

the Central limit theorem, the increment of process
nk(tu) − λtu√

λt
in interval

[u1, u2], u1 < u2, tends to Gaussian random variable with zero mean and vari-

ance equal to u2 − u1. Therefore, if t → ∞, process
nk(tu) − λtu√

λt
converges to

Wiener process wk(u) in the sense of C-convergence [9, Chapter 4, § 3, Theorem
10].

Remark 2. Let r = s, then stochastic process
Nr(tu) − λtu√

λt
for t → ∞ converges

to process min
k=1,...,r

wk(u) in the sense of C-convergence, where w1(u), . . . , wr(u)

are independent Wiener processes (u ≥ 0). This statement follows from formula
(9) and Remark 1.
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4 Limit Relations for Intensity of Assembly of
Independent and Identically Distributed Poisson Flows

Consider Markov process {n1(t), . . . , nr(t)}. A jump of this process in instant
t from state (n1, . . . , ni, . . . , nm), where ni < min

k �=i
nk, to state (n1, . . . , ni +

1, . . . , nr) causes a new point to appear in flow Ar in time moment t. There-
fore, instant intensity λ(t) of assembly flow in this moment satisfies the equality

λ(t) = λ

r∑
i=1

P
{

ni(t) < min
k �=i

nk(t)
}

. (7)

Lemma 1. The following equality is true:

λ(t) = λ(1 − P{n1(t) = . . . = nr(t)}). (8)

Proof. Let us denote the following sets of indices:

J = {1, . . . , r}, Ji = J \ i, i = 1, . . . , r.

Then equality (7) can be transformed as follows:

λ(t) = λP

{
r⋃

i=1

(ni(t) < min
k∈Ji

nk(t))

}
= λ

(
1 − P

{
r⋂

i=1

(ni(t) ≥ min
k∈Ji

nk(t))

})

= λ

(
1 − P

{
r⋂

i=1

(ni(t) ≥ min
k∈J

nk(t))

})
= λ(1 − P{n1(t) = . . . = nr(t)}).

The lemma is proved.

Let us denote a = λt and

p(k, a) =
e−aak

k!
, k = 0, 1, . . . ,

f(a) = P (n1(t) = . . . = nr(t)) =
∞∑

k=0

pr(k, a).

We will search for approximation g(a) of function f(a) in the form

g(a) =
∫ ∞

−∞

[
1√
2πa

exp
(

− (x − a)2

2a

)]r

dx =

(2πa)−r/2

∫ ∞

−∞
exp
(

− (x − a)2

2a/r

)
dx =

(2πa)−r/2
√

2πa/r

∫ ∞

−∞

1√
2πa/r

exp
(

− (x − a)2

2a/r

)
dx =

1√
r
(2πa)(1−r)/2. (9)
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Theorem 2. For λ > 0, r = 2, the following limit ratio is true:

P{n1(t) = n2(t)} ∼ (2√
πa
)−1 → 0, a → ∞, (10)

and therefore, λ(t) → λ, λ(t) − λ ∼ λ(2
√

πλt)−1, t → ∞.

Proof. Indeed, the following equalities are fulfilled:

P{n1(t) = n2(t)} =
∞∑

k=0

exp(−2a)
a2k

(k!)2
= exp(−2a)B, B =

∞∑
k=0

a2k

(k!)2
.

Here B = B(a) is the Infeld function [10, Chapter 4, Sect. 11] satisfying the
asymptotic relation

B(a) =
exp(2a)
2
√

πa

(
1 + O

(
1
a

))
. (11)

Replacing here a by λt, we derive relation (10). The theorem is proved.

Theorem 3. If λ > 0, r > 2,
1
2

< γ <
2
3
, then the following limit relation

takes place:
f(a) = g(a)(1 + O(a3γ−2)) ∼ g(a), a → ∞, (12)

and therefore, λ(t) → λ, λ(t) − λ ∼ λ
(2πλt)(1−r)/2

√
r

, t → ∞.

Proof. Consider the following integrals:

g1(a) =
∫ a−aγ

−∞

[
1√
2πa

exp
(

− (x − a)2

2a

)]r

dx,

g2(a) =
∫ ∞

a+aγ

[
1√
2πa

exp
(

− (x − a)2

2a

)]r

dx,

g3(a) =
∫ a+aγ

a−aγ

[
1√
2πa

exp
(

− (x − a)2

2a

)]r

dx,

g(a) = g1(a) + g2(a) + g3(a). (13)

Let us prove the following supplementary statement.

Lemma 2. The following limit relations are true:

g1(a) = g2(a) = o(g(a)), g3(a) = g(a)(1 + o(g(a))), a → ∞. (14)

Proof. By replacing variable t = x − a, we obtain the equalities

g1(a) =
∫ −aγ

−∞

[
1√
2πa

exp
(

− t2

2a

)]r

dt, g2(a) =
∫ ∞

aγ

[
1√
2πa

exp
(

− t2

2a

)]r

dt.
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From here, we get the following relations (for a → ∞):

g1(a) = g2(a) =
∫ ∞

aγ

(2πa)−r/2

a−1rt
exp
(

−rt2

2a

)
d

(
rt2

2a

)
≤

(2πa)−r/2

raγ−1

∫ ∞

aγ

exp
(

−rt2

2a

)
d
rt2

2a
≤ (2πa)−r/2

raγ−1
exp
(

−ra2γ−1

2

)
= o(g(a)).

From these relations and formulas (9), (13), limit relations (14) follow. The
lemma is proved.

Let us now consider the sums

f1(a) =
∑

0≤k<a−aγ

(
e−aak

k!

)r

, (15)

f2(a) =
∑

a+aγ<k≤∞

(
e−aak

k!

)r

, f3(a) =
∑

a−aγ≤k≤a+aγ

(
e−aak

k!

)r

. (16)

Further, we denote an integer part of some real number x by [x].
Let us prove an additional supplementary statement.

Lemma 3. The following limit relations are true:

f1(a) = O

(
a

(2πa)r/2
exp
(

−ra2γ−1

2

))
= o(g(a)), a → ∞, (17)

f2(a) = O

(
a

(2πa)r/2
exp
(

−ra2γ−1

2

))
= o(g(a)), a → ∞. (18)

Proof. We construct an estimation of f1(a), assuming c = [a−aγ ] ∼ a, a → ∞:

f1(a) ≤ c

(
e−aac

c!

)r

∼ a

(
e−aac

cce−c
√

2πa

)r

≤

a

(2πa)r/2

(
e−aaa−aγ

(a − aγ − 1)a−aγ−1e−a+aγ

)r

=
a

(2πa)r/2
erF1(a), (19)

where

F1(a) = −aγ +(a−aγ) ln a−(a−aγ −1) ln(a−aγ −1) = −a2γ−1

2
(1+o(1)). (20)

Thus, from the condition
1
2

< γ, definition of function g(a) and formulas (15),

(19), (20), it leads us to (17).
We construct an estimation of f2(a), assuming in the proof of Lemma3 that

d = [a + aγ ] ∼ a, a → ∞:

f2(a) ≤
∑
d≤k

(
e−a ak

k!

)r

≤
(

e−aad

d!

)r∑
k≥0

(a

d

)kr

∼
(

e−aad

d!

)r
a1−γ

r
. (21)
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So, for a → ∞ we derive
(

e−aad

d!

)r

∼
(

e−aad

dde−d
√

2πa

)r

≤
(

e−aaa+aγ

(a + aγ − 1)a+aγ−1e−a−aγ
√

2πa

)r

=
1

(2πa)r/2
erF2(a), (22)

where

F2(a) = aγ +(a+aγ) ln a− (a+aγ −1) ln(a+aγ −1) = −a2γ−1

2
(1+o(1)). (23)

From (16), (21)–(23) and the condition
1
2

< γ, we obtain (18). The lemma
is proved.

Let us denote

ϕ3(a) =
∑

a−aγ≤k≤a+aγ

(2πa)−r/2 exp
(

−r(k − a)2

2

)

and prove the following supplementary statements.

Lemma 4. The following limit relation is true:

f3(a) = ϕ3(a)(1 + O(a3γ−2)), a → ∞. (24)

Proof. We analyze the expression e−ra ark

(k!)r
using the Stirling formula in the

form

k! = kke−k
√

2πk exp
(

θ(k)
12k

)
, 0 ≤ θ(k) ≤ 1.

From this formula, it follows that

(k!)−r = k−rkerk(2πk)−r/2 exp
(

−rθ(k)
12k

)
, 0 ≤ θ(k) ≤ 1. (25)

It is obvious that the following relations are true:

sup
k: |k−a|≤aγ

∣∣∣∣exp
(

−rθ(k)
12k

)
− 1
∣∣∣∣ = O(a−1), (26)

sup
k: |k−a|≤aγ

∣∣∣∣ (2πk)−r/2

(2πa)−r/2
− 1
∣∣∣∣ = O(aγ−1). (27)

From formulas (25)–(27), we obtain the following relation:

sup
k: |k−a|≤aγ

∣∣∣∣e−ra ark

(k!)r
· era

(ea

k

)−rk

(2πa)r/2 − 1
∣∣∣∣ = O(aγ−1).
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The notation

p(k, a) = q(k, a)(1 + O(at)), |k − a| ≤ aγ , a → ∞
means that the following relation is satisfied:

sup
k: |k−a|≤aγ

∣∣∣∣p(k, a)
q(k, a)

− 1
∣∣∣∣ = O(at), a → ∞.

Therefore, the following relation is true:

e−ra ark

(k!)r
= e−ra

(ea

k

)rk

(2πa)−r/2(1 + O(aγ−1)), |k − a| ≤ aγ , a → ∞. (28)

Using the Taylor series expansion of the function ln(1 + u) = u − u2

2
+

O(u3), |u| < 1, we evaluate ln
[
e−a
(ea

k

)k
]

. To do this, we set k = a + v, |v| ≤
aγ and evaluate the ratio

ln
[
e−a
(ea

k

)k
]

= −a + (a + v)(1 + ln a − ln a − ln(1 + v/a)) = − v2

2a
+ O

(
v3

a2

)
,

from which it follows that

e−a
(ea

k

)k

= exp
(

− (k − a)2

2a

)(
1 + O

(
a3γ−2

))
, |k − a| ≤ aγ , a → ∞. (29)

From expressions (28) and (29), we obtain the asymptotic relation

e−ra ark

(k!)r
= (2πa)−r/2 exp

(
−r(k − a)2

2a

)
(1+O(a3γ−2)), |k −a| ≤ aγ , a → ∞.

By combining this relation with formula (16), we obtain limit relation (24). The
lemma is proved.

Corollary 1. It follows from Lemma4 that the following asymptotic formula
holds uniformly for all k : |k − a| ≤ aγ :

p(k, a) ∼ exp
(

− (k − a)2

2a

)
1√
2πa

, a → ∞.

Lemma 5. The following limit ratio is true:

ϕ3(a) = g3(a)(1 + O(aγ−1)), a → ∞. (30)

Proof. Without a significant generality constraint (to simplify the proof), we
assume that a, aγ are integer. Then the following equality is true:

g3(a) =
∑

a−aγ≤k<a+aγ

(2πa)−r/2

∫ k+1

k

exp
(

−r(x − a)2

2a

)
dx.
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For k < a, the function exp
(

−r(x − a)2

2a

)
is monotonically increasing, and

for k ≥ a, it decreases monotonically on the interval [k, k + 1]. So, the following
relation is true:

exp
(

−r(k − a)2

2a

)
= exp

(
−r(k + 1 − a)2

2a

)
(1+O(aγ−1)), |k−a| ≤ aγ , a → ∞.

It follows that the following relation is satisfied:

exp
(

−r(k − a)2

2a

)
=
∫ k+1

k

exp
(

−r(x − a)2

2a

)
dx(1 + O(aγ−1)), |k − a| ≤ aγ ,

when a → ∞, and in addition, we have ϕ3(a+aγ , a) = (2πa)−r/2 exp(−ra2γ−1).
From these relations and formulas (12), (14), we derive (30). The lemma is
proved.

From formulas (24), (30), we obtain the relation

f3(a) = g3(a)(1 + O(a3γ−2))(1 + O(aγ−1)) = g3(a)(1 + O(a3γ−2)). (31)

Combining Formulas (9), (14), (17), (18), and (31), we obtain (12). So, Theorem 3
is proved.

Remark 3. The series
∑
k≥0

(
ak

k!

)r

considered in Theorem 3 is a generalized hyper-

geometric series. However, it is impossible to use a well-known asymptotic for-
mulas [11, Chapter 16] for it.

Remark 4. We present results of a computational experiment illustrating the
accuracy of the obtained approximations. Denote error of the approximation by

Δ(a) =
∣∣∣∣f(a) − g(a)

f(a)

∣∣∣∣. Values of Δ(a) are presented in Table 1. We may notice

that the error is decreasing while a grows.

Table 1. Values of Δ(a) for r = 2, 5, 20; a = 10k, k = 1, . . . , 6.

r a

10 102 103 104 105 106

2 6.4× 10−3 6.3× 10−4 6.3× 10−5 6.3× 10−6 6.2× 10−7 6.2× 10−8

5 2.0× 10−2 2.0× 10−3 2.0× 10−4 2.0× 10−5 2.0× 10−6 2.0× 10−7

20 8.3× 10−2 8.3× 10−3 8.3× 10−4 8.3× 10−5 8.3× 10−6 8.2× 10−7
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5 Assembly of Independent Flows with Different
Intensities

Consider now the case when there are two Poisson flows T1, T2 with intensities
λ1, λ2 : λ1 < λ2, and denote d = λ2t, cd = λ1t, so,

0 < c =
λ1

λ2
< 1.

For instant intensity of assembly flow λ(t) in this case, we have

λ(t) = λ1P (n2(t) > n1(t)) + λ2P (n1(t) > n2(t)) = λ1(P (n1(t) > n2(t))
+P (n2(t) > n1(t))) + (λ2 − λ1)P (n1(t) > n2(t)) = λ1(1 − P (n1(t) = n2(t)))
+(λ2 − λ1)P (n1(t) > n2(t)) = λ1 − λ1P (n1(t) ≥ n2(t)) + λ2P (n1(t) > n2(t)),

therefore,
|λ(t) − λ1| ≤ λ2P (n1(t) ≥ n2(t)), (32)

where

P (n1(t) ≥ n2(t)) =
∞∑

k=0

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
= G(d). (33)

Consider function G(d) in a form of the sum G(d) = G1(d) + G2(d), where

G1(d) =
∑
k>d

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
, G2(d) =

∑
k≤d

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
.

For a fixed c : 0 < c < 1, we define the function ψ(c) = c− 1− ln c. Function
ψ(c) satisfies the relations ψ(1) = 0, ψ′(c) = 1 − 1/c < 0, so, ψ(c) is positive
and monotonically decreasing for 0 < c < 1.

We will call that positive functions p(d) and q(d) satisfy the relation

p(d) 	 q(d), d → ∞, if lim sup
d→∞

p(d)
q(d)

< ∞.

Lemma 6. For any c : 0 < c < 1, the following formula holds:

d−1/2 exp(−dψ(c)) 	 G1(d) 	 d1/2 exp(−dψ(c)), d → ∞. (34)

Proof. Really, we have:

G1(d) ≤
∑
k>d

e−d dk

k!

∞∑
i=[d]

e−cd (cd)i

i!
≤

∞∑
i=[d]

e−cd (cd)i

i!
≤

e−cd(cd)d

[d]!

∞∑
i=[d]

(
cd

[d]

)i−[d]

=
e−cd(cd)d

[d]!

(
1 − cd

[d]

)−1

∼ e−cd(cd)d

(1 − c)[d]!
.
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Due to the Stirling formula, we derive

e−cd(cd)d

[d]!
≤ e−cd(cd)d

[d][d]e−[d]
√

2π[d]
≤ ed−cd(cd)d

[d]d
√

2π[d]
≤

ed−cd(cd)d

(d − 1)d−1
√

2π(d − 1)
∼ e

√
d

2π
exp(−dψ(c)).

As a result, we come to the right relation in formula (34).
We now construct the lower bound of the function G1(d), assuming j =

[d] + 1, d → ∞:

e−d dj

j!
≥ e−1/12de−d+j [d]j

jj
√

2πj
≥ 1√

2πj

(
1 +

1
[d]

)−j

∼ 1
e
√

2πd
, (35)

e−cd (cd)j

j!
∼ e−cd (cd)j

jje−j
√

2πj
≥ e−cd+j cd+1dj

jj
√

2πj
∼ c exp(−dψ(c))

e
√

2πd
. (36)

From formulas (35) and (36), the left relation in formula (34) follows. The
lemma is proved.

Let us fix s : 0 < c < s < 1, let l = [sd], and estimate G2(d) = G′
2(d)+G′′

2(d),
where

G′
2(d) =

∑
0≤k<sd

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
, G′′

2(d) =
∑

sd≤k≤d

e−d dk

k!

∞∑
i=k

e−cd (cd)i

i!
.

Denote μ(c, s) = c − s(1 + ln c − ln s), q(s) = 1 − s(1 − ln s), 0 < c < s < 1.
For any c, s : 0 < c < s < 1, the relations

μ(c, 1) = ψ(c) > 0,
∂μ(c, s)

∂s
= − ln

c

s
> 0

take place for fixed c. Function μ(c, s) increases on argument s : c < s < 1 and

μ(c, c) = 0, μ(c, s) > 0, c < s < 1.

Function q(s) satisfies the relations

q(1) = 0, q′(s) = ln s < 0, q(s) > 0, 0 < s < 1,

and hence, it is positive and monotonically decreasing for 0 < s < 1.

Lemma 7. For any c, s : 0 < c < s < 1, the following formula holds:

d−1/2 exp(−dq(s)) 	 G′
2(d) 	 d1/2 exp(−dq(s)), d → ∞. (37)
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Proof. Function G′
2(d) satisfies the following relations for cd > 2:

G′
2(d) ≤ l

e−ddl

l!
∼ e−d+l

√
l

2π

(
d

l

)l

≤ e−d+sd

√
l

2π

(
d

sd − 1

)sd

∼
√

sd

2π

l · dl

ll
√

2πsd
∼ e√

2πsd
exp(−dq(s)).

Thus, the right relation in formula (37) is true.

On the other hand G′
2(d) ≥ e−ddl

l!

⎛
⎝1 −

∑
0≤i≤l

e−cd (cd)i

i!

⎞
⎠, where

e−ddl

l!
∼ e−d+ldl

ll
√

2πl
≥ e−d+l

√
2πl

(
1
s

)l

∼ exp(−dq(s))
e
√

2πsd
, (38)

and
∑

0≤i<l

e−cd(cd)i

i!
≤ sde−cd (cd)l

l!
∼
√

1
2πsd

e exp(−dμ(s, c)) → 0, d → ∞. (39)

From (38), (39), we derive the left relation of (37). The lemma is proved.

Lemma 8. For any c, s : 0 < c < s < 1, the following formula holds:

d−1 exp(−d(μ(c, s) + q(s)) 	 G′′
2(d) 	 d1/2 exp(−dμ(c, s))), d → ∞. (40)

Proof. Function G′′
2(d) satisfies the following relations for cd > 2:

G′′
2(d) ≤

∑
i≥sd

e−cd (cd)i

i!
≤ e−cd (cd)l

l!

∑
i≥0

(cd)i

li
=

e−cd (cd)l

l!

(
1 − cd

l

)−1

∼ e−cd (cd)l

l!

(
1 − c

s

)−1

.

We derive

e−cd (cd)l

l!
∼ e−cd+l (cd)sd

ll
√

2πsd
≤ e−cd+sd (cd)sd

(sd − 1)sd−1
√

2πsd
≤

sde−cd+sd (cd)sd

(sd − 1)sd
√

2πsd
=

√
sd

2π
e−cd+sd

( c

s

)sd
(

1 − 1
sd

)−sd

∼

e

√
sd

2π
exp(−dμ(c, s)). (41)

Hence, the right relation in formula (40) is true.
At the same time, using (38) in a similar way to formula (41), we obtain

G′′
2(d) ≥ e−ddl

l!
· e−cd(cd)l

l!
∼ exp(−dq(s))

e
√

2πsd
· exp(−dμ(c, s))

e
√

2πsd
. (42)

From (47), the left relation of formula (40) follows. The lemma is proved.
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For fixed c, s : 0 < c < s < 1, we define the functions

ϑ(c, s) = min(μ(c, s), q(s)); ν(c, s) = min(ϑ(c, s), ψ(c)),

α(c) = sup
s: c<s<1

ν(c, s), s∗(c) = − 1−c
ln c .

Lemma 9. For any c : 0 < c < 1, the following formula holds:

α(c) = q(s∗(c)). (43)

Proof. Since function μ(c, s) is increasing, the function q(s) is decreasing for
s : c ≤ s ≤ 1, and μ(c, c) = 0, q(1) = 0, s = 1, then there exists the unique

point s∗(c) = −1 − c

ln c
> c that satisfies the equality μ(c, s∗(c)) = q(s∗(c)).

Therefore, the following equality is fulfilled:

sup
s: c<s<1

ϑ(c, s) = q(s∗(c)). (44)

Now we prove that the inequality q(s∗(c)) < ψ(c) holds. Indeed, since
c < s∗(c) and function q(s) is decreasing, then q(s∗(c)) < q(c). Therefore, the
function

ω(c) = q(c) − ψ(c) = 2 − 2c + (1 + c) ln c

satisfies the equality ω(1) = 0, and its derivative satisfies ω′(c) =
q(c)
c

> 0. This

means that ω(c) < 0 for 0 < c < 1. So, the following inequalities are true:

q(s∗(c)) < q(c) < ψ(c), 0 < c < s∗(c) < 1. (45)

From relations (44), (45), we obtain formula (43) for a fixed c : 0 < c < 1.
The lemma is proved.

Theorem 4. For any c : 0 < c < 1, the following formula holds:

d−1 exp(−dα(c)) 	 G(d) ≤ d1/2 exp(−dα(c)), (46)

and therefore, λ(t) → λ, λ(t) − λ = G(λ2t) while t → ∞.

Proof. For any c, s : 0 < c < s < 1, it follows from Lemmas 6–9 that

G(d) 	 d1/2 exp(−d min(ψ(c), q(s), μ(c, s)).

So, for any c : 0 < c < 1, we derive

G(d) 	 d1/2 exp(−dq(s∗(c)) = d1/2 exp(−dα(c)).

The right relation in (46) is proved.
For c, s : 0 < c < s < 1, it follows from Lemmas 6–9 that

G(d) 
 d−1 exp(−d min(ψ(c), q(s), μ(c, s) + q(s)).
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Assuming s = s∗(c) in the last inequality, we obtain

G(d) 
 d−1 exp(−d min(ψ(c), q(s∗(c)), μ(c, s∗(c)) + q(s∗(c)))

= d−1 exp(−d min(ψ(c), q(s∗(c))) = d−1 exp(−dα(c).

The left relation in formula (46) is proved. So, Theorem4 is proved.

Remark 5. In Remark 4, the estimation of probability P{n1(t) = . . . = nr(t)}
uses a Gaussian approximation of a Poisson distribution with a large parameter.
It is shown that this approximation gives results similar to the results of the
analytical study. Consider how this approximation works when estimating the
probability P{n1(t) ≥ n2(t)}.

To do this, we write the following approximations of random variables n1(t)
and n2(t):

n1(t) ≈
√

cdξ1 + cd, n2(t) ≈
√

dξ2 + d,

where ξ1 and ξ2 are independent random variables having a standard normal dis-
tribution (with zero mean and variance equal to one). Then by analogy with the
proof of Lemma 5, we can construct a Gaussian approximation of the probability

P{n1(t) ≥ n2(t)} ≈ P{
√

cd ξ1 + cd ≥
√

d ξ2 + d} =

P{ξ2 ≤ √
c ξ1 +

√
d(c − 1)} = S(d), d → ∞.

Denote a random variable with a standard normal distribution by η and put

h = (c − 1)

√
d

c + 1
. Since random vector (ξ1, ξ2) has a two-dimensional normal

distribution with zero mean and with an identity covariance matrix, then using
well-known asymptotic formula

P{η > R} ∼ 1
R

√
2π

exp
(

−R2

2

)
, R → ∞,

it is possible to obtain the following ratio based on the Gaussian approximation:

P{n1(t) ≥ n2(t)} ≈ 1
h
√

2π
exp
(

−h2

2

)
=

√
c + 1√

2πd(c − 1)
exp
(

−d · (c − 1)2

2(c + 1)

)

=
√

c + 1√
2πd(c − 1)

exp(−dA(c)) = S(d), A(c) =
(c − 1)2

2(c + 1)
, d → ∞. (47)

Now compare factors α(c) and A(c) in the exponents of (46) and (47).
When c = 5/6, we have α(c) ≈ 0, 0038, , A(c) ≈ 0, 0076. If c = 2/3, then
α(c) ≈ 0, 0168, A(c) ≈ 0, 0333. Thus, factor A(c) calculated by the Gaussian
approximation is greater than factor α(c) calculated analytically.

We denote δ(d) =
∣∣∣∣G(d) − S(d)

G(d)

∣∣∣∣ and numerically evaluate an accuracy of

the Gaussian approximation for c = 5/6 and c = 2/3. The results are presented
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in Tables 2 and 3. We may notice that the rate of decreasing of values δ(d)
decreases while d grows for the case c = 5/6 (Table 2). On other hand, after
some decreasing, value of δ(d) starts to grow while d grows for the case c = 2/3
(Table 3). Thus, the results given in Tables 2 and 3 indicate a much worse quality
of the Gaussian approximation than the results given in Table 1.

Table 2. Values of δ(d) for c = 5/6.

d 100 200 500 1000 2000

δ(d) 0.267 0.143 0.051 0.021 0.018

Table 3. Values of δ(d) for c = 2/3.

d 10 50 100 200 500

δ(d) 0.321 0.059 0.029 0.047 0.192

Remark 6. Using the proof of Lemma 1, it is easy to consider the case of assem-
bling r independent Poisson flows with intensities λ1 = λ2 = . . . = λs < λs+1 ≤
. . . ≤ λr, to get the inequality

|λ(t) − λ1| ≤
r∑

i=s+1

λiP (n1(t) ≥ ni(t))

and to use Theorem 4 for estimating the probabilities P{n1(1) ≥ ni(t)}, i =
s + 1, . . . , r. The results of performed numerical experiments are very sensitive
to the correct or incorrect choice of the corresponding asymptotic formulas.

6 Convergence of Assembly Flow A2 to Poisson Flow

Consider the union T 2 of independent Poisson flows T1 and T2 with equal inten-
sities λ. It is well-known that T 2 is a Poisson flow with intensity 2λ. Denote its
points as T 2 = {0 = t(0) < t(1) < . . . }.

Also, consider assembly A2 of the flows T1 and T2. Its points {0 = t0 < t1 <
t2 < . . . } are defined by the expressions

tk = inf{t > tk−1 : n1(t) = n2(t)}. (48)

Define the Markov process ν(t) = n2(t) − n1(t) with state space
{0,±1,±2, . . . } and transient intensities λk,k+1 = λk,k−1 = λ, k = 0,±1,±2, . . .
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Process ν(t) has jumps ±1 in the points of flow T 2, and its zeroing points coincide
with points 0 = t0 < t1 < t2 < . . . of assembly flow A2. The random sequence
{ν(t(j)), j = 0, 1, 2, . . . } is a symmetric random walk on the set {0,±1,±2, . . . },
therefore, accordingly to [12, Chapter III, § 3, Lemma 1], we can write

P{ν(t(2j)) = 0} = Cj
2j2

−2j = p2j ≤ p2(j+1), j = 1, 2, . . . , p2j ∼ 1√
πj

, j → ∞.

(49)
Define the random event

k+K⋃
j=k

{ν(t(2j)) = 0} =
2(k+K)⋃

j=2k

{ν(t(j)) = 0} .

Using (49) for the given ε and K, we can derive the following expression:

k(ε,K) =
[

K2

πε2

]
, (50)

and for any k > k(ε,K) we obtain

P

⎧⎨
⎩

2(k+K)⋃
j=2k

{ν(t(j)) = 0}
⎫⎬
⎭ ≤ K√

πk(ε,K)
≤ ε. (51)

Then due to (51), the equality n1(t) = n2(t) does not hold in any 2K points
following the moment t(2k(ε,K)). Therefore, at this time interval, the assembly
flow is Poisson with parameter λ with probability not greater than ε. Note that
in this case, due to formula (50), value of k(ε,K) increases quite rapidly while
ε decreases.

7 Conclusion

Despite the apparent simplicity of the considered model of the assembly flow
of independent Poisson flows, the study have shown that the model is quite
complex for the analysis. In the paper, we have obtained various versions of the
Central limit theorem for the assembly flow both in terms of random variables
and in terms of stochastic processes. Exact asymptotic formulas are derived
for intensity of the assembly flow of identical Poisson flows, and estimations
of the convergence rate are build for the case of non-identical original flows.
Estimations of the convergence rate of the assembly flow of identical Poisson
flows to a Poisson flow are derived.
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