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We propose a general procedure for iterative inclusion of Stueckelberg fields to convert the theory into 
gauge system being equivalent to the original one. In so doing, we admit reducibility of the Stueckelberg 
gauge symmetry. In this case, no pairing exists between Stueckelberg fields and gauge parameters, unlike 
the irreducible Stueckelberg symmetry. The general procedure is exemplified by the case of Proca model, 
with the third order involutive closure chosen as the starting point. In this case, the set of Stueckelberg 
fields includes, besides the scalar, also the second rank antisymmetric tensor. The reducible Stueckelberg 
gauge symmetry is shown to admit different gauge fixing conditions. One of the gauges reproduces the 
original Proca theory, while another one excludes the original vector and the Stueckelberg scalar. In this 
gauge, the irreducible massive spin one is represented by antisymmetric second rank tensor obeying the 
third order field equations. Similar dual formulations are expected to exist for the fields of various spins.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Since the original Stueckelberg’s work [1], the idea remains at-
tractive for decades concerning inclusion of auxiliary fields into the 
action in such a way that modified theory becomes gauge invari-
ant while it is still equivalent to the original one. The reviews and 
further references can be found in [2], [3].

In the constrained Hamiltonian formalism, the Stueckelberg 
idea has transformed into a method of converting the second 
class constraints into the first class ones [4], [5]. The conversion 
is achieved by extending the phase space by extra dimensions, 
that can be understood as introduction of Stueckelberg fields. The 
local existence theorem for the conversion procedure has been 
proven in the article [6], the global proof of the conversion ex-
istence can be found in [7]. The starting point of the Hamiltonian 
conversion is a complete system of the constraints including pri-
mary and secondary ones of all the generations. The conversion 
variable is assigned to every second class constraint. Given the 
complete system of constraints, the Hamiltonian conversion works 
as a systematic iterative procedure which is proven unobstructed. 
Unlike the Hamiltonian counterpart, the common practice of in-
cluding Stueckelberg fields in Lagrangian formalism seems more 
art than science. Most often this works as a “Stueckelberg trick”, 
which implies that the action is split into gauge and non-gauge 
parts. The Stueckelberg gauge symmetry of the original fields is 
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assumed to remain the same as for the gauge invariant part of the 
action, while the transformations of Stueckelberg fields are chosen 
to compensate the non-invariance of the rest part. The choice of 
this split into gauge and non-gauge parts is an art, and it can be 
ambiguous. It is even unclear, why such a split is always possi-
ble. From the Hamiltonian perspective, this would mean to assume 
each second class constraint to be decomposed into the first class 
part and the “symmetry breaking part”. The Hamiltonian conver-
sion method proceeds from any complete set of constraints, not 
assuming the possibility of any decomposition of the constraints.

Recently, a systematic procedure has been proposed for covari-
ant inclusion of the Stueckelberg fields [8] in Lagrangian formal-
ism. The starting point for the method is the involutive closure
of the original Lagrangian system of field equations. The original 
equations can be non-involutive, i.e. they can admit the lower or-
der consequences. Completion of the system of the field equations 
by their consequences is understood as an involutive closure, if the 
completed system does not admit any further lower order conse-
quences. In principle, the involutive closure can include also the 
higher order consequences. Completion of the Hamiltonian con-
strained system by the secondary constraints is an example of 
the involutive closure. The involutively closed form of the field 
equations allows one to count the degree of freedom number in 
an explicitly covariant manner [9]. The procedure of the article 
[8] allows one to iteratively include Stueckelberg fields for any 
field theory proceeding from the involutive closure of the orig-
inal Lagrangian equations, and it is proven to be unobstructed. 
This procedure implies inclusion of independent consequences into 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the involutive closure of Lagrangian equations. Given this starting 
point, one arrives at the irreducible Stueckelberg gauge symmetry.

In this article, we consider inclusion of Stueckelberg fields pro-
ceeding from the involutive closure which involves a reducible 
set of consequences of Lagrangian equations. This leads to two 
main distinctions from the case of independent consequences. 
First, there is no pairing anymore between the Stueckelberg fields 
and gauge parameters. Second, the Stueckelberg gauge symmetry 
turns out reducible. There are no obstructions to inclusion of the 
Stueckelberg fields in the reducible case, much like to the irre-
ducible one. To exemplify the general procedure, we consider the 
third order involutive closure of the Proca equations when the 
original equations are also complemented, besides the first order 
consequence, by the antisymmetric combinations of the derivatives 
of the Lagrangian equations. This leads to inclusion, besides the 
usual Stueckelberg scalar, of the Stueckelberg field, being the sec-
ond rank antisymmetric tensor. Full Stueckelberg symmetry mixes 
the original vector with all the Stueckelberg fields. This reducible 
gauge symmetry admits different gauge fixing conditions. The sim-
plest gauge kills all the Stueckelberg fields reducing the dynamics 
to the original Proca equations. The alternative gauge fixing condi-
tion is also admissible such that kills the Stueckelberg scalar and 
the original vector field, while all the dynamics is described by the 
antisymmetric tensor Bμν obeying the third order equation,

(� + m2)∂ν Bμν = 0 , (1)

with appropriate gauge fixing for gauge symmetry1 of Bμν . By 
itself, this non-Lagrangian equation, being the gauge fixed form 
of the reducible Stueckelberg Lagrangian system, describes the ir-
reducible massive spin 1, much like the original Proca equation. 
The reason is obvious: the Proca model is equivalent to the Klein-
Gordon equation supplemented by the transversality condition,

(� + m2)Aμ = 0 , ∂μ Aμ = 0 . (2)

In Minkowski space, any transverse vector is a divergence of the 
antisymmetric tensor,

∂μ Aμ = 0 ⇔ ∃ Bμν = −Bνμ : Aμ = ∂ν Bμν. (3)

In a sense, Bμν is a “potential” for the transverse vector Aμ . The 
non-Lagrangian equations (1) can be viewed as a reformulation 
of the Proca model in terms of the potential, such that automati-
cally accounts for the transversality condition. Under the proposed 
procedure of inclusion of the Stueckelberg fields, both dual formu-
lations, (1) and (2), are included into a uniform Lagrangian theory 
even though one of them is non-Lagrangian by itself. Imposing ap-
propriate gauge fixing conditions, one can switch from the vector 
formulation to the dual one, and vice versa. As explained in the 
Conclusion, it seems to be a general phenomenon which extends 
to other representations and goes beyond the free level.

The article is organized as follows. In the next section, the gen-
eral scheme of inclusion of the Stueckelberg fields is outlined for 
the case of reducible Stueckelberg gauge symmetry. In Section 3, 
the general procedure is exemplified by unconventional inclusion 
of Stueckelberg fields in the Proca model such that leads to re-
ducible gauge symmetry. The results and further perspectives are 
discussed in the Conclusion.

1 For the details of gauge symmetry and gauge fixing of the Stueckelberg field, 
see in the Section 3.
2

2. Inclusion of Stueckelberg fields with reducible gauge 
symmetry

As a preliminary, let us explain the strategy of including Stueck-
elberg fields implemented in this section. First, the Lagrangian 
equations are complemented by the consequences such that the 
entire system is involutive. Once the completed system is non-
Lagrangian, the second Noether theorem does not apply, and the 
gauge identities arise, being unrelated to the gauge symmetry. The 
general structure of gauge algebra is known for not necessarily 
Lagrangian field equations [10], [11]. For the case when the non-
Lagrangian system is a completion of the Lagrangian one, the gauge 
algebra has some specifics which are detailed as the second step. 
As the third step, we introduce the Stueckelberg fields with two 
goals. First, the involutive system should be zero order of the ex-
pansion of Lagrangian Stueckelberg equations. Second, the gauge 
identities of the involutive closure of the original system should 
be reproduced as zero order (in Stueckelberg fields) of Noether 
identities for Stueckelberg action. This defines zero order of gauge 
symmetry generators and the first order of the action. The exis-
tence of all the higher orders can be proven along the similar lines 
to the irreducible case [8].

In this section, we use the condensed notation. All the con-
densed indices are supposed to include numerical labels and the 
space-time points. Summation over the condensed index implies 
integration over x. The partial derivatives are understood as varia-
tional.

Consider a theory of fields φi with the action S(φ). Lagrangian 
equations read

∂i S(φ) = 0 . (4)

In this article, we consider a theory where the original action does 
not have gauge symmetry. This means that any identity between 
the field equations (4) has a trivial generator which vanishes on 
shell

κ i∂i S ≡ 0 ⇔ ∃ Eij = −E ji : κ i = Eij∂ j S . (5)

Inclusion of the Stueckelberg fields in the gauge invariant actions 
will be considered elsewhere.

Let us complement the field equations (4) by their differential 
consequences,

τα(φ) = −�α
i(φ)∂i S(φ) , (6)

where �α
i(φ) are supposed to be local differential operators. The 

generators � of the consequences are considered equivalent if they 
lead to the same τ . Hence, the equivalence relation reads

�α
i ∼ �′

α
i ⇔ �α

i − �′
α

i = Eα
i j∂ j S, Eα

i j = −Eα
ji . (7)

The completed system

∂i S(φ) = 0 , τα(φ) = 0 (8)

is assumed involutively closed, i.e. all the lower order conse-
quences are already contained among equations (8). Obviously, the 
involutive closure (8) is equivalent to the original system, because 
all their solutions coincide. By construction, the involutively closed 
system enjoys gauge identities

�α
i(φ)∂i S(φ) + τα(φ) ≡ 0 , (9)

while there are no gauge symmetry. Let us assume the set of the 
generators �α

i of consequences (6) is over-complete,

Z A
α�α

i = E A
ij∂ j S , E A

ij = −E A
ji , (10)
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i.e. certain combinations of �’s reduce to the trivial gauge gener-
ators (5). This results in the identities between the consequences 
(6):

Z A
ατα ≡ 0 . (11)

The generators of identities are considered equivalent if they differ 
by the trivial generator vanishing on shell,

Z A
α ∼ Z ′

A
α ⇔ Z A

α − Z ′
A
α = E A

αβτβ ,

E A
αβ = −E A

βα .
(12)

The operators Z A
α are assumed to constitute the generating set 

for the null-vectors of the consequences τα , i.e. Zατα ≡ 0 ⇔ Zα =
ζ A Z A

α . The identities (11) can admit further reducibility,

∃ Z1A1
A : Z1A1

A Z A
α = E A1

αβτβ ,

E A1
αβ = −E A1

βα ,
(13)

i.e. certain combinations of the identity generators Z A
α reduce to 

the trivial null-vectors (12). In principle, the generating set of the 
second level null-vectors Z1A1

A can be over-complete in its own 
turn. In this article, we do not consider this option assuming no 
further reducibility.

The set of identities (9), (11) between the equations of invo-
lutive closure (8) is assumed complete. This means, any set of 
identities, labeled by some condensed index I , reduces to the lin-
ear combination of identities (9), (11),

�I
i∂i S + �I

ατα ≡ 0 ⇔ ∃ U I
α, U I

A :
�I

i∂i S + �I
ατα ≡ U I

α
(
�α

i∂i S + τα

)
+ U I

A Z A
ατα .

(14)

Hence, the generators �I
i, �I

α of any identity between the equa-
tions of the system (8) reduce to the linear combinations of the 
generators � and Z modulo trivial generators:

�I
i = U I

α�α
i + E I

i j∂ j S + E I
iατα ,

�I
α = U I

α + U I
A Z A

α − E I
iα∂i S + E I

αβτβ ,

E I
i j = −E I

ji , E I
αβ = −E I

βα .

(15)

Relation (10) leads to the identities between the identities (9), 
(11), because certain combination of the identity generators is triv-
ial.

Also notice that the set of the identity generators Z A
α is over-

complete (13). This leads to further identities between the iden-
tities (11). These second level identities are irreducible, as their 
generators Z1A1

A are assumed independent. Any set of identities, 
being labeled by the condensed index I1, between the identities of 
identities is supposed generated by Z1A1

A :

�I1
A Z A

α ≡ E I1
αβτβ ⇔ �I1

A = U I1
A1 Z1A1

A ,

E I1
αβ = −E I1

βα .
(16)

Even though original action has no gauge symmetry, the invo-
lutive closure (8) of Lagrangian equations, being a non-Lagrangian 
system, enjoys non-trivial gauge algebra as demonstrated above. 
The general idea of inclusion of the Stueckelberg fields is to cast 
this gauge algebra back into Lagrangian setup by introducing extra 
fields. Specifically, the equations of the involutively closed sys-
tem (8) should be zero order in the Stueckelberg fields of the 
Lagrangian Stueckelberg equations, while the gauge identities (9), 
(11) should be zero order of Noether identities for the Stueckel-
berg action. These reasons lead one to introduce the Stueckelberg 
3

field ξα for every consequence τα included into involutive closure 
(8), while every gauge identity (9), (11) is assigned with the gauge 
parameter εα, ε A . Given the set of Stueckelberg fields and gauge 
parameters, we seek for the Stueckelberg action, and its gauge 
symmetry, as the power series in ξ :

SSt(φ, ξ) = ∑
k=0 Sk , S0(φ) = S(φ) ,

Sk(φ, ξ) = Wα1...αk (φ) ξα1 . . . ξαk , k > 0 ,
(17)

where the first order is defined by the differential consequences 
(6)

Wα(φ) = ∂SSt(φ, ξ)

∂ξα

∣∣∣
ξ=0

= τα . (18)

Once the gauge identities (9), (11) are to be converted into the 
Noether identities of the action (17), corresponding gauge param-
eters εα and ε A are introduced,

δεφ
i = Ri

α(φ, ξ)εα + Ri
A(φ, ξ)ε A ,

δεξ
α = Rα

β(φ, ξ)εβ + Rα
A(φ, ξ)ε A .

(19)

The gauge symmetry of the Stueckelberg action is equivalent to the 
Noether identities between the equations,

δεSSt ≡ 0 , ∀εα, ε A . (20)

Let us expand the action (17) and gauge generators (19) in the 
Stueckelberg fields ξ , and substitute the expansions into the 
Noether identities. Comparing the identities (20) in zero order 
w.r.t. ξ with the identities (9), (11), we find zero order of the 
Stueckelberg gauge transformations,

δεφ
i = �i

α(φ)εα + . . . ,

δεξ
α = εα + Zα

A(φ)ε A + . . . ,
(21)

where �i
α are the generators of consequences of Lagrangian equa-

tions (6) included into the involutive closure of original system, 
and Zα

A are the generators of the identities (11) between τα . The 
dots stand for the ξ -depending terms. The generators �i

α of the 
consequences (6) are reducible in the sense of relations (10). This 
results in the reducibility of the gauge identities (9), (11). Hence, 
the Noether identities (20) of the Stueckelberg action should be re-
ducible as they begin with the identities between the equations of 
the involutive closure. Reducibility of the Noether identities means 
the gauge symmetry of the gauge symmetry. Comparing zero or-
der of identities (20) with corresponding identities in the system 
(8), we find the gauge transformations of gauge parameters in zero 
order w.r.t. Stueckelberg fields,

δωεα = Zα
A(φ)ωA + . . . ,

δωε A = −ωA + Z1
A

A1(φ)ωA1 + . . . ,
(22)

where dots stand for the ξ -depending terms, Zα
A are the null-

vectors for the generators of consequences (10), and Z1
A

A1 are 
the generators of reducibility for Zα

A , see (13). The gauge pa-
rameters of symmetry for symmetry are denoted ωA and ωA1 . 
The gauge identities of identities in the original system (8) are 
reducible again. At the level of Stueckelberg theory this leads to 
the gauge symmetry of the parameters ω from the transformation 
above. This symmetry of symmetry in zero order in ξ is generated 
by the same operators as in the corresponding identities of identi-
ties of the original system. Hence, the next level gauge symmetry 
reads

δηω
A = Z1

A
A1(φ)ηA1 + . . . , δηω

A1 = ηA1 + . . . . (23)
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The second order in ξ of the Stueckelberg action (17), and the 
first order of the gauge transformations (19), can be found from 
Noether identities (20) at the first order, given the previous order 
(18), (21). Once the previous order is found, it is substituted into 
the expansion of the Noether identity up to the next order. This 
allows one to find the next order, etc. In this way, all the orders 
of the action and gauge generators are iteratively found. Up to the 
second order in ξ , the Stueckelberg action reads

SSt = S(φ) + τα(φ)ξα + 1
2 Wαβ(φ)ξαξβ + . . . ,

Wαβ = Wβα , Wαβ ≈ �i
α�

j
β∂2

i j S .
(24)

The similar procedure applies to iteratively solving order by order 
the identities for identities proceeding from zero order (22), (23).

Given the regularity of the gauge algebra of the involutive clo-
sure (8) described at the beginning of this section, no obstructions 
can arise to the iterative inclusion of the Stueckelberg fields at 
any order. This can be proven by the tools of homological per-
turbation theory as described for the irreducible case in the article 
[8]. The main distinction of this proof from the usual homological 
perturbation theory procedures of gauge theories [12] is the un-
usual grading, where positive resolution degree is assigned to the 
Stueckelberg fields and their anti-fields, unlike the other fields. The 
aspect of reducibility can be accounted for in the homological per-
turbation theory with this grading in a natural way. This issue will 
be addressed elsewhere. From the point of view of the application 
in specific models, only the fact is important that the described 
procedure for including the Stueckelberg fields is unobstructed at 
all iteration steps.

3. Reducible Stueckelberg symmetry and dual formulation for 
massive spin 1

In this section, we exemplify the general method of inclusion 
of Stueckelberg fields with reducible gauge symmetry by the case 
of Proca model. The usual Stueckelberg scalar corresponds to the 
completion of the Proca system by the first order consequence — 
transversality condition. This is sufficient to make the Proca sys-
tem involutive. However, the system can be completed also by the 
third order consequences, and it remains involutive. This option 
of the third order involutive closure, being treated by the proce-
dure of previous section, leads to inclusion of the antisymmetric 
second rank tensor as the Stueckelberg field. The third order con-
sequences turn out obeying the gauge identities of their own (cf. 
(11)), so we arrive at reducible Stueckelberg symmetry. This is no 
surprise once the antisymmetric tensor is introduced. The Stueck-
elberg action includes four derivatives, while the theory remains 
equivalent to the original Proca system. Besides exemplifying the 
general method, this case may have some interest of its own, as 
it demonstrates the scheme for constructing dual formulations for 
the fields of the same spin.

Consider the Proca Lagrangian for massive vector field Aμ in 
d = 4 Minkowski space,

L = −1

4
Fμν F μν + m2

2
Aμ Aμ, Fμν = ∂μ Aν − ∂ν Aμ . (25)

The Proca equations

δS

δAμ
≡ �Aμ − ∂μ∂ν Aν + m2 Aμ = 0 (26)

are not involutive as such, as they admit the first order differential 
consequence

τ ≡ ∂μ δS
μ

= m2∂μ Aμ . (27)

δA

4

The system (26), (27) is involutive, so it can serve as the start-
ing point for inclusion Stueckelberg fields. Once the consequence 
(27) is a scalar, corresponding Stueckelberg field should be scalar. 
The procedure of previous section for inclusion of Stueckelberg
fields, being applied to the system (26), (27), reproduces the usual 
Stueckelberg formulation for the massive spin 1. The system (26), 
(27) can be complemented by the third order consequences, and 
still remains involutive. Consider the differential consequences

τμν ≡ 1

2
(∂μδ

ρ
ν − ∂νδ

ρ
μ)

δS

δAρ
= 1

2
(� + m2)Fμν . (28)

These equations mean that the strength tensor of original field Aμ

obeys Klein-Gordon equation. The system (26), (27), (28), being 
equivalent to the original Proca equations, is also involutive. So, 
it can be another starting point for including Stueckelberg fields. 
Following the general scheme of the previous section, let us list 
the identities between the equations of the involutive system (26), 
(27), (28). First, there are the identities (9) that follow from the 
definitions of the consequences. For the involutive closure of Proca 
system (26), (27), (28), these identities read

−∂μ δS

δAμ
+ τ = 0 ; (29)

−1

2
(∂μδ

ρ
ν − ∂νδ

ρ
μ)

δS

δAρ
+ τμν = 0 . (30)

The consequences τμν (28) are reducible in the sense of identities 
(11). These identities read

εμνρλ∂ντρλ = 0 , (31)

where εμνρλ is Levi-Chivita symbol. These identities are reducible 
in their own turn, as the divergence of the l.h.s. identically van-
ishes for any τμν . It is the second level identity (cf. (13)):

∂μεμνρλ∂ν = 0 . (32)

The identities (29), (30) between the equations of the third order 
involutive closure of Proca system and the identities of identities 
(31), (32) allow one to identify all the ingredients needed for in-
clusion of Stueckelberg fields with reducible gauge symmetry: the 
generators of consequences � (6), null-vectors Z of �’s (cf. (10)), 
and null-vectors of the null-vectors Z1 (cf. (13)):

�μ = −∂μ, �μν
ρ = − 1

2 (∂μδ
ρ
ν − ∂νδ

ρ
μ),

Zμλρ = εμνλρ∂ν, Z1μ = ∂μ .
(33)

With all the ingredients at hands, following the general procedure 
of Section 2, we iteratively construct the Stueckelberg action, gen-
erators of gauge symmetries, and symmetries of symmetries. Once 
the original action is quadratic and the identity generators (33) are 
field-independent, the procedure terminates at the first iteration. 
The Stueckelberg action and reducible gauge symmetry transfor-
mations read

SSt =
∫

d4x
(

− 1

2
∂μ Aν F μν − 1

2
∂μ∂ρ Bνρ

(
∂μ∂λBνλ

+2 ∂μ Aν
) + m2

2

(
Aμ Aμ + ∂μϕ ∂μϕ + ∂ν Bμν∂ρ Bμρ

)
(34)

+m2 Aμ

(
∂μϕ + ∂ν Bμν

))
,

δε Aμ = −∂με − ∂νε
μν , δεϕ = ε ,

δ Bμν = εμν + εμνρλ∂ ε ,
(35)
ε ρ λ
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where ϕ and Bμν = −Bνμ are the Stueckelberg fields correspond-
ing to the consequences τ and τμν (27), (28), while ε , εμ , εμν are 
the gauge parameters corresponding to the gauge identities (29), 
(30), (31). By direct computation, one can easily see that action 
(34) enjoys symmetry (35) indeed. Given the null-vectors Z and 
Z1 (33), the symmetries of symmetries are constructed following 
the general prescription (22), (23),

δωε = 0 , δωεμ = −ωμ − ∂μω ,

δωεμν = εμνρλ∂ρωλ ,
(36)

δηω = η , δηωμ = −∂μη , (37)

where (36) are the gauge symmetry transformations of the origi-
nal gauge parameters ε , while (37) is the gauge symmetry of the 
second level gauge parameters ω.

Consider the Lagrangian equations for Stueckelberg action (25),

δSSt

δAμ
≡ �Aμ − ∂μ∂ν Aν + �∂ν Bμν

+m2 Aμ + m2∂μϕ + m2∂ν Bμν = 0 , (38)

δSSt

δϕ
≡ −m2(�ϕ + ∂μ Aμ) = 0 , (39)

δSSt

δBμν
≡ 1

2
(� + m2)

(
∂μ∂ρ Bρν − ∂ν∂ρ Bρμ

+ ∂μ Aν − ∂ν Aμ

) = 0 . (40)

These equations involve the fourth order derivatives, so equiva-
lence with the original Proca theory may seem doubtful. However, 
these equations enjoy the reducible gauge symmetry (35). This 
symmetry admits gauge fixing conditions

ϕ = 0 , Bμν = 0 . (41)

This gauge eliminates all the Stueckelberg fields and reduces the 
system to Proca equations (26).

It is interesting to notice another admissible gauge fixing for 
the symmetry (35):

ϕ = 0 , Aμ = 0 , εμνρλ∂
ν Bρλ = 0 . (42)

As this gauge fixing kills scalar ϕ and vector field Aμ , equations 
(38)-(39) reduce to third-order equation (1), while (40) becomes 
its differential consequence. Let us detail fixing of the gauge pa-
rameters by conditions (42). Taking variation of (42) we arrive at 
the conditions

δεϕ = ε = 0 , δε Aμ = ∂με + ∂νεμν = 0 ,

εμνρλ∂
νδε Bρλ = εμνρλ∂

νερλ − �εμ + ∂μ∂νεν = 0 .
(43)

So, the gauge conditions (42) restrict the gauge parameters by the 
relations

ε = 0 , ∂μεμν = 0 ,

εμνρλ∂
νερλ − �εμ + ∂μ∂νεν = 0 .

(44)

Once ε = 0, the second of these equations means εμν = εμνρλ∂ρωλ , 
where ωλ is arbitrary. Substituting that into the last relation we 
see that the difference between the gauge parameter εμ and ωμ

obeys free Maxwell equations. Maxwell equations have unique 
solution modulo the gradient of arbitrary scalar ∂μω, given the 
Cauchy data. So, the general solution of equations (44) reads

ε = 0 , εμ = ωμ + ∂μω , εμν = εμνρλ∂ρωλ , (45)
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where ωμ, ω are arbitrary functions. This means, the gauge condi-
tions (42) fix parameters ε, εμ, εμν modulo symmetry of symme-
try (36). The ambiguity of this type always remains unfixed at the 
level of field equations for original fields in the case of reducible 
gauge symmetry. In the BRST formalism, this ambiguity is fixed by 
imposing gauge conditions on the ghosts and introducing ghosts 
for ghosts [12].

Admissibility of the gauge fixing condition such that kills the 
original vector field means that Aμ can be considered as a pure 
gauge from the viewpoint of the action (25) with gauge symmetry 
(35). This is true indeed, given the transformation δε Aμ (35) which 
demonstrates that both gradient and transverse parts are ambigu-
ous of the vector Aμ , so only zero modes can survive in the gauge 
transformations. Once transformations for the fields Aμ and Bμν

share the same gauge parameter εμν , the gauge ambiguity can be 
equally well fixed either by the conditions killing A and residual 
ambiguity in B , or by fixing B .

The equations (1), being one of the gauge fixed forms of the 
Stueckelberg system (38), (39), (40) are equivalent to the original 
Proca system. These third order non-Lagrangian equations can be 
considered a dual form of the vector representation (2) of massive 
spin 1 particle, as it has been already explained in the Introduc-
tion. One can switch between these dual forms by imposing differ-
ent gauges in the same Lagrangian theory. This example demon-
strates that if the inclusion of Stueckelberg fields begins with the 
higher order involutive closure of the original theory, the Stueckel-
berg action, being equivalent to the original non-involutive theory, 
can include dual formulations of the same irreps. This topic is fur-
ther discussed in Conclusion.

4. Conclusion

Let us summarize and discuss the results. First, we propose a 
systematic way for inclusion of Stueckelberg fields such that guar-
antees equivalence of the resulting gauge theory to the original 
system. The starting point for inclusion of Stueckelberg fields is 
the involutive closure of original Lagrangian equations (8). If the 
closure includes an over-complete set of consequences (see (11)), 
the Stueckelberg symmetry turns out reducible. In any case, the 
Stueckelberg theory is iteratively constructed for any involutive 
closure of Lagrangian equations without obstructions at any stage, 
be the consequences (6) reducible or not. In this sense, the covari-
ant method is a complete analogue to the Hamiltonian method of 
conversion of the second class constraints into the first class ones.

The interesting option for inclusion of Stueckelberg fields is to 
start with the involutive closure of the higher order than it is min-
imally sufficient. This option is exemplified in Section 3 by the 
third order involutive closure of Proca model, where the added 
consequences are reducible. Following the general procedure of in-
clusion of the Stueckelberg fields, we arrive to the higher derivative 
Stueckelberg action (34) which is equivalent to the first derivative 
Proca action. This Stueckelberg model for massive spin 1 turns out 
comprising two dual field theoretical realizations for the same ir-
reducible representation. The first one is the original Proca model, 
and the second one is the third order formulation (1) in terms of 
the antisymmetric tensor field. The field Bμν can be considered as 
a potential for the original transverse vector (cf. (3)). Notice that 
various dual formulations are studied once and again for the same 
spin representation. For the most recent results on this topic and 
further references we refer to the article [13]. Important motiva-
tion for studying dual formulations is that they are inequivalent, 
in general, w.r.t. inclusion of interactions. Among the examples of 
this sort, we can mention the representation of the massless spin 2 
by the third rank tensor field with Young diagram of the hook type 
[14]. Unlike the representation of the same spin by the symmetric 
second rank tensor, the hook does not admit inclusion of con-
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sistent interactions [15]. Similar phenomena are observed among 
the higher spin gravities. In particular, the long known light-cone 
analysis of the higher spin vertices in Minkowski space [16], [17]
demonstrates admissibility of the interactions such that are miss-
ing among the deformations of Fronsdal’s Lagrangians for symmet-
ric tensors. There is a growing evidence that Lagrangians for dual 
formulations of higher spins can admit these vertices. For the re-
cent results, discussion of the area, and further references we refer 
to [18], [19]. Notice that the considered dual formulations are typ-
ically connected to each other algebraically, hence all the actions 
are of the same order. Proposed scheme of inclusion Stueckel-
berg fields proceeds from the involutive closure of the original 
Lagrangian equations. If the starting point is the higher order clo-
sure of the original system, corresponding Stueckelberg field, being 
candidate for the dual to the original field, would be involved in 
the Lagrangian with higher derivatives. This dual would be con-
nected to the original field by a differential relation, like a poten-
tial (cf. (3)). So, this scenario of inclusion Stueckelberg fields can 
serve as a tool for constructing a different type of dual formula-
tions. For example, if the original fields are symmetric, the second 
order Lagrangian equations can admit the third order involutive 
closure with differential consequences, being the tensors of hook 
type. Corresponding higher derivative Stueckelberg Lagrangian has 
to be equivalent to the original one by construction, while the 
hook tensors would serve as dual to the original fields, following 
the pattern of Section 3. These dual models can have their chances 
for consistent interactions as the potentials can be less obstructive 
to deformations than corresponding strength tensors.
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