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Abstract—Constructing testability functions of a combinational 

circuit line, such as: the controllability, observability and 

stuck-at fault detection functions, as well as the complement of 

the observability function is considered. Methods and 

algorithms for constructing testability functions based on 

Binary Decision Diagram (BDD) and Disjunctive Normal Form 

(DNF), as well as methods for constructing Conjunctive 

Normal Form (CNF) and obtaining testability functions using a 

SAT solver are proposed. Methods and algorithms for 

constructing testability functions for all and a subset of lines of 

a circuit are also proposed. Proposed methods and algorithms 

make it possible to significantly reduce the computational costs 

for constructing testability functions of a combinational circuit. 
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I. INTRODUCTION 

Constructing Boolean testability functions of a line of a 
combinational circuit is considered, namely: the 
controllability, observability and stuck-at fault detection 
functions, as well as the complement (inverse) of the 
observability function. 

Testability functions find their application in numerous 
tasks of analysis and synthesis of logical circuits [1 – 12], 
such as: identification of hard-to-detect stuck-at faults in 
combinational circuits and generation tests for stuck-at 
faults [1 – 3], detection of Trojan circuits [4], optimization 
of circuits [5, 6], fault tolerance [7] and calculation of 
testability measures [1, 3, 8]. 

In this paper methods and algorithms for constructing 
the considered functions for BDD [13] and DNF 
representations of functions are proposed, in which the 
construction process is considered in detail, showing the 
possibilities of efficient computations. Methods for efficient 
construction of CNF and obtaining testability functions 
using a SAT solver are proposed as well. Methods are a 
detailing and development of previously proposed methods 
[3, 7, 14, 15]. Methods and algorithms for obtaining 
functions for all or part of lines of a circuit are also 
proposed, which makes it possible to reduce the amount of 
computations. 

Section II considers testability functions, their properties 
and the construction of testability functions in general. 
Section III describes in detail the construction of BDDs and 

DNFs of testability functions and presents the construction 
algorithms. Section IV proposes methods for constructing 
CNF and obtaining testability functions using a SAT solver. 
Section V presents the proposed methods and algorithms for 
constructing testability functions for all and a subset of lines 
of a circuit. Section VI is a conclusion. 

II. TESTABILITY FUNCTIONS, THEIR PROPERTIES AND 

CONSTRUCTION 

Consider a combinational circuit S with n inputs and m 
outputs. X, X = {x1, ..., xn}, is the set of input variables of the 

circuit. ϕi(X), mi ,1= , is a Boolean function implemented 

by the ith output of the fault-free circuit S.  

Consider a line v of the circuit S (Fig. 1a). Sv,1 is the 
circuit S with a stuck-at-1 fault, and Sv,0 is S with a stuck-at-

0 fault on line v. )(1, Xv
iϕ  and )(0, Xv

iϕ , mi ,1= , are 

Boolean functions implemented by the ith outputs of the 
circuits Sv,1 and Sv,0, respectively (Fig. 2). Note that circuits 
Sv,1 and Sv,0 are sub-circuits of S, which can be simplified 
after substituting constants 1 and 0 into line v, respectively. 
In these circuits, elements that are not connected with circuit 
outputs can be removed. 

Consider the testability functions of line v, such as the 
stuck-at fault detection functions, the observability and 
controllability functions. 

The stuck-at-1 (stuck-at-0) fault detection function on 
line v of the circuit is a Boolean function Dv,1(X) (Dv,0(X)) 

such that Dv,1(α) = 1 (Dv,0(α) = 1) iff α is a test for the 
stuck-at-1 (stuck-at-0) fault on line v of the circuit. 

Dv,1(X) and Dv,0(X) represent all test vectors for single 
stuck-at-1 and stuck-at-0 faults on line v, respectively. 

The observability function of line v is a Boolean function 

Bv(X) such that Bv(α) = 1 iff α is an input vector that 
provides different values on at least one of the circuit 
outputs for different values on line v. 
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Fig. 1. a) A combinational circuit S and its line v; b) S and the function fv(X) 
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Fig. 2. a) Sv,1 – the circuit S with the stuck-at-1 fault on line v; b) Sv,0 – the 

circuit S with the stuck-at-0 fault on line v 
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Fig. 3. a) the circuit Sv,B, where the line v is associated with the input 
variable v; b) the circuit Sv,C, where the line v is associated with an output 

Let )(XBv
i  be the observability function of line v at the 

ith output of the circuit. Formulas for the observability 
functions of line v are: 

 ,,1),()()( 0,1, miXXXB v
i

v
i

v
i =ϕ⊕ϕ=  (1) 

 v
m

vv BBXB ∨∨= ...)( 1 . (2) 

The observability function )(XBv
i  represents all input 

vectors that provide different values at the ith output of the 
circuit for different values on line v. 

)(XB
v

 (complement of Bv(X)) represents don’t-care 

values for line v, i.e. all input vectors of the circuit on which 
the value on line v does not affect the values at the outputs 
of the circuit. 

The 1-controllability (0-controllability) function Cv,1(X) 
(Cv,0(X)) of line v represents input vectors providing the 
value 1 (0) on line v. The 1-controllability function is 
implemented by the output of the sub-circuit corresponding 
to line v; its inversion is the 0-controllability function. 

Denote as f v(X) a Boolean function implemented on line 
v of the circuit (Fig. 1(b)). Then 

 Cv,1(X) = )(Xf v , Cv,0(X) = )(Xf
v

. (3) 

Let ),( vXv
iϕ , mi ,1= , be a function implemented at the 

ith output of the circuit Sv,B, in which the variable v is the 
input variable, associated with line v of the circuit (Fig. 
3(a)). The inputs of elements connected to line v in the 
circuit S, are connected to the input v in the circuit Sv,B. Note 
that in the circuit Sv,B all elements that are not connected 
with circuit outputs can be removed. The functions 

),( vXv
iϕ  in some representation can be obtained from the 

structural description of the circuit Sv,B. 

Under removing elements from the circuit, we will also 
mean removing connections that have at least one of the two 
poles removed, as well as the inputs and outputs of the 

circuit, if all the elements to which they are connected are 
removed. 

Functions ϕi(X), )(1, Xv
iϕ  and )(0, Xv

iϕ  can be obtained 

from the function ),( vXv
iϕ  as follows: 

))(,()( XfXX vv
ii ϕ=ϕ , )1,()(1, XX v

i
v
i ϕ=ϕ , 

)0,()(0, XX v
i

v
i ϕ=ϕ . 

Thus, two ways of constructing Bv by (1) and (2) were 

considered. In these two ways, functions )(1, Xv
iϕ  and 

)(0, Xv
iϕ  are obtained as follows. 1) From the function 

),( vXv
iϕ : )1,()(1, XX v

i
v
i ϕ=ϕ  and )0,()(0, XX v

i
v
i ϕ=ϕ ; 2) 

)(1, Xv
iϕ  and )(0, Xv

iϕ  are obtained in some representation 

from the structural description of circuits Sv,1 and Sv,0. 

)(XBv
i  is the Boolean difference of the function 

),( vXv
iϕ  with respect to the variable v. 

v
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The stuck-at fault detection functions Dv,1(X) and Dv,0(X) 
can be obtained using the observability and controllability 
functions as follows: 

 
).()()(

),()()(

1,0,

0,1,

XCXBXD

XCXBXD

vvv

vvv

⋅=

⋅=
 (4) 

Let N = {e1, e2, …, et} denote the set of all elements of 
the circuit S. 

Let’s define the relation “p ” between circuit elements ei 
and ej. ei p  ej, if: a) the output of ei is connected to the input 
of ej or b) the circuit contains a subset of elements 

1ke , …, 
pke , such that the following relations hold 

ei p  
1ke  p  … p  

pke  p  ej. In other words, ei p  ej, if there 

is a path in the circuit from the output of ei to the input of ej. 

Let’s call an element ei the direct predecessor of an 
element ej, and ej – the direct successor of ei, if the output of 
ei is connected to an input of ej. An element ei is called the 
predecessor of an element ej, and ej is called the successor 
of ei, if ei p  ej. 

Similarly, the relation “p ” between lines, inputs and 
outputs of the circuit can be defined. 

Let on(g) be the on-set of a Boolean function 

g(x1, ..., xn), on(g) = {(a1, ..., an) ∈ Bn: g(a1, ..., an) = 1}, and 
off(g) be the off-set of g(x1, ..., xn), 

off(g) = {(a1, ..., an) ∈ Bn: g(a1, ..., an) = 0}. 

In [7], we proposed the method for constructing fault 
detection functions based on constructing the observability 
function and binary simulation of the sub-circuit Sv,C (Fig. 
3(b)) using its structural description. Note that the circuit 
Sv,C contains only elements connected with its single output. 

The method uses a formula that follows from (3) and (4):  
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 )()()( 0,1, XDXDXB vvv ∨= . (5) 

In this method, the set on(Bv) is obtained first. It can be 
obtained in different ways. Then sets on(Dv,1) and on(Dv,0) 
are obtained by binary simulation of the sub-circuit Sv,C on 
vectors from on(Bv). Simulation is performed on each vector 

from the set on(Bv). If on some vector α ∈ on(Bv) on line v 

of the circuit the value 0 is obtained, then α is included in 
on(Dv,1), otherwise – in on(Dv,0). 

Note that this method can find not only test vectors, but 
also values on each predecessor of line v for each test 
vector. The values on the predecessors can be obtained as 
the projection of the vector of values on each circuit line, 
obtained by binary simulation, onto the considered subset of 
variables. 

Example 

Consider a circuit Sv,C with three input variables 
X = {x1, x2, x3}. w1, w2, w3, w4 are lines that are predecessors 
of v. Let’s on(Bv) = {(010),(100),(101)}.  

Let the following values be obtained on lines of the 
circuit Sv,C by binary simulation. 

      x1 x2 x3    w1 w2 w3 w4     v  

1)  0  1  0     1  0   0   1     1 
2)  1  0  0     1  0   1   1     1 
3)  1  0  1     0  0   1   1     0 

Then input vectors (010) and (100) are tests for the 
stuck-at-0 fault, as the value of the variable v is equal to 1; 
(101) is a test for the stuck-at-1 fault, as v = 0. 

On the stuck-at-0 fault test vector (010) internal lines 
{w1, w2, w3, w4} take on values (1001), and on the test vector 
(100) they take on values (1011). Whereas, if to consider the 
subset of lines {w1, w2}, it takes only one value (10) on all 
tests for stuck-at-0 fault. 

To line v of the circuit S corresponds an incompletely 
specified function that takes values on the set {0, 1, *}. 
Dv,1(X) and Dv,0(X) represent the on-set and off-set of the 

incompletely specified function. )(XB
v

 represents don’t 

care set of the incompletely specified function. 

Constructing testability functions based on (1) – (4) that 
used DNFs, BDDs or SAT solvers was previously 
considered in our papers [3, 7, 14, 15].  

In this paper methods are proposed to reduce the 
computational costs of constructing testability functions. 
These methods are based on our previous research. The 
process of constructing functions is considered in detail, 
showing the possibilities of efficient calculations. 

Next, consider in detail the construction of testability 
functions using BDDs and DNFs. Also consider the 
construction of CNF and obtaining testability functions 
using SAT solvers. 

III. CONSTRUCTING TESTABILITY FUNCTIONS IN BDD AND 

DNF 

Further, the local Boolean function of the element will 
also be called simply the function of the element, and the 

global function of the element will also be called the 
function implemented at the output of the element. 

As it is known, BDDs (ROBDDs) of Boolean functions 
implemented by a combinational circuit can be obtained 
from the structural description of the circuit as follows [16]. 
First, the BDDs of all input variables of the circuit are 
constructed. Then, by levels, from the circuit inputs to the 
outputs, the BDDs of all intermediate subfunctions are 
constructed. When constructing the BDD of a circuit 
element, the local Boolean function implemented by that 
element is applied to the BDDs at inputs of the element. 
BDDs of elements, the outputs of which are outputs of the 
circuit, are Boolean functions implemented by the circuit. 

Similarly, DNFs (ODNFs) of Boolean functions 
implemented by a combinational circuit can be obtained 
from the structural description of the circuit. When 
constructing DNFs, in addition to obtaining DNFs of 
functions implemented at outputs of circuit elements, it is 
necessary to obtain DNFs of inversions of these functions. 
When constructing the DNF of a circuit element, DNFs of 
the local Boolean function implemented by this element and 
DNF of its inversion are obtained, and then DNFs of 
functions implemented at the inputs of the element and their 
inversions are substituted in them.  

BDDs (ROBDDs) and DNFs (ODNFs) of functions 
implemented by a circuit can also be obtained from the 
structural description of the circuit by considering elements 
in such an order that all predecessors of an element are 
considered before the element [14] (it is not necessary to 
consider elements exactly by levels). Let’s order the circuit 

elements in a sequence 
1ke , 

2ke , …, 
tke  so that all 

relations “ p ” between the elements are fulfilled in it, i.e. if 

ji kk ee p , then 
ike  precedes 

jke  in the sequence. Then, 

moving through the elements from the first to the last in the 
obtained sequence and applying the local functions of the 
elements, to the BDDs or DNFs of functions implemented at 
inputs of elements, obtain BDDs or DNFs of functions 
implemented at the output of each element and at outputs of 
the circuit.  

Above, two ways to obtain the functions )(1, Xv
iϕ  and 

)(0, Xv
iϕ , mi ,1= , in some representation were shown. 

Next, consider Algorithm 1 for obtaining testability 
functions of line v of the circuit S in the BDD (ROBDD) or 
DNF (ODNF) for the two considered ways of obtaining 

functions )(1, Xv
iϕ  and )(0, Xv

iϕ . Some steps of the 

algorithm are common for these two ways, while others are 
different, in the latter case the two ways are separated by 
sub-steps A) and B). 

This algorithm is based on the method considered in [14] 
and described above for obtaining BDDs and DNFs of 
functions implemented by the circuit, as well as on the 
algorithms from [15]; a more general algorithm than 
previously is proposed in this paper. 

Let Ov denote the subset of numbers of outputs that are 
successors of line v. Note that to obtain all testability 
functions, it is necessary to consider only a sub-circuit of the 
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circuit S, which implements outputs that are successors of 

line v, since 0)( =XBv
i  for vOi ∉ . 

In the algorithm assume for brevity that v is the line 
connected to the output pole of an element. The algorithm 
can be easily extended to cases of other circuit lines, circuit 
inputs and outputs. 

In Algorithm 1 (case B) only BDDs and DNFs of 
elements that are successors of line v in circuits Sv,1 and Sv,0 
are obtained separately for the stuck-at-1 and stuck-at-0 
faults. 

Algorithm 1. Obtaining testability functions: Сv,1, Сv,0, 

v
iB , Bv, Dv,1, Dv,0,  and 

v
B  in BDD or DNF. 

1) Denote by Sv the sub-circuit of the circuit S, 
consisting of elements, connections between them and 
primary inputs and outputs connected with them, which are 
predecessors of outputs of the set Ov. 

2) Obtain the BDD or DNF of the input variables of 
the circuit Sv. 

3) Obtain the functions (in BDD or DNF), 
implemented at the outputs of elements of the circuit Sv. 

Each element is considered after all its predecessors. The 
BDD or DNF of the function implemented at the output of 
an element is obtained by applying the local function of that 
element to the BDDs or DNFs of the functions implemented 
at inputs of the element. If the element is not a successor of 
v, obtain (in the BDD or DNF) a function implemented at its 
output. For elements that are successors of v, obtain 
functions as follows. 

A) Obtain functions (in BDD or DNF), implemented at 
outputs of elements that are successors of line v. In this case, 
if one of the inputs of the element in the circuit S is 
connected to line v, then associate this input with the BDD 
or DNF of the input variable v. 

B) For each element that is a successor of v, obtain two 
functions (in BDD or DNF): one for the value 1, the second 
for the value 0 on line v. Before obtaining the function at the 
output of an element, simplify the local function of the 
element, if possible, by substituting into it the corresponding 
constants from the inputs. 

When constructing the DNF, in addition to obtaining 
DNFs of functions implemented at outputs of elements, also 
obtain DNFs of inversions of these functions.  

4)  

A) At the outputs of circuit elements, which are circuit 

outputs, functions ),( vXv
iϕ  in BDD or DNF are obtained 

for outputs from the set Ov. Exclude from consideration 
functions that do not depend on the variable v, since for 

them 0)( =XBv
i . For each of the remaining functions of the 

set Ov, obtain two functions (in BDD or DNF): 

)1,()(1, XX v
i

v
i ϕ=ϕ  and )0,()(0, XX v

i
v
i ϕ=ϕ . 

B) At the output of each circuit element, which is the 
circuit output, two functions are obtained (in BDD or DNF), 

which represent functions )(1, Xv
iϕ  and )(0, Xv

iϕ , i ∈ Ov. 

5) Perform XOR of the obtained functions )(1, Xv
iϕ  

and )(0, Xv
iϕ  according to (1).  

6) Perform the disjunction of functions obtained as a 
result of XOR at step 5, according to (2); if the i-th output 
does not belong to the set Ov, then we skip it, since 

0)( =XBv
i . As a result, obtain the observability function Bv 

of line v of the circuit in BDD or DNF. 

7) Obtain fault detection functions Dv,0 and Dv,1 for 
line v of the circuit in BDD or DNF according to (4). For 
this, perform the conjunction of Bv with the 1-controllability 
function Cv,1 and the 0-controllability function Cv,0, 
respectively. Cv,1 is implemented on line v and is obtained at 
step 3 of this algorithm. BDD Cv,0 is obtained from BDD 
Cv,1 by inverting values of terminal vertices. 

If for line v it is necessary to obtain only the 

observability functions and (or) function 
v

B , step 1 of 
Algorithm 1 is replaced by the following. 

1) Denote by Sv,B the sub-circuit of the circuit S, in 
which the variable v is the input variable associated with 
line v of the circuit S (Fig. 3(a)). The inputs of elements 
connected to line v in the circuit S are connected to the input 
v in the circuit Sv,B.  Sv,B consists of elements of the circuit S, 
connections between them and primary inputs and outputs 
connected with them, which are successors of input v or 
predecessors of these successors.   

Next, steps 2 – 6 of the Algorithm 1 are performed for 
the circuit Sv,B. 

IV. CONSTRUCTING CNF FOR OBTAINING TESTABILITY 

FUNCTIONS USING SAT SOLVERS 

The proposed Algorithm 1 for obtaining testability 
functions in BDD or DNF can also be used with the 
necessary changes to construct the CNF for obtaining 
testability functions using a SAT solver. In this section 
methods for constructing CNFs and obtaining testability 
functions using a SAT solver are proposed. 

It is known that the CNF for obtaining functions 
implemented by a combinational circuit using a SAT solver 
can be constructed as follows [17]: its own variable vi is 
assigned to the output of each element ei; then the CNF of 
the function vi ~ fi is constructed, where fi is the local 
function of the element ei; CNFs obtained for the elements 

are united by the conjunction (∧) operation. Elements of the 
circuit can be considered in any order. 

Thus, in order to obtain testability functions of a 
combinational circuit line, construct the CNF using an 
algorithm similar to Algorithm 1 described above, but 
instead of obtaining functions implemented at the outputs of 
elements by the superposition of functions at inputs of 
elements, we obtain CNFs of elements of the circuit under 
consideration and perform their conjunction. For some 
formula A = F, we obtain the CNF for the function A ~ F. 
CNFs for formulas are also united by the conjunction with 
the CNF under construction. For each element ei that is a 
successor of line v, CNFs for two functions are constructed: 
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one is vi,1 ~ fi for the value 1 on line v, the other is vi,0 ~ fi for 
the value 0 on line v.  

Note that in this method, we used both the circuit and 
formulas to construct the CNF for obtaining testability 
functions using a SAT solver. 

The algorithm for constructing the CNF Pv,B,1 for 
obtaining only the observability function is presented in 
detail in [15]. 

To construct the CNF Pv for obtaining all testability 
functions of line v, steps 1 – 6 of Algorithm 1 are performed 
with changes described above. Step 7 is not performed and 
the variable Bv is not assigned the value 1. The CNF Pv is 
constructed using the circuit Sv described at step 1 of the 
Algorithm 1 and formulas (1) and (2).  

Note that the variable Bv is assigned the value 1, if it is 

not necessary to obtain the on-set of the function 
v

B . 

Vectors from on-sets of fault detection functions are 
obtained from the satisfying assignments obtained for the 
CNF Pv by a SAT solver in a way similar to that described 
above for the method using binary simulation. However, 
here, by the satisfying assignment, we also determine 
whether the input vector belongs to the on-sets of each of 
testability functions of line v, based on the values of 
variables v and Bv of the satisfying assignment.  

Let α|X denotes the projection of vector α on the set of 
input variables X. 

 Consider a satisfying assignment α. Denote by Xv input 

variables of the circuit Sv. Then the belonging of vX
|α  to 

on-sets of different testability functions is determined as 
follows: 

1) if α|v = 1, then vX
|α  ∈ on(Cv,1); 

2) if α|v = 0, then vX
|α  ∈ on(Cv,0); 

3) if 1| =α v
iB

, i ∈ Ov, then vX
|α  ∈ on( v

iB ); 

4) if 0| =α v
iB

, i ∈ Ov, then vX
|α  ∈ on( v

iB ); 

5) if 1| =α vB
, then vX

|α  ∈ on(Bv); 

6) if 0| =α vB
, then vX

|α  ∈ on(
v

B ); 

7) if 1| =α vB
 and α|v = 1, then vX

|α  ∈ on(Dv,0); 

8) if 1| =α vB
 and α|v = 0, then vX

|α  ∈ on(Dv,1). 

Note that if the set Xv ⊂ X, where X is the set of input 
variables of the circuit S, then variables X \ Xv of the 
obtained on-sets of testability functions are set to ‘-’ and 
cubes from on-sets of corresponding functions are obtained. 

 Values on predecessors as well as on successors of line 
v for test vectors from on(Dv,1) and on(Dv,0) are obtained 
from satisfying assignments in a way similar to that 
described above for the fault detection functions 
construction method using binary simulation. 

Example  

Consider a circuit Sv with three input variables 
Xv = {x1, x2, x3}. For simplicity, suppose X = Xv. 
{w1, w2, …, wk} are lines that are predecessors of v. Let a 

SAT solver be used to obtain satisfying assignments, and 
three of the obtained satisfying assignments are as follows. 

        x1 x2 x3  … w1 w2 … wk v … Bv 

α1:   0  1  0  …  1  1  …  0  1… 0 

α2:   1  0  0  …  1  0  …  1  1… 1 

α3:   1  0  1  …  0  0  …  1  0… 1 

Consider the input vector vX
|1α = (010). 

(010) ∈ on(Cv,1) since α1|v = 1; (010) ∈ on(
v

B ) because 

0|1 =α vB
. Since (010) ∈ on(

v
B ), (010) is not a test vector.  

The input vector vX
|2α = (100) ∈ on(Cv,1) since α2|v = 1 

and (100) ∈ on(Bv) since 1|2 =α vB
, consequently (100) is a 

test vector for the stuck-at-0 fault. On the test vector (100) 
for the stuck-at-0 fault, internal variables of the circuit w1, 

w2, .. wk take values 
kwww ...2 21

|α  = (10…1).  

The input vectors vX
|3α = (101) ∈ on(Cv,0) since 

α3|v = 0 and (101) ∈ on(Bv) since 1|3 =α vB
, consequently 

(101) is a test vector for the stuck-at-1 fault. On the test 
vector (101) for the stuck-at-1 fault, lines of the circuit w1, 

w2, .. wk take values 
kwww ...3 21

|α  = (00…1). 

In the same way, values on successors of v, as well as on 
any lines of the circuit, can be obtained from satisfying 
assignments. 

From all satisfying assignments obtained for CNF using 
a SAT solver, on-sets of all testability functions can be 
obtained.  

The proposed method makes it possible to obtain using a 
SAT solver all testability functions using only one CNF, the 
size of which is comparable to the size of the CNF of the 
circuit S. In this paper, the proposed method is considered in 
general. We plan to consider it in detail in future work. 

Note that on-sets of testability functions can be obtained 
in a similar way using only binary simulation of the circuit 
Sv. For this, during the binary simulation, obtain two values 
on successors of line v: one for the value 1, the second for 
the value 0 on line v. Then, the obtained values are 

substituted into (1) and (2). Thus, we obtain a vector α of 
values on all lines of the circuit and values of observability 
functions. On-sets of testability functions are obtained in the 
similar way as for satisfying assignments for CNF Pv. 

V. CONSTRUCTING ALL TESTABILITY FUNCTIONS OF A 

COMBINATIONAL CIRCUIT 

Further, consider an algorithm for constructing 
testability functions for each line of the circuit S in BDD 
(ROBDD) or DNF (ODNF). 

Algorithm 2. Constructing testability functions for all 
lines of a circuit in BDD or DNF. 

1. Obtain functions (in BDD or DNF), implemented at 
the output of each element of a fault-free circuit S, in the 
way described above. 
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2. Construct testability functions for each line vi as 

follows. For each line vi, obtain BDD or DNF only for 
successors of line vi (their obtaining was considered at step 3 
of Algorithm 1); for all the rest lines use BDDs or DNFs 
obtained for the fault-free circuit. Then perform operations 
according to (1) – (4) and thus construct testability functions 
of line vi. 

Constructing BDDs or DNFs only for successors of each 
line can significantly reduce the computational cost when 
constructing testability functions for all lines of a circuit. 

If only a subset of circuit lines is considered and it is 
necessary to obtain testability functions for this subset, step 
1 in Algorithm 2 is replaced by the following one.  

1) Consider a circuit consisting of elements of the 
circuit S, connections between them and primary inputs and 
outputs connected to them, which are predecessors of 
outputs that are successors of at least one of the lines under 
consideration. Obtain functions (in BDD or DNF), 
implemented at the output of each element of this circuit, as 
described above. 

Then, for the obtained circuit, step 2 of Algorithm 2 is 
performed, where lines vi from the given subset are 
considered. 

Similarly, CNFs can be constructed to obtain testability 
functions using a SAT solver for all or part of lines of a 
circuit. First, CNFs are constructed for elements of a fault-

free circuit S and functions )(~ 0,1, ii
v
i vvB ⊕ , mi ,1= , and 

v
i

m

i

v BB ∨
=1

~  in the way described above; here vi are 

variables corresponding to outputs of elements connected to 
outputs of the circuit. Then, for each line for which 
testability functions are constructed, these CNFs are used 
for elements that are not successors of line v, and for 
successors of line v, these CNFs are duplicated and adjusted 
according to the above. CNFs for functions 

)(~ 0,1, ii
v
i vvB ⊕ , vOi ∈ , and v

i
Oi

v BB
v

∨
∈

~  are united by the 

conjunction with the CNF under construction. 

VI. CONCLUSION 

Efficient methods and algorithms for constructing 
testability functions and the complement of the observability 
function of a combinational circuit line based on BDD and 
DNF are proposed. Efficient methods for constructing CNF 
and obtaining testability functions using a SAT solver are 
also proposed. They are a detailing and development of 
previously proposed methods. Methods for constructing 
testability functions for all and for a subset of lines of a 

circuit are also proposed, which significantly reduces 
computational costs. 
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