
2021 International Siberian Conference on Control and Communications (SIBCON)

978-1-7281-8504-0/21/$31.00 ©2021 IEEE

BDD and DNF Based Algorithms for Constructing

All Testability Functions of Combinational Circuit

Olga Golubeva

Tomsk State University (TSU)

Tomsk, Russian Federation

Abstract—Constructing testability functions of a combinational

circuit line, such as: the controllability, observability and

stuck-at fault detection functions, as well as the complement of

the observability function is considered. Methods and

algorithms for constructing testability functions based on

Binary Decision Diagram (BDD) and Disjunctive Normal Form

(DNF), as well as methods for constructing Conjunctive

Normal Form (CNF) and obtaining testability functions using a

SAT solver are proposed. Methods and algorithms for

constructing testability functions for all and a subset of lines of

a circuit are also proposed. Proposed methods and algorithms

make it possible to significantly reduce the computational costs

for constructing testability functions of a combinational circuit.

Keywords—testability functions, stuck-at fauls, observability,

Boolean difference, controllability, fault detection, BDD, DNF,

CNF, SAT solver, combinational circuit

I. INTRODUCTION

Constructing Boolean testability functions of a line of a
combinational circuit is considered, namely: the
controllability, observability and stuck-at fault detection
functions, as well as the complement (inverse) of the
observability function.

Testability functions find their application in numerous
tasks of analysis and synthesis of logical circuits [1 – 12],
such as: identification of hard-to-detect stuck-at faults in
combinational circuits and generation tests for stuck-at
faults [1 – 3], detection of Trojan circuits [4], optimization
of circuits [5, 6], fault tolerance [7] and calculation of
testability measures [1, 3, 8].

In this paper methods and algorithms for constructing
the considered functions for BDD [13] and DNF
representations of functions are proposed, in which the
construction process is considered in detail, showing the
possibilities of efficient computations. Methods for efficient
construction of CNF and obtaining testability functions
using a SAT solver are proposed as well. Methods are a
detailing and development of previously proposed methods
[3, 7, 14, 15]. Methods and algorithms for obtaining
functions for all or part of lines of a circuit are also
proposed, which makes it possible to reduce the amount of
computations.

Section II considers testability functions, their properties
and the construction of testability functions in general.
Section III describes in detail the construction of BDDs and

DNFs of testability functions and presents the construction
algorithms. Section IV proposes methods for constructing
CNF and obtaining testability functions using a SAT solver.
Section V presents the proposed methods and algorithms for
constructing testability functions for all and a subset of lines
of a circuit. Section VI is a conclusion.

II. TESTABILITY FUNCTIONS, THEIR PROPERTIES AND

CONSTRUCTION

Consider a combinational circuit S with n inputs and m
outputs. X, X = {x1, ..., xn}, is the set of input variables of the

circuit. ϕi(X), mi ,1= , is a Boolean function implemented

by the ith output of the fault-free circuit S.

Consider a line v of the circuit S (Fig. 1a). Sv,1 is the
circuit S with a stuck-at-1 fault, and Sv,0 is S with a stuck-at-

0 fault on line v.)(1, Xv
iϕ and)(0, Xv

iϕ , mi ,1= , are

Boolean functions implemented by the ith outputs of the
circuits Sv,1 and Sv,0, respectively (Fig. 2). Note that circuits
Sv,1 and Sv,0 are sub-circuits of S, which can be simplified
after substituting constants 1 and 0 into line v, respectively.
In these circuits, elements that are not connected with circuit
outputs can be removed.

Consider the testability functions of line v, such as the
stuck-at fault detection functions, the observability and
controllability functions.

The stuck-at-1 (stuck-at-0) fault detection function on
line v of the circuit is a Boolean function Dv,1(X) (Dv,0(X))

such that Dv,1(α) = 1 (Dv,0(α) = 1) iff α is a test for the
stuck-at-1 (stuck-at-0) fault on line v of the circuit.

Dv,1(X) and Dv,0(X) represent all test vectors for single
stuck-at-1 and stuck-at-0 faults on line v, respectively.

The observability function of line v is a Boolean function

Bv(X) such that Bv(α) = 1 iff α is an input vector that
provides different values on at least one of the circuit
outputs for different values on line v.

ϕ1(X)

ϕm(X)

xn

M

x1
M

v

ϕ 1(X)

ϕm (X)

xn

M

x1
M

f v(X)

 a) b)

Fig. 1. a) A combinational circuit S and its line v; b) S and the function fv(X)

2021 International Siberian Conference on Control and Communications (SIBCON)

)(1,
1 Xvϕ

)(1, Xv
mϕ

xn

M

x1

M

1

)(0,
1 Xvϕ

)(0, Xv
mϕ

xn

M

x1

M

0

 a) b)

Fig. 2. a) Sv,1 – the circuit S with the stuck-at-1 fault on line v; b) Sv,0 – the

circuit S with the stuck-at-0 fault on line v

),(1 vX
vϕ

),(vXv
mϕxn

M

x1
M v

xn

M

x1

f(X)

 a) b)
Fig. 3. a) the circuit Sv,B, where the line v is associated with the input
variable v; b) the circuit Sv,C, where the line v is associated with an output

Let)(XBv
i be the observability function of line v at the

ith output of the circuit. Formulas for the observability
functions of line v are:

 ,,1),()()(0,1, miXXXB v
i

v
i

v
i =ϕ⊕ϕ= (1)

 v
m

vv BBXB ∨∨= ...)(1 . (2)

The observability function)(XBv
i represents all input

vectors that provide different values at the ith output of the
circuit for different values on line v.

)(XB
v

 (complement of Bv(X)) represents don’t-care

values for line v, i.e. all input vectors of the circuit on which
the value on line v does not affect the values at the outputs
of the circuit.

The 1-controllability (0-controllability) function Cv,1(X)
(Cv,0(X)) of line v represents input vectors providing the
value 1 (0) on line v. The 1-controllability function is
implemented by the output of the sub-circuit corresponding
to line v; its inversion is the 0-controllability function.

Denote as f v(X) a Boolean function implemented on line
v of the circuit (Fig. 1(b)). Then

 Cv,1(X) =)(Xf v , Cv,0(X) =)(Xf
v

. (3)

Let),(vXv
iϕ , mi ,1= , be a function implemented at the

ith output of the circuit Sv,B, in which the variable v is the
input variable, associated with line v of the circuit (Fig.
3(a)). The inputs of elements connected to line v in the
circuit S, are connected to the input v in the circuit Sv,B. Note
that in the circuit Sv,B all elements that are not connected
with circuit outputs can be removed. The functions

),(vXv
iϕ in some representation can be obtained from the

structural description of the circuit Sv,B.

Under removing elements from the circuit, we will also
mean removing connections that have at least one of the two
poles removed, as well as the inputs and outputs of the

circuit, if all the elements to which they are connected are
removed.

Functions ϕi(X),)(1, Xv
iϕ and)(0, Xv

iϕ can be obtained

from the function),(vXv
iϕ as follows:

))(,()(XfXX vv
ii ϕ=ϕ ,)1,()(1, XX v

i
v
i ϕ=ϕ ,

)0,()(0, XX v
i

v
i ϕ=ϕ .

Thus, two ways of constructing Bv by (1) and (2) were

considered. In these two ways, functions)(1, Xv
iϕ and

)(0, Xv
iϕ are obtained as follows. 1) From the function

),(vXv
iϕ :)1,()(1, XX v

i
v
i ϕ=ϕ and)0,()(0, XX v

i
v
i ϕ=ϕ ; 2)

)(1, Xv
iϕ and)(0, Xv

iϕ are obtained in some representation

from the structural description of circuits Sv,1 and Sv,0.

)(XBv
i is the Boolean difference of the function

),(vXv
iϕ with respect to the variable v.

v

vX
XBXB

v
i

m

i

v
i

m

i

v

∂

ϕ∂
∨=∨=
==

),(
)()(

11

.

The stuck-at fault detection functions Dv,1(X) and Dv,0(X)
can be obtained using the observability and controllability
functions as follows:

).()()(

),()()(

1,0,

0,1,

XCXBXD

XCXBXD

vvv

vvv

⋅=

⋅=
 (4)

Let N = {e1, e2, …, et} denote the set of all elements of
the circuit S.

Let’s define the relation “p ” between circuit elements ei
and ej. ei p ej, if: a) the output of ei is connected to the input
of ej or b) the circuit contains a subset of elements

1ke , …,
pke , such that the following relations hold

ei p
1ke p … p

pke p ej. In other words, ei p ej, if there

is a path in the circuit from the output of ei to the input of ej.

Let’s call an element ei the direct predecessor of an
element ej, and ej – the direct successor of ei, if the output of
ei is connected to an input of ej. An element ei is called the
predecessor of an element ej, and ej is called the successor
of ei, if ei p ej.

Similarly, the relation “p ” between lines, inputs and
outputs of the circuit can be defined.

Let on(g) be the on-set of a Boolean function

g(x1, ..., xn), on(g) = {(a1, ..., an) ∈ Bn: g(a1, ..., an) = 1}, and
off(g) be the off-set of g(x1, ..., xn),

off(g) = {(a1, ..., an) ∈ Bn: g(a1, ..., an) = 0}.

In [7], we proposed the method for constructing fault
detection functions based on constructing the observability
function and binary simulation of the sub-circuit Sv,C (Fig.
3(b)) using its structural description. Note that the circuit
Sv,C contains only elements connected with its single output.

The method uses a formula that follows from (3) and (4):

2021 International Siberian Conference on Control and Communications (SIBCON)

)()()(0,1, XDXDXB vvv ∨= . (5)

In this method, the set on(Bv) is obtained first. It can be
obtained in different ways. Then sets on(Dv,1) and on(Dv,0)
are obtained by binary simulation of the sub-circuit Sv,C on
vectors from on(Bv). Simulation is performed on each vector

from the set on(Bv). If on some vector α ∈ on(Bv) on line v

of the circuit the value 0 is obtained, then α is included in
on(Dv,1), otherwise – in on(Dv,0).

Note that this method can find not only test vectors, but
also values on each predecessor of line v for each test
vector. The values on the predecessors can be obtained as
the projection of the vector of values on each circuit line,
obtained by binary simulation, onto the considered subset of
variables.

Example

Consider a circuit Sv,C with three input variables
X = {x1, x2, x3}. w1, w2, w3, w4 are lines that are predecessors
of v. Let’s on(Bv) = {(010),(100),(101)}.

Let the following values be obtained on lines of the
circuit Sv,C by binary simulation.

 x1 x2 x3 w1 w2 w3 w4 v

1) 0 1 0 1 0 0 1 1
2) 1 0 0 1 0 1 1 1
3) 1 0 1 0 0 1 1 0

Then input vectors (010) and (100) are tests for the
stuck-at-0 fault, as the value of the variable v is equal to 1;
(101) is a test for the stuck-at-1 fault, as v = 0.

On the stuck-at-0 fault test vector (010) internal lines
{w1, w2, w3, w4} take on values (1001), and on the test vector
(100) they take on values (1011). Whereas, if to consider the
subset of lines {w1, w2}, it takes only one value (10) on all
tests for stuck-at-0 fault.

To line v of the circuit S corresponds an incompletely
specified function that takes values on the set {0, 1, *}.
Dv,1(X) and Dv,0(X) represent the on-set and off-set of the

incompletely specified function.)(XB
v

 represents don’t

care set of the incompletely specified function.

Constructing testability functions based on (1) – (4) that
used DNFs, BDDs or SAT solvers was previously
considered in our papers [3, 7, 14, 15].

In this paper methods are proposed to reduce the
computational costs of constructing testability functions.
These methods are based on our previous research. The
process of constructing functions is considered in detail,
showing the possibilities of efficient calculations.

Next, consider in detail the construction of testability
functions using BDDs and DNFs. Also consider the
construction of CNF and obtaining testability functions
using SAT solvers.

III. CONSTRUCTING TESTABILITY FUNCTIONS IN BDD AND

DNF

Further, the local Boolean function of the element will
also be called simply the function of the element, and the

global function of the element will also be called the
function implemented at the output of the element.

As it is known, BDDs (ROBDDs) of Boolean functions
implemented by a combinational circuit can be obtained
from the structural description of the circuit as follows [16].
First, the BDDs of all input variables of the circuit are
constructed. Then, by levels, from the circuit inputs to the
outputs, the BDDs of all intermediate subfunctions are
constructed. When constructing the BDD of a circuit
element, the local Boolean function implemented by that
element is applied to the BDDs at inputs of the element.
BDDs of elements, the outputs of which are outputs of the
circuit, are Boolean functions implemented by the circuit.

Similarly, DNFs (ODNFs) of Boolean functions
implemented by a combinational circuit can be obtained
from the structural description of the circuit. When
constructing DNFs, in addition to obtaining DNFs of
functions implemented at outputs of circuit elements, it is
necessary to obtain DNFs of inversions of these functions.
When constructing the DNF of a circuit element, DNFs of
the local Boolean function implemented by this element and
DNF of its inversion are obtained, and then DNFs of
functions implemented at the inputs of the element and their
inversions are substituted in them.

BDDs (ROBDDs) and DNFs (ODNFs) of functions
implemented by a circuit can also be obtained from the
structural description of the circuit by considering elements
in such an order that all predecessors of an element are
considered before the element [14] (it is not necessary to
consider elements exactly by levels). Let’s order the circuit

elements in a sequence
1ke ,

2ke , …,
tke so that all

relations “ p ” between the elements are fulfilled in it, i.e. if

ji kk ee p , then
ike precedes

jke in the sequence. Then,

moving through the elements from the first to the last in the
obtained sequence and applying the local functions of the
elements, to the BDDs or DNFs of functions implemented at
inputs of elements, obtain BDDs or DNFs of functions
implemented at the output of each element and at outputs of
the circuit.

Above, two ways to obtain the functions)(1, Xv
iϕ and

)(0, Xv
iϕ , mi ,1= , in some representation were shown.

Next, consider Algorithm 1 for obtaining testability
functions of line v of the circuit S in the BDD (ROBDD) or
DNF (ODNF) for the two considered ways of obtaining

functions)(1, Xv
iϕ and)(0, Xv

iϕ . Some steps of the

algorithm are common for these two ways, while others are
different, in the latter case the two ways are separated by
sub-steps A) and B).

This algorithm is based on the method considered in [14]
and described above for obtaining BDDs and DNFs of
functions implemented by the circuit, as well as on the
algorithms from [15]; a more general algorithm than
previously is proposed in this paper.

Let Ov denote the subset of numbers of outputs that are
successors of line v. Note that to obtain all testability
functions, it is necessary to consider only a sub-circuit of the

2021 International Siberian Conference on Control and Communications (SIBCON)

circuit S, which implements outputs that are successors of

line v, since 0)(=XBv
i for vOi ∉ .

In the algorithm assume for brevity that v is the line
connected to the output pole of an element. The algorithm
can be easily extended to cases of other circuit lines, circuit
inputs and outputs.

In Algorithm 1 (case B) only BDDs and DNFs of
elements that are successors of line v in circuits Sv,1 and Sv,0
are obtained separately for the stuck-at-1 and stuck-at-0
faults.

Algorithm 1. Obtaining testability functions: Сv,1, Сv,0,

v
iB , Bv, Dv,1, Dv,0, and

v
B in BDD or DNF.

1) Denote by Sv the sub-circuit of the circuit S,
consisting of elements, connections between them and
primary inputs and outputs connected with them, which are
predecessors of outputs of the set Ov.

2) Obtain the BDD or DNF of the input variables of
the circuit Sv.

3) Obtain the functions (in BDD or DNF),
implemented at the outputs of elements of the circuit Sv.

Each element is considered after all its predecessors. The
BDD or DNF of the function implemented at the output of
an element is obtained by applying the local function of that
element to the BDDs or DNFs of the functions implemented
at inputs of the element. If the element is not a successor of
v, obtain (in the BDD or DNF) a function implemented at its
output. For elements that are successors of v, obtain
functions as follows.

A) Obtain functions (in BDD or DNF), implemented at
outputs of elements that are successors of line v. In this case,
if one of the inputs of the element in the circuit S is
connected to line v, then associate this input with the BDD
or DNF of the input variable v.

B) For each element that is a successor of v, obtain two
functions (in BDD or DNF): one for the value 1, the second
for the value 0 on line v. Before obtaining the function at the
output of an element, simplify the local function of the
element, if possible, by substituting into it the corresponding
constants from the inputs.

When constructing the DNF, in addition to obtaining
DNFs of functions implemented at outputs of elements, also
obtain DNFs of inversions of these functions.

4)

A) At the outputs of circuit elements, which are circuit

outputs, functions),(vXv
iϕ in BDD or DNF are obtained

for outputs from the set Ov. Exclude from consideration
functions that do not depend on the variable v, since for

them 0)(=XBv
i . For each of the remaining functions of the

set Ov, obtain two functions (in BDD or DNF):

)1,()(1, XX v
i

v
i ϕ=ϕ and)0,()(0, XX v

i
v
i ϕ=ϕ .

B) At the output of each circuit element, which is the
circuit output, two functions are obtained (in BDD or DNF),

which represent functions)(1, Xv
iϕ and)(0, Xv

iϕ , i ∈ Ov.

5) Perform XOR of the obtained functions)(1, Xv
iϕ

and)(0, Xv
iϕ according to (1).

6) Perform the disjunction of functions obtained as a
result of XOR at step 5, according to (2); if the i-th output
does not belong to the set Ov, then we skip it, since

0)(=XBv
i . As a result, obtain the observability function Bv

of line v of the circuit in BDD or DNF.

7) Obtain fault detection functions Dv,0 and Dv,1 for
line v of the circuit in BDD or DNF according to (4). For
this, perform the conjunction of Bv with the 1-controllability
function Cv,1 and the 0-controllability function Cv,0,
respectively. Cv,1 is implemented on line v and is obtained at
step 3 of this algorithm. BDD Cv,0 is obtained from BDD
Cv,1 by inverting values of terminal vertices.

If for line v it is necessary to obtain only the

observability functions and (or) function
v

B , step 1 of
Algorithm 1 is replaced by the following.

1) Denote by Sv,B the sub-circuit of the circuit S, in
which the variable v is the input variable associated with
line v of the circuit S (Fig. 3(a)). The inputs of elements
connected to line v in the circuit S are connected to the input
v in the circuit Sv,B. Sv,B consists of elements of the circuit S,
connections between them and primary inputs and outputs
connected with them, which are successors of input v or
predecessors of these successors.

Next, steps 2 – 6 of the Algorithm 1 are performed for
the circuit Sv,B.

IV. CONSTRUCTING CNF FOR OBTAINING TESTABILITY

FUNCTIONS USING SAT SOLVERS

The proposed Algorithm 1 for obtaining testability
functions in BDD or DNF can also be used with the
necessary changes to construct the CNF for obtaining
testability functions using a SAT solver. In this section
methods for constructing CNFs and obtaining testability
functions using a SAT solver are proposed.

It is known that the CNF for obtaining functions
implemented by a combinational circuit using a SAT solver
can be constructed as follows [17]: its own variable vi is
assigned to the output of each element ei; then the CNF of
the function vi ~ fi is constructed, where fi is the local
function of the element ei; CNFs obtained for the elements

are united by the conjunction (∧) operation. Elements of the
circuit can be considered in any order.

Thus, in order to obtain testability functions of a
combinational circuit line, construct the CNF using an
algorithm similar to Algorithm 1 described above, but
instead of obtaining functions implemented at the outputs of
elements by the superposition of functions at inputs of
elements, we obtain CNFs of elements of the circuit under
consideration and perform their conjunction. For some
formula A = F, we obtain the CNF for the function A ~ F.
CNFs for formulas are also united by the conjunction with
the CNF under construction. For each element ei that is a
successor of line v, CNFs for two functions are constructed:

2021 International Siberian Conference on Control and Communications (SIBCON)

one is vi,1 ~ fi for the value 1 on line v, the other is vi,0 ~ fi for
the value 0 on line v.

Note that in this method, we used both the circuit and
formulas to construct the CNF for obtaining testability
functions using a SAT solver.

The algorithm for constructing the CNF Pv,B,1 for
obtaining only the observability function is presented in
detail in [15].

To construct the CNF Pv for obtaining all testability
functions of line v, steps 1 – 6 of Algorithm 1 are performed
with changes described above. Step 7 is not performed and
the variable Bv is not assigned the value 1. The CNF Pv is
constructed using the circuit Sv described at step 1 of the
Algorithm 1 and formulas (1) and (2).

Note that the variable Bv is assigned the value 1, if it is

not necessary to obtain the on-set of the function
v

B .

Vectors from on-sets of fault detection functions are
obtained from the satisfying assignments obtained for the
CNF Pv by a SAT solver in a way similar to that described
above for the method using binary simulation. However,
here, by the satisfying assignment, we also determine
whether the input vector belongs to the on-sets of each of
testability functions of line v, based on the values of
variables v and Bv of the satisfying assignment.

Let α|X denotes the projection of vector α on the set of
input variables X.

 Consider a satisfying assignment α. Denote by Xv input

variables of the circuit Sv. Then the belonging of vX
|α to

on-sets of different testability functions is determined as
follows:

1) if α|v = 1, then vX
|α ∈ on(Cv,1);

2) if α|v = 0, then vX
|α ∈ on(Cv,0);

3) if 1| =α v
iB

, i ∈ Ov, then vX
|α ∈ on(v

iB);

4) if 0| =α v
iB

, i ∈ Ov, then vX
|α ∈ on(v

iB);

5) if 1| =α vB
, then vX

|α ∈ on(Bv);

6) if 0| =α vB
, then vX

|α ∈ on(
v

B);

7) if 1| =α vB
 and α|v = 1, then vX

|α ∈ on(Dv,0);

8) if 1| =α vB
 and α|v = 0, then vX

|α ∈ on(Dv,1).

Note that if the set Xv ⊂ X, where X is the set of input
variables of the circuit S, then variables X \ Xv of the
obtained on-sets of testability functions are set to ‘-’ and
cubes from on-sets of corresponding functions are obtained.

 Values on predecessors as well as on successors of line
v for test vectors from on(Dv,1) and on(Dv,0) are obtained
from satisfying assignments in a way similar to that
described above for the fault detection functions
construction method using binary simulation.

Example

Consider a circuit Sv with three input variables
Xv = {x1, x2, x3}. For simplicity, suppose X = Xv.
{w1, w2, …, wk} are lines that are predecessors of v. Let a

SAT solver be used to obtain satisfying assignments, and
three of the obtained satisfying assignments are as follows.

 x1 x2 x3 … w1 w2 … wk v … Bv

α1: 0 1 0 … 1 1 … 0 1… 0

α2: 1 0 0 … 1 0 … 1 1… 1

α3: 1 0 1 … 0 0 … 1 0… 1

Consider the input vector vX
|1α = (010).

(010) ∈ on(Cv,1) since α1|v = 1; (010) ∈ on(
v

B) because

0|1 =α vB
. Since (010) ∈ on(

v
B), (010) is not a test vector.

The input vector vX
|2α = (100) ∈ on(Cv,1) since α2|v = 1

and (100) ∈ on(Bv) since 1|2 =α vB
, consequently (100) is a

test vector for the stuck-at-0 fault. On the test vector (100)
for the stuck-at-0 fault, internal variables of the circuit w1,

w2, .. wk take values
kwww ...2 21

|α = (10…1).

The input vectors vX
|3α = (101) ∈ on(Cv,0) since

α3|v = 0 and (101) ∈ on(Bv) since 1|3 =α vB
, consequently

(101) is a test vector for the stuck-at-1 fault. On the test
vector (101) for the stuck-at-1 fault, lines of the circuit w1,

w2, .. wk take values
kwww ...3 21

|α = (00…1).

In the same way, values on successors of v, as well as on
any lines of the circuit, can be obtained from satisfying
assignments.

From all satisfying assignments obtained for CNF using
a SAT solver, on-sets of all testability functions can be
obtained.

The proposed method makes it possible to obtain using a
SAT solver all testability functions using only one CNF, the
size of which is comparable to the size of the CNF of the
circuit S. In this paper, the proposed method is considered in
general. We plan to consider it in detail in future work.

Note that on-sets of testability functions can be obtained
in a similar way using only binary simulation of the circuit
Sv. For this, during the binary simulation, obtain two values
on successors of line v: one for the value 1, the second for
the value 0 on line v. Then, the obtained values are

substituted into (1) and (2). Thus, we obtain a vector α of
values on all lines of the circuit and values of observability
functions. On-sets of testability functions are obtained in the
similar way as for satisfying assignments for CNF Pv.

V. CONSTRUCTING ALL TESTABILITY FUNCTIONS OF A

COMBINATIONAL CIRCUIT

Further, consider an algorithm for constructing
testability functions for each line of the circuit S in BDD
(ROBDD) or DNF (ODNF).

Algorithm 2. Constructing testability functions for all
lines of a circuit in BDD or DNF.

1. Obtain functions (in BDD or DNF), implemented at
the output of each element of a fault-free circuit S, in the
way described above.

2021 International Siberian Conference on Control and Communications (SIBCON)

2. Construct testability functions for each line vi as

follows. For each line vi, obtain BDD or DNF only for
successors of line vi (their obtaining was considered at step 3
of Algorithm 1); for all the rest lines use BDDs or DNFs
obtained for the fault-free circuit. Then perform operations
according to (1) – (4) and thus construct testability functions
of line vi.

Constructing BDDs or DNFs only for successors of each
line can significantly reduce the computational cost when
constructing testability functions for all lines of a circuit.

If only a subset of circuit lines is considered and it is
necessary to obtain testability functions for this subset, step
1 in Algorithm 2 is replaced by the following one.

1) Consider a circuit consisting of elements of the
circuit S, connections between them and primary inputs and
outputs connected to them, which are predecessors of
outputs that are successors of at least one of the lines under
consideration. Obtain functions (in BDD or DNF),
implemented at the output of each element of this circuit, as
described above.

Then, for the obtained circuit, step 2 of Algorithm 2 is
performed, where lines vi from the given subset are
considered.

Similarly, CNFs can be constructed to obtain testability
functions using a SAT solver for all or part of lines of a
circuit. First, CNFs are constructed for elements of a fault-

free circuit S and functions)(~ 0,1, ii
v
i vvB ⊕ , mi ,1= , and

v
i

m

i

v BB ∨
=1

~ in the way described above; here vi are

variables corresponding to outputs of elements connected to
outputs of the circuit. Then, for each line for which
testability functions are constructed, these CNFs are used
for elements that are not successors of line v, and for
successors of line v, these CNFs are duplicated and adjusted
according to the above. CNFs for functions

)(~ 0,1, ii
v
i vvB ⊕ , vOi ∈ , and v

i
Oi

v BB
v

∨
∈

~ are united by the

conjunction with the CNF under construction.

VI. CONCLUSION

Efficient methods and algorithms for constructing
testability functions and the complement of the observability
function of a combinational circuit line based on BDD and
DNF are proposed. Efficient methods for constructing CNF
and obtaining testability functions using a SAT solver are
also proposed. They are a detailing and development of
previously proposed methods. Methods for constructing
testability functions for all and for a subset of lines of a

circuit are also proposed, which significantly reduces
computational costs.

REFERENCES

[1] P. Bardell, W. McAnney, and J. Savir, Buid-In Test for VLSI:
Pseudorandom Techniques. John Wiley & Sons, 1987.

[2] F. F. Sellers, M. Y. Hsiao, and L. W. Bearnson, “Analyzing errors
with the boolean difference”, IEEE Trans. on Computers, vol. C-17,
no. 7, pp. 676−683, July 1968.

[3] O. Golubeva, “Detection of Hard-to-Detect Stuck-at Faults and
Generation of their Tests Based on Testability Functions”, 2018 IEEE
Intern. Conf. on Automation, Quality and Testing, Robotics (AQTR),
May, 2018.

[4] M. Priyadharshini and P. Saravanan, “An Efficient Hardware Trojan
Detection Approach adopting Testability based Features”, in Proc. of
the 2020 IEEE International Test Conference India (ITC India), July
2020.

[5] A. Mishchenko and R.K.Brayton, “SAT-Based Complete Don’t-Care
Computation for Network Optimization”, in Proc. of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE’05), March 2005, pp. 412−417.

[6] Yu. Matsunaga and M. Fujita, “Multi-Level Logic Optimization
Using Binary Decision Diagrams”, IEEE International conference on
computer-aided design (ICCAD-89), 1989, pp. 556−559.

[7] O. Golubeva, “Construction of Permissible Functions and their
Application for Fault Tolerance”, 2019 IEEE International Siberian
Conference on Control and Communications (SIBCON), April 2019.
5 pp.

[8] R. Krieger, B. Becker, and C. Okmen, “OBDD-based Optimization of
Input Probabilities for Weighted Random Pattern Generation”, Proc.
Fault Tolerant Computing Conference, 1995, pp. 120–129.

[9] M. Venkatasubramanian and V.D. Agrawal, “A New Test Vector
Search Algorithm for a Single Stuck-at Fault using Probabilistic
Correlation”, in Proc. of the 2014 IEEE 23rd North Atlantic Test
Workshop (NATW), pp. 57−60, August 2014.

[10] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing
for Digital, Memory and Mixed-Signal VLSI Circuits. Kluwer
Academic Publishers, 2000. P. 690.

[11] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems
Testing and Testable Design. New York: Computer Science Press,
1990.

[12] P.K. Lala, “An Introduction to Logic Circuit Testing”, Synthesis
Lectures on Digital Circuits and Systems 3, no. 1, pp. 1-100, 2008.

[13] R.E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation”, IEEE Trans. on Computers, vol. C-35, no. 8, pp. 677–
691, 1986.

[14] O. Golubeva and D. Ruday, “Construction of Controllability,
Observability and Stuck-at Fault Detection Functions”, in Proc. of V
Scientific Practical Conf. “Contemporary Problems of Physical and
Mathematical Sciences”, September 2019, pp. 281–284.

[15] O. Golubeva, “Algorithms for Obtaining Testability Functions of an
Element Pole of a Combinational Circuit”, in Proc. of VI Scientific
Practical Conf. “Contemporary Problems of Physical and
Mathematical Sciences”, December 2020. (In Russian)

[16] Karpov Yu.G. MODEL CHECKING. Verification of Parallel and
Distributed Systems. St. Petersburg, BHV-Petersburg, 2010. 551 p.
(In Russian)

[17] A.G. Dyakov, Satisfiability problem (modern solution algorithms),
Moscow, 2006. 52 p. (In Russian)

