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Abstract — Finite State Machine (FSM) based state 

identification problem is widely used for analysis of discrete 

event systems. A homing sequence (HS) allows to determine the 

current state of an FSM under investigation. An HS is known to 

always exist and has polynomial length with respect to the 

number of states for a non-initialized reduced complete 

deterministic FSM where for each input sequence there is 

exactly one output sequence and any state can be an initial state. 

The HS problem becomes more complex if partial, non-

deterministic or weakly-initialized machines are considered; for 

such FSMs an HS not always exists and can be much longer 

when existing. In particular, it has been proven that for a 

complete weakly-initialized non-deterministic FSM, length of a 

shortest adaptive HS (AHS) can be exponential with respect to 

the number of FSM states but HS length was not evaluated. In 

this paper, we consider the HS problem for partial observable 

possibly non-deterministic FSMs. In particular, we suggest a 

criterion for the existence of an AHS for a partial observable 

FSM and estimate the length of a shortest AHS. 

Keywords — Weakly-initialized Finite State Machine (FSM), 

Partial FSM, adaptive homing sequence 

I. INTRODUCTION

Finite State Machine (FSM) based test derivation 
methods [1-3] are actively applied in analysis of software and 
hardware components of digital systems. Such test suites 
have guaranteed fault coverage but often have exponential 
length with respect to the size / number of states of a system 
under test. Length of a test suite can be reduced using state 
identification sequences of the specification FSM [4] while 
preserving fault coverage. Such identification sequences as 
distinguishing (DS), homing (HS) and synchronizing (SS) 
sequences allow to determine an initial (DS) or a current state 
(HS and SS) of a system under test. In particular an HS takes 
the system of interest into the known state which can be 
determined based on observing responses to a homing 
sequence. If an FSM is non-initialized reduced complete and 
deterministic then length of a shortest preset HS is 
polynomial with respect to the number of states of the 
machine [5]. However, for partial or non-deterministic FSMs 
an HS may not exist or can have exponential length with 
respect to the number of states [6]. In this case, an adaptive 
HS (AHS) can be considered, i.e., an HS where the next input 
of the sequence depends on the previous outputs. For non-
deterministic machines adaptive homing sequences exist 
more often and are usually shorter than the preset. Criteria of 
the AHS existence for different kinds of complete FSMs have 
been established and there exist methods for AHS derivation 
[6].  

Due to the fact that the system specification can be 
incomplete or inconsistent, the behavior of a corresponding 
FSM can be only partially specified at some states, i.e., an 
FSM under investigation can be partial. Therefore, it is 

important to study the HS problem for partial FSMs. It has 
been proven that this problem is PSPACE-hard even for 
deterministic FSMs [7]. However, the precise lower bound on 
length of a shortest AHS for partial FSMs is not established 
yet. Some lower bounds on length of shortest synchronizing 
sequences for partial machines are established in [8] but these 
bounds are not precise.  

In this paper, we suggest a criterion for the AHS existence 
for partial observable weakly-initialized FSMs and estimate 
length of a shortest AHS for partial observable weakly-
initialized FSMs. Given a partial FSM, a proposed criterion 
allows to construct an HS using the known methods for 
complete FSMs. We also prove that length of a shortest AHS 
for a partial observable weakly-initialized FSM with n states 

can reach Cn

⌊n

2
⌋
and show that this lower bound is not precise 

and should be increased. 

The rest of the paper is structured as follows. Definitions 
and notations are presented in Section II. Section III presents 
the criterion of the AHS existence for a partial observable 
weakly-initialized possibly non-deterministic FSM. In 
Section IV, we determine a class of partial observable 
weakly-initialized FSMs such that length of a shortest AHS 

for an FSM with n states reaches  Cn

⌊n

2
⌋
, and Section V 

concludes the paper. 

II. PRELIMINARIES

Definitions and notations of this section are mainly taken 
from [9, 10, 11]. 

A. Finite State Machines

The main notion of this paper is a Finite state machine
(FSM), that is a tuple ℳ = (S, I, O, hM, Sin) where S is a finite
non-empty set of states with the set Sin of initial states, I (O) 
is input (output) alphabet and hM ⊆ S × I × O × S is a transition 
relation. We say that ℳ is non-initialized if Sin = S; if |Sin| =
1 then the FSM is an initialized machine, otherwise ℳ  is
weakly-initialized FSM. We say that ℳ is non-deterministic

if for some pair (s, i) ∈ S × I, there exist at least two pairs (o, 

s′) ∈ O × S such that (s, i, o, s′) ∈ hM; otherwise, the FSM is 
deterministic. FSM ℳ is complete if the transition relation is

defined for each pair (s, i) ∈ S × I; otherwise, the FSM is 

partial. If for every two transitions (s, i, o, s1), (s, i, o, s2) ∈ 
hM it holds that s1 = s2 then FSM ℳ  is observable. In the
following, we consider partial observable possibly non-
deterministic FSMs if the contrary is not directly stated. 

In Fig.1, FSM ℳ� has three initial states, Sin = {3, 4, 5}.
FSM ℳ� has the set of states S = {1, 2, 3, 4, 5}, the input set
I = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}, the output set O = {0, 
1}. Given state 3 and input x1, if x1 is applied to the FSM ℳ�
then machine performs transition (3, x1, 0, 4), i.e., produces 
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output 0 and moves to state 4. Due to the fact that there are 
two transitions at state 3 with input x10, namely, (3, x10, 0, 1) 
and (3, x10, 1, 1), FSM ℳ� is non-deterministic. The machine 
is partial, since, for example, at state 1 of the FSM, transitions 
are not defined for inputs x7, x8, x9, x10. 

FSMs are used for transforming sequences of input actions 
into those of output actions. The behavior of an observable 
FSM ℳ = (S, I, O, hM, Sin) over a sequence of actions of the 
set I is defined using the notion of a trace. Formally, given 
state s1, an input word α = i1i2… in and an output word γ = 

o1o2… on, a trace α/γ at state s1 is the sequence of input/output 

pairs α/γ = i1/o1 … in/on if for each j ∈ {1, …, n} there exists 

a transition (sj, ij, oj, sj+1) ∈ hM of FSM ℳ. 

The α/γ-successor of state � is a state where FSM moves 
after applying α and observing γ (written: succα/γ(s)). If trace 

α/γ is not defined at state s then we say that succα/γ(s) is empty 
or does not exist. 

Given a non-empty subset of states Q ⊆ S, the notion of 
the successor is inductively defined. For the input/output pair 
i/o, if a transition under input i is defined at every state of the 
subset Q, then the succi/o(Q) is the set of i/o-successors over 
all states of Q that can be the empty set and in the latter case, 
we also say that i/o successor of Q does not exist. The i/o-
successor of Q is empty or does not exist if a transition under 
input i is not defined at some state of Q. Consider trace 
α/γ(i/o). If succα/γ(Q) does not exist then succα/γ(i/o)(Q) does not 

exist too. If succα/γ(Q) exists then succα/γ(i/o)(Q) = 

succi/o(succα/γ(Q)). In other words, succα/γ(i/o)(Q) exists if and 
only if a transition under input i is defined at each state of the 
set succα/γ(Q) and the set of i/o-successors over all states of 

succα/γ(Q) is not empty. By definition, if i is undefined at some 

state of succα/γ(Q) then succα/γ(i/o)(Q) does not exist. 

For example, consider FSM ℳ� in Fig.1. If α/γ = x1/0 x2/0 
then α/γ-successor of the set {1, 2, 3} is the set {1, 2, 5}, i.e. 

{1, 2, 5} = succα/γ({1, 2, 3}). However, for α/γ = x1/0 x1/0, the 

α/γ-successor of the pair {1, 4} is empty, since input x1 is not 
defined at state 4. 

 

Fig. 1. FSM ℳ5. 

B. Adaptive Homing Sequence 

Let α be an input sequence then we say that α is adaptive 
if the next input depends on the output responses to the 
previous inputs. For the representation of an adaptive 
sequence, a so-called test case is usually utilized. An 
observable FSM is single-input if at most one input is defined 
at every state. A state is a deadlock state if there are no 
defined inputs at this state. The FSM is output-complete if at 
each state, for every defined input, a transition is defined with 
every output. Given a possibly partial and non-deterministic 
FSM ℳ = (S, I, O, hM, Sin), an initialized connected single-
input output-complete observable FSM �  = (P, I, O, hP, p0) 
with an acyclic transition graph is a test case for ℳ if for 

each trace α/γ(i/o) of FSM � at the initial state, it holds that 

if the succα/γ(Sin) of ℳ  is not empty, then the input i is a 

defined input at each state of the succα/γ(Sin) in ℳ. In other 

words, given FSM ℳ and its test case �, for each trace α/γ 
which takes the test case � from the initial state to state with 
a defined input i and takes the ℳ from Sin to a non-empty 
subset of states, input i is defined at each state of the set 
succα/γ(Sin). Thus, represented by the above test case, an input 
of an adaptive input sequence is never applied at a state of ℳ 
where this input is undefined. Note that when ℳ is complete, 
the above condition always holds. We note that for partial 
FSMs the above condition is softer than the condition for the 
existence of a preset input sequence α with appropriate 
features, since in this case, α has to be a defined input 
sequence at every initial state. For an adaptive sequence, this 
is not required, as different inputs can be defined at the 
successors with different outputs. Correspondingly, we can 
expect that for partial FSMs, adaptive sequences with 
appropriate features exist more often than the preset. 

A test case � with the above features defines an adaptive 
sequence [9] for ℳ . We define the length of a test case 
(adaptive sequence) as the length of a longest trace of � from 
the initial state to a deadlock state. 

A test case � for an FSM ℳ is a homing test case (HTC) 

for ℳ, if for each trace α/γ of � from the initial state to a 
deadlock state, the α/γ-successor of Sin does not exist or is a 
singleton. An HTC represents an adaptive homing sequence 
(AHS). If all the singletons reached in FSM ℳ at deadlock 
states of the homing test case � are contained in a proper 

subset S′ of S, then an AHS is S′-AHS. 

As an example, consider an HTC in Fig. 2 for FSM ℳ� 
shown in Fig. 1 where {3, 4, 5} is the set of initial states. 
At the first step, the x10 is applied to FSM ℳ� in states 3, 4 
or 5. If ℳ� responds by the output 0, then due to the fact 
that (3, x10, 0, 1), (4, x10, 0, 1), (5, x10, 0, 1) ∈ hM, HTC 
moves to state 1 and we can conclude that Sin is set into 
state 1. At the same time, if ℳ� responds by 1 then HTC 
moves to state 1 or 2 depending on the initial state due to 
the fact that (3, x10, 1, 1), (4, x10, 1, 1), (5, x10, 1, 2) ∈ hM. 
Height of the HTC is seven. Due to the fact that all paths 
lead to a deadlock state {1}, the AHS shown in Fig. 2 is a 
{1}-AHS. 
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Fig. 2. A Homing Test Case (HTC) for ℳ� where Sin = {3, 4, 5}. 

III. CHECKING THE EXISTENCE AND DERIVATION OF AN 

ADAPTIVE HOMING SEQUENCE 

When deriving a distinguishing sequence for a partial 
machine, the researchers sometimes add a DON’T CARE 
state and all undefined transitions are directed to this state 
[12]. In this section, we use the same trick for deriving an AHS 
for a partial observable possibly non-deterministic FSM. We 
add to the set of states S an additional state N ∉ S and for each 
undefined transition at state s under input i, we add transitions 
to state N under i with all outputs. Such an augmented FSM is 
denoted as ℳN. By definition, if ℳ is observable then ℳN is 
a complete observable FSM. Formally, given ℳ = (S, I, O, hM, 

Sin), FSM ℳN  = (S ∪ {N}, I, O, hM ∪ h�N , Sin) where hℳN  
contains each transition (s, i, o, N), s ∈ S, i ∈ I, o ∈ O, where 
input i is not defined at state s, or s = N. 

Given a partial observable possibly non-deterministic 
FSM ℳ = (S, I, O, hM, Sin), the condition for the existence of 
AHS for FSM ℳ is stated in the following theorem. 

Theorem 1. Given a partial observable possibly non-
deterministic FSM ℳ, a test case 	
 is an HTC for ℳ if and 

only if the TC is an ′-HTC for ℳ� for some S′ ⊆ S. 

 If ℳN has an S′-HTC � then none of the traces of � 
passes the state N since ℳ at this state has only transitions to 

N with all input/output pairs i/o and N ∉ S′. Consider a trace  
α/γ(i/o) of FSM P at the initial state, such that succα/γ(Sin)of ℳ 
is not empty. Then the input i is a defined input at each state 

of the α/γ-successor of the set Sin of states of ℳ , since 
otherwise, state � will be reached in ℳ� by some trace of the 
test case �. 

⇐ Let now FSM ℳ have an HTC �. Consider again a 

trace α/γ(i/o) of FSM � at the initial state, such that succα/γ(Sin) 
of ℳ is not empty. By definition of a test case, the input i is a 

defined input at each state of succα/γ(Sin). 

Since � is HTC and N ∉ S, if succα/γ(Sin) of ℳ is empty 

(or a singleton) then succα/γ(Sin)of ℳN  is empty (or a 
singleton) too. Therefore, for each trace of � from the initial 

to a deadlock state, succα/γ(Sin) of ℳN  is empty or is a 
singleton of the set S. 

According to the above theorem, all the methods for 
deriving an S′-AHS for complete FSMs can be used for 
deriving adaptive homing sequences for partial FSMs.  If a 
partial FSM is non-initialized then it can be an iterative 
method that starts with a pair of initial states and then adds 
states one by one [6]. If the partial machine is weakly-
initialized then a method based on a homing FSM [10] can be 
applied.  

We briefly illustrate the latter method for an FSM ℳ�  
shown in Fig. 1. At the first step, we augment the machine 
with transitions to state N for each undefined transition and 

obtain the FSM ℳ�N a fragment of which is shown in Fig. 3. 

For example, in FSM ℳ�N, at state 5 input x1 is not defined; 
thus, transitions (5, x1, 0, N), (5, x1, 1, N) are added to FSM ℳ�N. Then, a so-called Homing FSM is derived [10] where 

after iterative deleting states with undefined inputs a S′-HTC 

can be obtained for ℳ�N which is an AHS for ℳ�  shown in 
Fig. 2. 

 

Fig. 3. A fragment of FSM ℳ5
N. 

IV. EVALUATING LENGTH OF A SHORTEST ADAPTIVE HOMING 

SEQUENCE FOR PARTIAL OBSERVABLE FSM 

In this section, we estimate length of a shortest adaptive 
homing sequence for weakly-initialized observable FSMs. 
Formally, suppose that ℳ(n) is a set of all weakly-initialized 
observable FSMs with n states; and ℳAHS(n) is a maximal 
subset of FSMs of ℳ (n) which have an adaptive homing 
sequence. We denote by �(M) length of a shortest AHS for 

FSM M ∈ ℳAHS(n); and �(n) = max
M�ℳAHS�n� (�(M)) is maximal 

length of a shortest AHS for weakly-initialized observable 
FSMs with n states which have an AHS (the Shannon 
function). In [8], the lower bound of �(n) is evaluated for a 
preset synchronizing sequence (SS) that is defined at each 
state of a partial automaton and takes the automaton from any 
initial state to one and the same state. However, the authors 
are not aware on any results on the lower bound of �(n) for 
adaptive homing sequences for weakly-initialized partial 
FSMs. In order to evaluate the lower bound of � (n) for 
adaptive homing sequences, we introduce a special class of 
partial weakly-initialized deterministic FSMs (called 
Cn

m −stepped FSMs) with n states and Cn
m inputs, 1 < m < n, 

such that each FSM has an AHS and length of a shortest AHS 
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is not less than Cn
m. As a corollary, we can conclude that for 

n > 3, �(n) ≥ 
n

⌊n

2
⌋
. 

Given a set S = {1, 2, … , n}, n > 1, consider the chain 
of all subsets of m items of S, m < n, written Comb(n, m), 
and assume that the subsets of the chain are represented in 
the lexicographic order{1, 2, … , m}, {1, 2, … , m +1}, …, 
{n – m +1, …, n}, i.e., the linear order is specified over  the 

set of all subsets of m items of S: {1, 2, … , m} ⊰ {1, 2, …, 

m +1} ⊰ … ⊰ {n – m +1, …, n} where {n – m +1, …, n}is 
a final or terminal subset of the chain Comb(n, m). Given a 

non-final subset {j1, j2, … , jm} such that {j1, j2, … , jm} ⊰ 

{j′1, j′2, … , j′m}and there is no subset {j′′1, j′′2, … , j′′m} 

such that {j1, j2, … , jm} ⊰ {j′′1, j′′2, … , j′′m} ⊰ {j′1, j′2, … 

, j′m}, we say that {j′1, j′2, … , j′m} = next({j1, j2, … , jm}). 

For example, Comb(4, 2) = {1, 2} ⊰ {1, 3} ⊰{1, 4}⊰{2, 

3}⊰{2, 4} ⊰ {3, 4} where {2,4} = next({2, 3}) and {3, 4} 
is the terminal (or final) subset of the chain. If n is even 

then �n

2
�  = n/2 while if n is odd, ⌊n

2
⌋ = (n + 1)/2. 

Consider integers n > 3, 1 < m < n, and construct an FSM ℳComb(n, m) = (S, I, O, ρM, Sin) such that 

• the set of states S = {1, 2, …, n}; 

• the set of inputs I = �i1, …, i
Cn

⌊n
2

⌋�; 

• the set of outputs O = {0, 1}; 
• the set of initial states Sin = {1, 2, …, m}; 

• The transition relation ρM is defined in a following 
way; each input i�j1, j2, …, jm����I  is defined only in 

states j1, j2, …, jm 

– If {j1, j2, …, jm} is not a terminal subset of 
Comb(n, m) and {j′1, j′2, … , j′m} = next({j1, j2, 
… , jm}), then transitions from the subset {j1, j2, 
… , jm}  are specified in such a way that under this 
input, FSM ℳComb(n, m)  is taken from the subset 

{j1, j2, … , jm} of states to the subset next({j1, j2, 
… , jm}) with the output 0; 

– For a terminal subset {n – m + 1, …, n} of the 

chain Comb(n, m), ρM has transitions (j, iCn
m, 1, 1), 

where j = n – m + 1, …, n. 

 

Fig. 4.  
��- stepped FSM. 

An example of an Cn
m −stepped FSM described above for 

n = 4 and m = 2 is shown in Fig. 4. By definition, the FSM is 
a partial deterministic FSM and has an � =  !, … ,  $%& . By 

direct inspection, one can assure that for an FSM in Fig. 4 
every homing sequence is a continuation of an HS = 
x1x2x3x4x5x6 and thus, the same holds for an adaptive HS for 
which a corresponding HTC is shown in Fig. 5. Cn

m −stepped 
FSMs give a hint to the following statement about the lower 
bound of a shortest AHS. 

Theorem 2. For every n > 3 and 1 < m < n, there exists a 
weakly-initialized partial observable FSM with n states such 
that length of a shortest AHS is equal to Cn

m. 

Sketch of proof. Given n > 3 and m < n, consider 
Cn

m −stepped FSM ℳ. In this FSM only the last input can 
home the terminal subset of the chain. Therefore, every preset 
homing sequence is the continuation of the sequence which 
leads to the terminal subset of states. According to the 
structure of Cn

m −stepped FSM, only single sequence HS = 

i1, …, i
Cn

⌊n
2

⌋
�1

 leads from the initial subset of states to the 

terminal subset of the chain and length of this sequence is Cn
m. 

As at each subset only one input is specified, the same 
estimate holds for an adaptive homing sequence and this fact 
proves the theorem statement.  

Corollary 1. Given an FSM ℳComb(n, m), ℳComb(n, m) has 

an AHS and length of a shortest AHS is equal to Cn
m. 

Corollary 2. For n > 3, �(n) ≥ Cn

⌊n

2
⌋
. 

 Indeed, the machine ℳComb(n, ⌊n

2
⌋)  can be derived, and 

according to Corollary 1, ℳComb(n, ⌊n

2
⌋) has an AHS and length 

of a shortest AHS is equal to Cn

⌊n

2
⌋
.  

As an example, in Fig. 3, a homing test case for an FMS ℳ4 with n = 4 states is shown, the height of the test case is 

equal to Cn

⌊n

2
⌋
= 6. 

In fact, length estimation for the chain Comb is known 
[13]:  

Cn

n

2  � 4n

2/ '� (n

2
)*1/2

= (1/((�/2)1/2))2+ 
  and this is in 

(�
2
)1/2

� 1.25*n1/2 times less than 2n–1. 

 

Fig. 5. HTC for C��- stepped FSM. 
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The above statements give a lower bound of a shortest 
adaptive homing sequence for weakly-initialized observable 
partial FSMs. However, the lower bound is not precise. In 
particular, consider FSM ℳ5 with n = 5 states with the set {1, 
2, 3} of initial states shown in Fig. 2. Due to the fact that there 
exists only one input which is defined in three states, each 

homing test case for ℳ5
nd contains a trace γ shown in Fig. 3. 

Trace γ leads from {1, 2, 3} to {3, 4, 5} and the length of γ is 

C5
3 = 10. Now to home the subset {3, 4, 5}, it is needed to 

apply an AHS with length seven. Then length of a shortest 

AHS becomes 10 + 7 > C5
3. The latter illustrates that Cn

⌊n

2
⌋
 is 

not the precise lower bound for �(n). 

V. CONCLUSION 

In this paper, we have established a criterion for the AHS 
existence for partial weakly-initialized observable possibly 
non-deterministic FSMs. The criterion is based on the special 
augmentation of the original partial FSM, and using methods 
for deriving an AHS for complete FSMs. Then we have 
introduced a class of FSMs with n states, n > 3, for which 
length of a shortest adaptive homing sequence is not less than 

Cn

⌊n

2
⌋
. Moreover, we have shown that Cn

⌊n

2
⌋
 is not a precise lower 

bound for partial observable weakly-initialized FSMs, i.e., this 
estimate has to be improved. 
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