МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ИНЖЕНЕРНАЯ ШКОЛА ПРИРОДНЫХ РЕСУРСОВ ИССЛЕДОВАТЕЛЬСКАЯ ШКОЛА ХИМИЧЕСКИХ И БИОМЕДИЦИНСКИХ ТЕХНОЛОГИЙ

ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ В XXI ВЕКЕ

Том 1

Материалы

XXII Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л.П. Кулёва и Н.М. Кижнера, посвященной 125-летию со дня основания Томского политехнического университета

17-20 мая 2021 г.

ник, расположенный над катодом. В верхнем перекрытии электролизера располагают канал для удаления хлора и трубы, обеспечивающие питания электролизера расплавом LiCl и отбора жидкого металла.

В силу определенных причин данный вид электролизера до сих пор существует в виде лабораторного образца. Основной проблемой является сбор всплывающего лития на поверхности электролита и его отделения от самого расплава в автоматическом режиме. Нами предприняты

попытки для отработки технологических режимов с целью последующего внедрения данного способа получения на производстве. На основе имеющейся информации изготовлен лабораторный электролизер на 3 литра и составлен план экспериментов для получения опытных партий металлического лития высокой чистоты в контролируемой атмосфере. При этом основной упор в экспериментах сделан на технику отбора металла.

Список литературы

- 1. Эйдензон М.А. Металлургия магния и других легких металлов. М.: Металлургия, 1964.
- 2. Н.П. Коцупало, А.Д. Рябцев. Химия и технология получения соединений лития из литиевого гидроминерального сырья. — Новосибирск: Академическое изд-во «ГЕО», 2008.
- 3. Москвитин В.И., Николаев И.В., Фомин Б.А. Металлургия лёгких металлов. Учебник для вузов. М.: Интермет Инжиниринг, 2005. 416 с., ил.

СРАВНЕНИЕ СВОЙСТВ МЕДЬ- И ЦЕРИЙ-МОДИФИЦИРОВАННОГО ГИДРОКСИАПАТИТА

А.А. Шнайдмиллер

Научный руководитель – к.х.н., доцент кафедры неорганической химии Н.М. Коротченко Национальный исследовательский Томский государственный университет (НИ ТГУ)

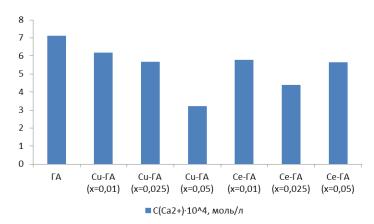
Национальный исследовательский Томский государственный университет (НИ ТГ) 634050, Россия, Томская обл., Томск, пр. Ленина, 36, shnaidmiller97@gmail.com

Гидроксиапатит (ГА) является биосовместимым и биоактивным материалом. Из-за своего структурного сходства с костным минералом гидроксиапатит широко исследован как материал костного имплантата, используется в медицине, включая стоматологию и ортопедию [1, 2]. Для целевого изменения таких свойств, как антибактериальная активность, механическая прочность, биорезорбируемость, биосовместимость и остеоиндуктивность проводят катионное замещение в структуре гидроксиапатита. Установлено, что антибактериальная активность соединений гидроксиапатита, в разной степени замещенных ионами серебра, меди, цинка и церия, выше, чем у незамещенного гидроксиапатита [3].

Образцы медь- и церий-замещенного ГА (СиГА и СеГА соответственно) были получены осаждением из водных растворов с последующей СВЧ-обработкой согласно методике [4]. В качестве источника ионов Cu^{2+} использовался тетрагидрат нитрата меди(II), ионов Ce^{3+} – гекса-

гидрат нитрата церия(III). Реакцию синтеза для СиГА можно описать следующим уравнением:

$$(10-x)Ca(NO_3)_2 + xCu(NO_3)_2 + +6(NH_4)_2HPO_4 + 8NH_4OH = = Ca_{(10-x)}Cu_x(PO_4)_6(OH)_2 + 20NH_4NO_3 + 6H_2O,$$


где x – количество (моль) ионов меди: 0,01; 0,025 и 0,05. Синтез СеГА происходил аналогично.

Для образцов СиГА и СеГА проведен рентгенофазовый анализ (РФА) на дифрактометре XRD-6000 с Си K_{α} -излучением; фазовый состав и структурные параметры образцов определены с использованием баз данных PDF 4+ и программы полнопрофильного анализа POWDER CELL 2.4.

Согласно результатам РФА образцы СиГА в основном двухфазные, в них обнаружены медь-содержащие фосфаты. Наличие этих фаз, а также уменьшение параметров элементарной ячейки фазы ГА в образцах СиГА №1 и №2 по сравнению с чистым ГА ($a=9,425\ \text{Å},\ c=6,887\ \text{Å}$), является доказательством того, что ионы меди входят в кристаллическую решетку ГА.

Образцы СеГА также двухфазные, однако для них не обнаружено соединений с церием. По уменьшению параметров решетки фаз ГА (для СеГА №1 и №3) и трикальцийфосфата (ТКФ, a=b=10,439 Å; c=37,375 Å) можно сделать вывод, что происходит встраивание ионов церия в структуру данных фаз.

Определение растворимости образцов СuГА и СеГА в физиологическом растворе показывает, что для первых она уменьшается с увеличением степени замещения, в то время как у вторых она меняется нелинейно.

Рис. 1. Результаты растворимости образцов СиГА и СеГА в 0,9% (масс.) растворе NaCl

To5 1	Dans our many	DOM SEMESTRA	CuEA is CaEA
таолипа т	 Результаты 	гРФА образцов	Cui A ii Cei A

,	,	1 ,		
№	X	Фаза	Содержание, %	Параметры решетки, Å
		C	υΓΑ	
1 0,01	0.01	Ca ₅ (PO ₄) ₃ OH	91,8	a=b=9,412; c=6,872
	0,01	Ca ₁₈ Cu ₃ (PO ₄) ₁₄	8,2	a=b=10,335; c=36,992
2 0	0.025	Ca ₅ (PO ₄) ₃ OH	95,7	a=b=9,406; c=6,867
	0,025	Ca ₁₉ Cu _{1,36} H _{2,24} (PO ₄) ₁₄	4,3	a=b=10,326; c=37,109
3 0,05		Ca ₅ (PO ₄) ₃ OH	92,7	a=b=9,429; c=6,883
	0,05	Ca ₁₉ Cu _{1,36} H _{2,24} (PO ₄) ₁₄	4,0	a=b=10,476; c=37,030
		Ca ₁₈ Cu ₃ (PO ₄) ₁₄	3,3	a=b=10,350; c=37,202
		C	'еГА	
1	0.01	Ca ₅ (PO ₄) ₃ OH	94,1	a=b=9,397; c=6,862
	0,01	$\operatorname{Ca_3(PO_4)_2}$	5,9	a=b=10,414; c=36,716
2 0,	0.025	Ca ₅ (PO ₄) ₃ OH	96,7	a=b=9,433; c=6,885
	0,025	Ca ₃ (PO ₄) ₂	3,3	a=b=10,359; c=37,159
3	0.05	Ca ₅ (PO ₄) ₃ OH	96,3	a=b=9,385; c=6,842
	0,05	$Ca_3(PO_4)_2$	3,7	a=b=10,280; c=36,950

Список литературы

- 1. Байтус Н.А. // Вестник ВГМУ, 2014. Т. 13. №3. С. 29–34.
- 2. Mucalo M. Hydroxyapatite (HAp) for Biomedical Applications. Woodhead Publishing, 2015. P. 269–287.
- 3. Kolmas J., Groszyk E., Kwiatkowska-Różycka D. // BioMed Research International, 2014. P. 1–15.
- Рассказова Л.А., Коротченко Н.М., Зеер Г.М. // Журн. прикладной химии, 2013. – Т. 86. – №5. – С. 744–748.