NPUKNAOHAA OANCKPETHAA MATEMATUKA

2022 BbluncnnTensHble MeToabl B AUCKPETHOW MaTeMaTUKe Ne 55
BbBIYMCJINTE/JIBHBIE METO/IbI
B IMCKPETHON MATEMATUKE

VK 512.772 DOI 10.17223/20710410/55/9

IMPLEMENTATION OF POINT-COUNTING ALGORITHMS
ON GENUS 2 HYPERELLIPTIC CURVES
BASED ON THE BIRTHDAY PARADOX!

N. Kolesnikov

Immanuel Kant Baltic Federal University, Kaliningrad, Russia

E-mail: NiKolesnikovl@kantiana.ru

Our main contribution is an efficient implementation of the Gaudry — Schost and
Galbraith — Ruprai point-counting algorithms on Jacobians of hyperelliptic curves.
Both of them are low memory variants of Matsuo — Chao — Tsujii (MCT) Baby-
Step Giant-Step-like algorithm. We present an optimal memory restriction (a time-
memory tradeoff) that minimizes the runtime of the algorithms. This tradeoff allows
us to get closer in practical computations to theoretical bounds of expected runtime at
2.45v/N and 2.38V/N for the Gaudry — Schost and Galbraith — Ruprai algorithms,
respectively. Here IV is the size of the 2-dimensional searching space, which is as
large as the Jacobian group order, divided by small modulus m, precomputed by
using other techniques. Our implementation profits from the multithreaded regime
and we provide some performance statistics of operation on different size inputs. This
is the first open-source parallel implementation of 2-dimensional Galbraith — Ruprai
algorithm.

Keywords: hyperelliptic curve, Jacobian, point-counting, birthday paradox.

PEAJIN3AIINA AJITOPUTMOB IIOJICUETA TOYEK

B AKOBNAHAX TUITEPSJIJIMIITUYECKNX KPUBbBIX PO/A 2,

OCHOBAHHBIX HA ITAPAJIOKCE JHEW POXKJIEHU I

H. C. Kojsiecaukos

Barmudickuti gedeparvrud yrusepcumem um. Ummanyuaa Kanma, 2. Kasurnunepad, Poccus

[Tpencrasnena scddexkTrBHAS MporpaMMHas peausanug aaropurma [ogpu — [Ilocta
u ero momgudukanun ['sabpaiita — Pympas ais moacdéra Todek B AKOOMAHAX THIIE-
PIUIANTHIECKUX KPUBBIX. DTU aJTOPUTMBI [IPEJICTABJISIOT CODOI BepCcUU ajirOpuTMa
Maityo — Yao — LymKus ¢ MaJIbIM UCIOJIB30BAHUEM MAMSATH U PEATUIYIOT CTPATETUIO
leapdonga — lenkca GOMBITUX U MAJIBIX IITArOB. BBIBOAMTCS ONTUMAJBHBIN pa3Mep
[MaMsITH, TO3BOJIAIONTINI MUHIMUI3UPOBATHL BpeMsi PAOOTHI YKa3aHHBIX AJITOPUTMOB U T10-
JIyIUTh Ha TPAKTUKE 0XKUJIAeMOe BpeMsi UX paboThl, OJIU3KOE K TEOPETUIECCKUM OIEH-
kaM 2,45V N u 2,38/ N s anropurmos Logpu — Iocra u I'saiGpaiita — Pynpast
COOTBETCTBEHHO. 3jiech N — pa3Mep JAByMEPHOI 00JIACTH MOWCKA, PABHBIN HMOPSIKY

!The publication was supported by the Russian Academic Excellence Project ‘5-100° 2016-2020.

Point-counting algorithms of genus 2 hyperelliptic curves based on the birthday paradox 121

sIKOOMAaHA KPUBOI, YMEHBIIIEHHOMY B 1M Pa3 C MOMOIIBIO Apyrux MeTonoB. [Ipenmarae-
Masl peau3alis aJTOPUTMOB HMEeT MHOTOIIOTOYHBIN pexkuM paborwl. [Ipencrapiena
CTATUCTUYIECKAS 3aBUCAMOCTDb BPEMEHU PAbOTHI OT pa3Mepa BXOIHBIX JaHHbIX. JlanHast
peanuzarus ajaropurMma ['aymbpaiita — Pynpas mjis pasmepHocTH 2 SABJISIETCS EPBOit
OIyOJIMKOBAHHOI MHOTOIOTOYHOM peasin3aiiueil 3Toro ajJropurMa ¢ OTKPBITBIM UCXO/I-
HBIM KOJIOM.

KioueBble CJI0Ba: 2unepaAsunmuieckas Kpueas, Axobuamn, nodcuém movex, napa-
dokc dneti pootcoerun.

1. Introduction

Jacobians of hyperelliptic curves can be regarded as groups of large order that is
difficult to compute. They have many applications in cryptography, such as DLP-based
cryptosystems, where the efficiency of order computing algorithms is crucial. The MCT
point-counting algorithm [1] is a natural attempt to adapt the general purpose BSGS
algorithm to Jacobians of genus 2 hyperelliptic curves. This algorithm turned out to be
unusable for cryptographic size instances due to its extremely high memory consumption.
P. Gaudry and E. Schost have proposed [2| a low-memory version of the MCT algorithm
and provided its experimental implementation. However, the memory limit in their
implementation must be set by the user, and the authors do not give its optimal values.

Our main contribution is an efficient multithreaded implementation of the Gaudry —
Schost point-counting algorithm with optimal memory settings that can be viewed as a time-
memory tradeoff. We also implement an improvement of the Gaudry — Schost algorithm,
proposed by S. Galbraith and R. Ruprai [3|, and test the performance of both algorithms.
This is the first open source implementation of the 2-dimensional Galbraith — Ruprai
algorithm.

The paper is organized as follows. In Section 3, we give a review of the most efficient
BSGS-like techniques proposed in [2, 3]. Both of them have heuristic complexity analyses
based on the birthday paradox. These algorithms use the strategy of pseudo-random
walks and store in RAM only a portion of points computed on “baby” and “giant” steps.
In Section 4, we describe an efficient data structure to store distinguished points and an
optimal storage size to reach the tradeoff between time and memory. Section 5 describes
our implementation of the Gaudry — Schost and Galbraith — Ruprai algorithms and shows
some statistics on their performance.

2. Preliminaries

We consider genus g = 2 hyperelliptic curves defined over a finite field F, with prime
q > 2. The curve is defined by the equation

29)
C:y* =2+ fir'
i=0

A set of all reduced divisors of a curve form a group Jac(C), which is called a Jacobian
of a curve. Its elements sometimes are regarded as “points”. The group law (point addition)
on Jacobian is defined by Cantor’s addition formulas. We normally write reduced divisors
in Mumford coordinates D = (u(x),v(x)), where u(z) and v(z) are polynomials, such that
degv(x) < degu(x) < g. For further details on these algebraic structures, we refer to [4].

We denote by x(T) the characteristic polynomial of the Frobenius endomorphism 7¢ on
Jac(C):

X(T) =T* — 5,T% + 5,7% — g5, T + ¢°.

122 N. Kolesnikov

3. Review of Birthday-paradox algorithms
3.1. Gaudry — Schost

Following P. Gaudry and E. Schost [5], before launching an exponential MCT point-
counting algorithm, one can calculate #.Jac(C) mod m, where m = ¢ (% and ¢; are
small primes. The cost of computing #Jac(C) mod ¢ takes O(log’(¢)) operations [5, p. 2]
in F,. In practice, we computed #Jac(C) modulo ¢ < 43, which took ~ 40 Gb of RAM.

After gathering some modular information about #Jac(C), we proceed to the
exponential Gaudry — Schost point-counting algorithm. The desired order of the Jacobian
can be computed by substituting 7' = 1 into Frobenius characteristic polynomial

#Jac(C)=x(1) =¢* +1—s1(q+ 1) + so. (1)

Thus, we have to find two values s; and s;. We write them in the form s; = §; + ms;,
1 = 1,2, assuming that we have 57,55 precomputed. This reduces our search space for a
tuple of unknowns (S7, S3) to the following bounds [2, p. 3|:
- 2 . _6
_£<51<£’ __q<32<_q. (2)
m m m m
Then we proceed as follows. We choose a random divisor D € Jac(C) and try to compute
its order. As the order ord(D) divides the group order #Jac(C), we have x(1)D = 0.
Combining this equation with (1) gives

(P +1-31(q+1)+5) D+ (—51(¢g+ 1) +8)m-D=0. (3)

We form the two sets of divisors: W (“Wild”) and T' (“Tame”), and enumerate elements in
these sets until we find a point belonging to both W and T' (a collision). A constant K’
contains known terms of (3) and a correction term to make the bounds (2) on s, 3
symmetric. We later subtract this correction term once we find a collision:

W ={K"-D+ (—01(¢+1)+09)m-D: (01,02) € R},
T={(-0o1(g+1)+09)m-D:(01,09) € R},
R = [Bl,mina Bl,max] X [B27min7 BQ,maX]v

q q 2 6
Bl,min = _ia BLmaX = \/__a B2,min = __qa BQ,maX = _q7
m m m m
B min + B max B min + B max

Two colliding points Dy = (01w, 0ow) and Dy = (017, 097) give us the unknown values
S1, S2 by the following equations derived from (3):

~ Bimin+Bimax .
Si:Ui,W_O'i,T‘i‘\\ ’ 5 : J, 1 =1,2.

The time complexity of the algorithm depends on the cardinality of the intersection
|W NT| which lies in the interval [0.25|R|..|R|] depending on the curve given. The expected
number of points to be constructed until we get a collision is /7 - |[IW NT|, that follows
from the Theorem 1 below. Thus, the expected number of points in the best, worst and
average |6] cases are 1.77|R|, 3.54|R| and 2.43|R| respectively.

Point-counting algorithms of genus 2 hyperelliptic curves based on the birthday paradox 123

Theorem 1 (Tame-Wild birthday paradox). Suppose that we have two urns both
containing M balls numbered from 1 to M. The first urn contains only white balls, the
second urn contains only red balls. We are choosing the ball uniformly at random in course
from the first and the second urn, save its number and color, and return the ball to the
urn. Then the expected number of selections until we get two colliding numbers of different

colors is
VM + O(1).

We denote by P(M, my, ms) the probability that after m; steps in urn 1 and my steps
in urn 2 no matches were found. K. Nishimura and M. Sibuya prove in [7] that if we are
restricted to my; = mg =m = O(V M), M — oo, this probability tends to

P(M, m, m) — exp <—mﬁ2 {1 +0 (\/LM)D ~ oxp (—%2) |

Let X be a random variable that represents the number of selections of any urn before
we get a collision. Then the cumulative distribution function is

Fx(m)=1-P[X >m|=1-P(M,m,m).
This fact is used to calculate the expectation of X that gives

E(X) = V7M/2.

Remark 1. One should note that if we fix the input parameters (F,,C, m) and run the
Gaudry — Schost point-counting algorithm several times, the best and the worst running
time estimates could not be compared with the values 1.77|R| and 3.54|R|. To estimate the
deviation on running time with the fixed input, we need to compute the variance Var(X)
of the random variable above. This deviation we will use in practical experiments:

E(X?) = S22 PIX =i] = 2. P[X > i~ 1] = 2% - P[X >] =

% =1 =1

= (1) PX >] - 2% PX >] =

= i}(% +1)PX >i] = /oo(zz' + 1) exp (—i*/M) di =

i—0

:/ 2x.exp(—x2/M)dx+/ exp(—m2/M)dm:M—|— ZM,

)+ 5

Var(X) = E(X?) — (E(X))* = M - (1 _ Z

Thus, the standard deviation for X is given by
/ Var(X) oV 1—m/4- VM =~ 046V M.
—00

Gaudry and Schost in [5] also present an approach of random walks and distinguished
points that significantly reduces the memory requirement of the algorithm. The idea is
to name a portion of points in the search space R as “distinguished” points. This is done
by selecting an appropriate hash function and looking at some bits of each hash value.

124 N. Kolesnikov

As before, we choose a random divisor D € Jac(C), calculate its hash value h(D). This
value determines the direction of a random walk. The next divisor we choose is D + Oy, (py,
where “(” is a short list of precomputed shifts that defines the behavior of a random
walk. We continue the walk unless a distinguished point is hit. As soon as this happens,
the distinguished point is saved to an appropriate W or T list. Although the points in
the constructed chain are not taken from the search space uniformly at random, the
complexity analysis, based on the Tame-Wild birthday paradox, heuristically remains valid.
However, an average runtime and memory requirements vary depending on the random walk
parameters. We discuss the optimal random walk set up in Section 4.

32. Galbraith — Ruprai

S. Galbraith and R. Ruprai proposed in [3] an improvement for the Gaudry — Schost
algorithm, that reduces the search space R in a tricky way, and makes the cardinality of
intersection |W N T| constant for all curve instances. As a result, the expected number of
points to be constructed in any of the cases: best, worst, or average is invariant and equals
to 2.38|R|. The notions of random walks, distinguished points, and its complexity analysis
remain the same. The search space and Tame-Wild sets are defined as follows: the Tame
searching rectangle is reduced in length and width by 2/3 times, while the Wild searching
rectangle is constructed as a union of 4 disjointed “corners” of R:

Ry = [2/3B1 min, 2/3B1 max) X [2/3B2.min, 2/3B2 max],

Rw = [B1min, B1,min + (B1,max — B1.min)/3] X [B2.max, B2.max — (B2,max — Ba,min)/3] U
U [B1,maxs B1max — (B1max — B1.min)/3] X [B2.max; B2.max — (B2max — Ba.min)/3] U
U [B1,min, Bimin + (B1,max — B1.min)/3] X [B2,min, B2,min + (B2,max — B2,min)/3] U

U [B1.maxs B1max — (Bimax — Bimin)/3] X [B2.min, B2.min + (B2.max — B2.min) /3],
W' ={K'-D+ (—01(¢g+1)+0o3)m-D: (01,02) € Ry},
T' ={(—-0o1(qg+1)+09)m-D: (01,09) € Ry}

Random walks on 7" and W' operate similarly to the Gaudry — Shost algorithm. The only
difference is that we choose a random divisor that initiates a chain in one of the corners
of Ry and do not jump to another corner. The number of distinguished points belonging
to any corner of Ry, is 1/4 of distinguished points belonging to 7. We also change the step
size of precomputed shifts “O” to prohibit overjumping the searching area, this problem is
the point of discussion in Section 4.

4. Time-memory tradeoff for Gaudry — Schost algorithm
First, we describe the aspects of our implementation. We will use the following notations:

— F is the expected number of distinguished points to be stored, i.e., the expected
memory requirement of the algorithm. Note that the actual memory size to store one
distinguished point is about 7logq + O(1) bits. The associated data structure contains
5 long integers of size ¢, representing a divisor in Mumford coordinates (ug, u1, uz, vo, v1),
2 long integers 01,09 € R, encoding a position of the point in a searching rectangle, a
hash value of a divisor, that is a 32-bit integer, and a Boolean value indicating Wild or
Tame walk;

— 0 is the probability for a random point D € {T,W} to be a distinguished point. It is
easy to see that the expected length of a chain of a random walk is U = 1/6. Following
Gaudry, we use a 32-bit hash function, that has a weak correlation with the arithmetic
properties of a point. We consider a point to be distinguished iff some bits in a hash

Point-counting algorithms of genus 2 hyperelliptic curves based on the birthday paradox 125

value are equal to zero. Thus, the probability of being distinguished can be customized
stepwise starting from 1/32, 1/16, 3/32, and so on.

We store all distinguished points in a single array. We do not sort this array directly
because the points themselves are rather “heavy” as noted above, and their relocation will
lead to suboptimal time. Instead of this, we store an additional vector of pointers. This
vector addresses the elements sorting them by hash value. That is why the hash value is
stored together with a point itself. As soon as a distinguished point is hit, we save it to the
end of the main array, that has O(1) time complexity. Then we find an appropriate position
for this point in a sorted list of pointers, which is done in O(log F) by binary search. Then
we insert a new pointer to the list, which also has time complexity O(1).

Proposition 1. The time complexity of our Gaudry — Schost implementation (in
average case for a random curve) is given by

1

T=oa+ 7 + E -log, E (operations in F,), (4)

where a = 2.43(1 + €)/|R| for Gaudry — Schost algorithm; o = 2.38(1 + €)+/|Rr| for its
Galbraith — Ruprai improvement.

Proof. The value a in (4) is an expected number of points in the search space to
be enumerated until we find a collision. Evaluation of « relies on the Tame-Wild birthday
paradox and can be found in |2, 6]. To start a new random walk, we choose a point uniformly
at random, that takes constant time. Each step in a random walk requires one group
operation in Jac(C), which can be done in time O(1) of operations in F, by applying
explicit formulas [8]. There are two kinds of “bad” points that could not be accounted
when applying the Tame-Wild birthday paradox:

1) points that give a cycle in a random walk. Once we get a loop, a random walk will never
hit a distinguished point and must be aborted. P.C. van Oorschot and M. J. Wiener
have shown [9] that if we restrict the maximum length of a chain to 20/6, then the
number of such “bad” points is at most 5 - 107%;

2) points that lie outside the search space R, Ry or Ry,. To reduce the number of such
overjumps, we follow Gaudry — Schost [2] and make the precomputed shifts “O” not
greater than

52 _ (BQ,max - BQ,min) 0 61 _ (Bl,max - Bl,min)\/é
10 ’ 9
for both directions. Thus, the expected length of a chain is one tenth of the search
space R in both ¢y and o, directions. “Bad” points of this type give a correction factor
(1 + €) to the Tame-Wild birthday paradox theorem, where €, following [3], is a small
factor between 0.02 and 0.04.

The term 1/6 in (4) takes into account the length of the last chain, because a collision
may occur at any intermediate point of a walk. However, the walk continues up to the
distinguished point. The last term E -log, E' is the time wasted on binary search in W or 7'
lists to find a collision. m

Proposition 2. The memory restriction that gives us a time-memory tradeoff for our

implementation is
o 2ccIn 2 |
log(2a1n 2)

where « is defined in Proposition 1.

126 N. Kolesnikov

Proof. Rewrite equation (4), assuming 1/6 is the average length of a chain and E is
the number of chains constructed:

T:T(E):a—i—%—i—E-long.

Find the minimum value of time function T'(E):

« 1
T(E) = —— +log, B + — = 0.
() E2+ OgQ +h’l2 0

The only critical point that is a point of local minimum for a function T'(F) is

VD

E=_—Y" — \/eW(D) x \/elogD-loglogD — :
W (D) log D

where D = 2aln2 and W is a Lambert W function. m

5. Implementation and tests
5.1. General description

We present an optimized implementation of Gaudry — Schost and Galbraith — Ruprai
point-counting algorithms. This is a fork from Gaudry’s NTLJac2 [10] package. This package
is implemented in C++ and extends the Number Theory Library (NTL) with special
tools for Jacobians of genus 2 hyperelliptic curves. It contains data structures to represent
divisors on a curve and its arithmetic. On top of Gaudry’s package, we added the efficient
data storage for the distinguished points as described in Section 4 and implemented an
improvement proposed by Galbraith and Ruprai. Moreover, we made our implementation
multithreaded.

5.2. Runs on different curves

First, we collected some statistics to test Gaudry — Schost time complexity and compare
it with those of Galbraith —Ruprai improvement. We fixed a field F, with ¢ = 2% 4 59,
randomly generated N = 300 curves and for each of them computed s;, s modulo m =
=3-5-7-11 = 1155. As noted in Remark 1, it is not correct to run an algorithm once
to evaluate its runtime. So for each curve, we did n = 30 runs and calculated an average
runtime and number of stored distinguished points. Remark 1 shows that for n = 30
experiments the standard deviation on the number of distinguished points reduces from

.92
0.92v M to %\/M ~ 0.17v/ M. Thus, the number of distinguished points constructed for
n

each curve deviates on average 0.17/2.54 =~ 6.7 % of the theoretical value. This deviation is
still quite significant but allows to select “the best” and “the worst” curve instances.

We did the same experiment for the Gaudry — Schost algorithm and its improvement.
All of the N = 300 curves are sorted by the quantity of distinguished points constructed
on average. The number of a curve tested is placed on the X-axis, whereas the quantity
of stored points (Fig. 1, a) or overall elapsed time (Fig. 1,b) is on Y-axis. The expected
quantity of distinguished points to be stored is F = 2282 for the above input, which agrees
with our statistics.

Point-counting algorithms of genus 2 hyperelliptic curves based on the birthday paradox 127

e Gaudry-Schost 3509 o Gaudry-Schost
a e Galbraith-Ruprai b e Galbraith-Ruprai

5000 4 300 4

4000 1 : 250 4
200 4 . . 4

3000 4

2000 4

Elapsed time, s,

1000 504

Stored distinguished points

T T T T T T T T T T T T
50 100 150 200 250 300 50 100 150 200 250 300

Number of curve tested -50 4 Number of curve tested

Fig. 1. Gaudry — Schost and Galbraith — Ruprai algorithms. Performance on different curves:
a — memory; b—time

53. Several runs on the same curve

The aim of running our software on a fixed curve is to test the time-memory tradeoff
bound, stated in Proposition 1. We selected N = 3 curves from the test above, that are close
to the best, worst, and average cases of the Gaudry — Schost algorithm. We modified the
parameter F to E/2, E/4,2E, 4F and E = 1000 as proposed by Gaudry. For each value, we
run the software n = 100 times. This guarantees the deviation of the experimental number
of selected points from the theoretical value by 3.6 % on average. According to proposition 2,
the time-memory tradeoff for our input data requires to store ' = 2282 points for Gaudry —
Schost algorithm and E = 1890 for its Galbriath — Ruprai improvement (Tables 1 and 2).

All performance tests described above have been executed on Xeon E-2146G 6C
3.50GHz, system RAM available is 16GB. The software is compiled with gcc 9.3.0 compilers
under Ubuntu 20.04 operating system.

Table 1
Gaudry — Schost performance on different memory restrictions
E =456 | E=1141 E = 2282 E =4564 | E=11410 | £ = 1000
(tradeoff)
o Dist. points 494 1037 1892 3828 7553 1086
S ~ | Time, s. 104.8 109.6 98.9 100.3 98.8 112.8
¢ _ | Dist. points 493 1195 1907 4183 8006 1207
S 2 | Time, s. 103.5 124.8 99.1 109.4 106.3 126.7
¢ _ | Dist. points 623 1180 2248 4646 10986 1326
(‘:ﬂ; & | Time, s. 131.9 123.5 117.2 1234 144.6 138.6
Table 2
Galbraith — Ruprai improvement on different memory restrictions
E = 1890
E=378 | E=945 (tradeoff) E =3780 | E = 9450

e Dist. points | 491 1121 1910 4572 20354

S ~ | Time, s. 102.8 117.3 100.3 120.7 136.9

¢ _ | Dist. points | 660 1239 2082 4237 19855

22 [Time, s. 138.0 129.7 109.6 108.8 1315

¢ _ | Dist. points | 635 1140 2217 4113 19233

;5 % | Time, s. 133.9 119.9 116.2 112.4 127.6

128

N. Kolesnikov

6. Conclusion

We presented efficient implementations of two BSGS-like point-counting algorithms

based on the birthday paradox. A time-memory tradeoff has been provided for both
algorithms. It allows us to minimize the runtime by allocating enough memory. We did not
test our implementation on cryptographic size input, as we were unable to precompute 57, 53
for sufficiently large moduli m. However, we believe our implementation might be useful for
computations with any size of Jacobians, in combination with other techniques. The source
code of our implementation can be found here: https://github.com/kn02262/Jac2pc.

10.

REFERENCES

Matsuo K., Chao J., and Tsujit S. An improved baby step giant step algorithm for point
counting of hyperelliptic curves over finite fields. LNCS, 2002, vol. 2369, pp. 461-474.
Gaudry P. and Schost E. A low-memory parallel version of Matsuo, Chao and Tsujii’s
algorithm. LNCS, 2004, vol. 3076, pp. 208—222.

Galbraith S. and Ruprai R. An improvement to the Gaudry — Schost algorithm for
multidimensional discrete logarithm problems. LNCS, 2009, vol. 5921, pp. 368-382.

Cohen H., Frey G., Avanzi R., et al. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. CRC Press, 2005.

Gaudry P. and Schost E. Genus 2 point counting over prime fields. J. Symbolic Comput.,
2012, vol. 47, iss. 4, pp. 368-400.

Ruprai R. S. Improvements to the Gaudry — Schost Algorithm for Multidimensional
Discrete Logarithm Problems and Applications. PhD Thesis, Department of Mathematics,
Royal Holloway University of London, 2010. https://www.math.auckland.ac.nz/"sgal018/
Ruprai-thesis.pdf.

Nishimura K. and Sibuya M. Probability to meet in the middle. J. Cryptology, 1990, no. 2,
pp. 13-22.

Hisil H. and Costello C. Jacobian coordinates on genus 2 curves. J. Cryptology, 2017, vol. 30,
iss. 2, pp. 572-600. https://doi.org/10.1007/s00145-016-9227-7.

Van QOorschot P. C. and Wiener M. J. Parallel collision search with cryptanalytic applications.
J. Cryptology, 2013, vol. 12, pp. 1-28.

Gaudry P. C++ NTLJac2 Library, 2003, http://www.lix.polytechnique.fr/Labo/
Pierrick.Gaudry/NTLJac2.

