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For a semigroup S (group G) we study relational equations and describe all semi-
groups S with equationally Noetherian direct powers. It follows that any group G has
equationally Noetherian direct powers if we consider G as an algebraic structure of a
certain relational language. Further we specify the results as follows: if a direct power
of a finite semigroup S is equationally Noetherian, then the minimal ideal Ker(S)
of S is a rectangular band of groups and Ker(S) coincides with the set of all reducible
elements.
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Introduction
Let A be an algebraic structure of a functional language L with a universe A. In other

words, there are certain functions and constants over A that correspond to symbols of L.
One can define a structure Pr(A) with the universe A of a pure relational language Lpred

as follows:

Rf (x1, . . . , xn, y) = {(x1, . . . , xn, y) : f(x1, . . . , xn) = y ∈ A};
Rc(x) = {x : x = c ∈ A},

where functional and constant symbols f, c belong to the language L. Namely, the relation
Rf ∈ Lpred (Rc ∈ Lpred) is the graph of a function f (respectively, constant c).

The Lpred-structure Pr(A) is called the predicatization of an L-structureA. In particular,
if A is a group of the language Lg = {·,−1 , 1}, then Pr(A) is an algebraic structure of the
language Lg−pred with the following relations:

M(x, y, z)⇔ xy = z; (1)
I(x, y)⇔ x = y−1; (2)
E(x)⇔ x = 1. (3)

1The author was supported by the RSF-grant 18-71-10028 (Theorem 1) and RSF-grant 19-11-00209
(Theorem 4).
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Notice that any equation over a group A may be rewritten in the language Lg−pred by
the introducing new variables. For example, the equation x−1y−1xy = 1 has the following
correspondence in the relational language Lg−pred:

Pr(S) =



I(x, x1),

I(y, y1),

M(x1, y1, z1),

M(z1, x, z2),

M(z2, y, z3),

E(z3).

It is easy to see that the projection of the solution set of S onto the variables x, y gives
the solution set of the initial equation x−1y−1xy = 1. More generally, for any finite set of
group equations S in variables X there exists a system Pr(S) of equations in the language
Lg−pred such that the solution set of S is the projection of the solution set Pr(S) onto the
variables X. Hence, there arises the following important problem.

Problem. What properties of a finite system S are determined by the system Pr(S)?

This problem was originally studied in [1], where it was proved the general results for
relational structures Pr(S).

We study equations over direct products of semigroups. Namely, for a finite semigroup S
we give necessary and sufficient condition whether the direct power Π Pr(S) is equationally
Noetherian. It continues the research [2], where we found the necessary and sufficient
conditions for the equationally Noetherian property of direct powers of functional algebraic
structures (groups, rings, monoids). For example, a group (ring) has equationally Noetherian
direct powers in a functional language with constants iff it is abelian (respectively, with zero
multiplication).

On the other hand, we prove below that any finite group in the language Lg−pred has
equationally Noetherian direct powers (Corollary 1). Moreover, the similar result holds for
the natural generalizations of groups: quasi-groups and loops (Remark 1).

However, the class of semigroups has a nontrivial classification in the relational language.
We find two quasi-identities

∀a∀b∀α∀β ((aα = aβ)→ (bα = bβ)) ; (4)
∀a∀b∀α∀β ((αa = βa)→ (αb = βb)) (5)

such that a finite semigroup S satisfies (4), (5) iff any direct power of Pr(S) is equationally
Noetherian (Theorem 1).

In the class of finite semigroups the conditions (4), (5) imply that the minimal ideal
(kernel) of a semigroup S is a rectangular band of groups, and the kernel Ker(S) (the
minimal ideal of S) coincides with the ideal of reducible elements of S. If the kernel of a
finite semigroup S is a group, then the converse statement also holds (Theorem 4). However,
the converse statement is not true in general (Example 1).

1. Basic notions
An algebraic structure of the language Ls−pred = {M (3)} (Lg−pred = {M (3), I(2), E(1)})

is called the predicatization of a semigroup S (group G) if the operations over S (G)
corresponds to the relations (1)–(3). The predicatization of a semigroup S (group G) is
denoted by Pr(S) (respectively, Pr(G)).
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Following [3], we give the main definitions of algebraic geometry over algebraic structures
(below L ∈ {Ls−pred,Lp−pred}).

An equation over L (L-equation) is an atomic formula over L. The examples of equations
are the following: M(x, x, x), M(x, y, x) (Ls−pred-equations); M(x, x, y), I(x, y), I(x, x),
E(x) (Lg−pred-equations).

A system of L-equations (L-system for shortness) is an arbitrary set of L-equations.
Notice that we will consider only systems in a finite set of variables X = {x1, x2, . . . , xn}.
The set of all solutions of S in an L-structure A is denoted by VA(S) ⊆ An. A set Y ⊆ An
is said to be an algebraic set over A if there exists an L-system S with Y = VA(S). If the
solution set of an L-system S is empty, S is said to be inconsistent. Two L-systems S1,S2

are called equivalent over an L-structure A if VA(S1) = VA(S2).
An L-structure A is L-equationally Noetherian if any infinite L-system S is equivalent

over A to a finite subsystem S′ ⊆ S.
Let A be an L-structure. By L(A) we denote the language L∪{a : a ∈ A} extended by

new constants symbols which correspond to elements of A. The language extension allows
us to use constants in equations. The examples of equations in the extended languages
are the following: M(x, y, a) (Ls−pred(S)-equation and a ∈ S); M(a, x, b), I(x, a), E(a)
(Lg−pred(S)-equations and a, b ∈ G). Obviously, the class of L(A)-equations is wider than
the class of L-equations, so an L-equationally Noetherian algebraic structure A may lose
this property in the language L(A).

One can directly prove that any finite L(A)-structure A is always L(A)-equationally
Noetherian.

Since the algebraic structures A and Pr(A) have the same universe, we will write below
VA(S) (L(A)) instead of VPr(A)(S) (respectively, L(Pr(A))).

Let A be a relational L-structure. The direct power ΠA =
∏
i∈I
A of A is the set of all

sequences [ai : i ∈ I] and any relation R ∈ L is defined as follows

R
(
[a

(1)
i : i ∈ I], [a

(2)
i : i ∈ I], . . . , [a

(n)
i : i ∈ I]

)
⇔ R

(
a

(1)
i , a

(2)
i , . . . , a

(n)
i

)
for each i ∈ I.

A map πk : ΠA → A is called the projection onto the i-th coordinate if πk([ai : i ∈ I]) = ak.
Let E(X) be an L(ΠA)-equation over a direct power ΠA. We may rewrite E(X) in the

form E(X,
−→
C), where

−→
C is an array of constants occurring in the equation E(X). One can

introduce the projection of an equation onto the i-th coordinate as follows:

πi(E(X)) = πi(E(X,
−→
C)) = E(X, πi(

−→
C)),

where πi(
−→
C) is an array of the i-th coordinates of the elements from

−→
C . For example, the

Ls−pred(ΠA)-equation M(x, [a1, a2, a3, . . .], [b1, b2, b3, . . .]) has the following projections

M(x, a1, b1),

M(x, a2, b2),

M(x, a3, b3),

. . .

Obviously, any projection of an L(ΠA)-equation is an L(A)-equation.
Let us take an L(ΠA)-system S = {Ej(X) : j ∈ J}. The i-th projection of S is the L(A)-

system defined by πi(S) = {πi(Ej(X)) : j ∈ J}. The projections of an L(ΠA)-system S
allow to describe the solution set of S by

VΠA(S) = {[Pi : i ∈ I] : Pi ∈ VA(πi(S))}. (6)
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In particular, if one of the projections πi(S) is inconsistent, so is S.
The following statement immediately follows from the description (6) of the solution set

over a direct powers.
Lemma 1. Let S = {Ej(X) : j ∈ J} be an L(ΠA)-system over ΠA. If one of the

projections πi(S) is inconsistent, so is S. Moreover, if A is L(A)-equationally Noetherian,
then an inconsistent L(ΠA)-system S is equivalent to a finite subsystem.

Proof. The first assertion directly follows from (6). Suppose A is L-equationally
Noetherian, and πi(S) is inconsistent. Hence, πi(S) is equivalent to its finite inconsistent
subsystem {πi(Ej(X)) : j ∈ J ′}, |J ′| < ∞, and the finite subsystem S′ = {Ej(X) : j ∈
∈ J ′} ⊆ S is also inconsistent.

2. Predicatization of semigroups and groups
Theorem 1. Let Pr(S) be the predicatization of a finite semigroup S. A direct power

of Pr(S) is Ls−pred(ΠS)-equationally Noetherian iff the quasi-identities (4), (5) hold in S.
Proof. First, we prove the “if” part of the theorem. Suppose S satisfies (4,5) and

consider an infinite Ls−pred(ΠS)-system S. One can represent S as a finite union of the
following systems

S =
⋃

16i,j6n
Scij

⋃
16i,j6n

Sicj
⋃

16i,j6n
Sijc

⋃
16i6n

Scci
⋃

16i6n
Scic

⋃
16i6n

Sicc
⋃
S0, (7)

where each equation of S0 is one of the following types:
1) xi = xj;
2) xi = cj;
3) ci = cj;
4) M(xi, xj, xk);
5) M(ci, cj, ck),

and Scij = {M(ck, xi, xj) : k ∈ K}, Sicj = {M(xi, ck, xj) : k ∈ K}, Sijc = {M(xi, xj, ck) :
k ∈ K}, Scci = {M(ck,dk, xi) : k ∈ K}, Scic = {M(ck, xi,dk) : k ∈ K}, Sicc =
= {M(xi, ck,dk) : k ∈ K} (ck,dk ∈ Π Pr(S)), where each system above has its own
index set K.

Clearly, the system S0 is equivalent to its finite subsystem. So it is sufficient to prove
that the other systems are equivalent to their finite subsystems. According to Lemma 1, we
may assume that all systems below are consistent.

Thus, we have the following cases:
1) Let Sicc = {M(xi, ck,dk) : k ∈ K} andM(xi, c1,d1) be an arbitrary equation of Sicc.

Since Sicc is consistent, then one can choose ᾱ ∈ VΠS(Sicc), β̄ ∈ VΠSs(M(xi, c1,d1)).
We have ᾱc1 = β̄c1 = d1. By the quasi-identities (4), (5), ᾱck = β̄ck for any ck.
Hence, β̄ satisfies all equations from Sicc, Thus, Sicc is equivalent to the equation
M(xi, c1,d1). The proof for the system Scic is similar.

2) Let Scci = {M(ck,dk, xi) : k ∈ K}. Since the system Scci is consistent, the products
ckdk are equal to each other, hence c = ckdk for all k ∈ K. Thus, the whole system
Scci is equivalent to any equation M(ck,dk, xi).

3) Let Sicj = {M(xi, ck, xj) : k ∈ K} (the proof for Scij is similar). Since Sicj is
consistent, there exist a point (ᾱ, β̄) ∈ VΠS(Sicj) and the equalities ᾱck = ᾱcl = β̄
hold for any k, l ∈ K. By (4), (5), for any γ̄ ∈ ΠS it holds γ̄ck = γ̄cl. Thus, the
solution set of Sicj is Y = {(γ̄, γ̄ck0) | γ̄ ∈ ΠS} for a fixed k0 ∈ K. Thus, Sicj is
equivalent to the equation M(xi, ck0 , xj).



Equations over direct powers of algebraic structures in relational languages 9

4) Let Sijc = {M(xi, xj, ck) : k ∈ K}. Since the system Sijc is consistent, the elements
ck (k ∈ K) are equal to each other. Hence, the system Sijc consists of the same
equations. Thus, Sijc is equivalent to any equation M(xi, xj, ck).

Now, we prove the “only if” part of the theorem. Suppose the quasi-identity (4) does not
hold in S (for the formula (5) the proof is similar). It follows there exist elements a, b, α, β
such that aα = aβ = c, bα 6= bβ. Let us consider the system

S = {M(an, x, cn) : n ∈ N},

where
an = [b, . . . , b︸ ︷︷ ︸

n times

, a, a, . . .], cn = [bβ, . . . , bβ︸ ︷︷ ︸
n times

, c, c, . . .].

One can directly check that the point

a = [β, . . . , β︸ ︷︷ ︸
n times

, α, α, . . .]

satisfies the first n equations of S (since we obtain the true equalities aβ = c or bβ = bβ).
However the (n + 1)-th equation of S gives an+1a 6= cn+1, since its (n + 1)-th projection
defines the equation bx = bβ, but bα 6= bβ. Thus, S is not equivalent to any finite
subsystem.

Corollary 1. Let Pr(G) be the predicatization of a finite group G. Then any direct
power of Pr(G) is Lg−pred(ΠG)-equationally Noetherian.

Proof. Since the equality aα = aβ (αa = βa) implies α = β in any group, the quasi-
identities (4), (5) obviously hold in G. Thus, any infinite system of the form {M(∗, ∗, ∗) :
i ∈ I} is equivalent to a finite subsystem.

One can directly prove that for any finite group G the infinite systems of the form
{I(∗, ∗) : i ∈ I} ({E(∗) : i ∈ I}) are also equivalent to their finite subsystems over ΠG.

Thus, any system of Lg−pred(ΠG)-equations is equivalent over ΠG to its finite
subsystem.

Remark 1. The Corollary 1 also holds for finite quasi-groups. Notice that a quasi-
group is a non-associative generalization of a group. Any quasi-group admits the analogue
of divisibility, hence the quasi-identities (4), (5) obviously hold in any quasi-group. Thus,
any direct power of a quasi-group G is Ls−pred(ΠG)-equationally Noetherian (here we
consider quasi-groups and loops in the language Ls−pred, since not any quasi-group admits
the relations I(x, y) and E(x)).

Below we study finite semigroups S that satisfy Theorem 1.
A subset I ⊆ S is called a left (right) ideal if for any s ∈ S, a ∈ I it holds sa ∈ I

(as ∈ I). An ideal which is right and left simultaneously is said to be two-sided (or an ideal
for shortness).

A semigroup S with a unique ideal I = S is called simple. Let us remind the classical
Sushkevich —Rees theorem for finite simple semigroups.

Theorem 2. For any finite simple semigroup S there exist a finite group G and finite
sets I,Λ such that S is isomorphic to the set of triples (λ, g, i), g ∈ G, λ ∈ Λ, i ∈ I. The
multiplication over the triples (λ, g, i) is defined by

(λ, g, i)(µ, h, j) = (λ, gpiµh, j),

where piµ ∈ G is an element of a matrix P such that
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1) P consists of |I| rows and |Λ| columns;
2) the elements of the first row and the first column equal 1 ∈ G (i.e., P is normalized).
Following Theorem 2, we denote any finite simple semigroup S by S = (G,P,Λ, I).
The minimal ideal of a semigroup S is called a kernel and denoted by Ker(S) (any finite

semigroup always has a unique kernel, and the kernel is always simple, i.e., Ker(S) satisfies
Theorem 2). Obviously, if S = Ker(S), then the semigroup is simple. If Ker(S) is a group,
then S is said to be a homogroup. The next theorem contains the necessary information
about homogroups.

Theorem 3 [4]. In a homogroup S the identity element e of the kernel Ker(S) is
idempotent (e2 = e) and belongs to the center of S (i.e., e commutes with any s ∈ S).

A semigroup S is called a rectangular band of groups if S = (G,P,Λ, I) and piλ = 1 for
any i ∈ I, λ ∈ Λ.

Lemma 2. Suppose a finite simple semigroup S satisfies (4), (5). Then S is a
rectangular band of groups.

Proof. By Theorem 2, S = (G,P,Λ, I) for some finite group G, matrix P and finite
sets of indexes Λ, I.

Assume that |Λ| > 1 and piλ 6= 1 for some i, λ.
Let a = (1, 1, 1), α = (λ, 1, 1), β = (1, 1, 1) and hence

aα = (1, 1, 1)(λ, 1, 1) = (1, 1, 1) = (1, 1, 1)(1, 1, 1) = aβ. (8)

However, for b = (1, 1, i) we have

bα = (1, 1, i)(λ, 1, 1) = (1, piλ, 1) 6= (1, 1, 1) = (1, 1, i)(1, 1, 1) = bβ. (9)

Thus, the equalities (8), (9) contradict (4), (5).

An element s of a semigroup S is called reducible if there exist a, b ∈ S with s = ab.
Clearly, the set of all reducible elements Red(S) is an ideal of a semigroup S.

Lemma 3. Let S be a finite semigroup satisfying (4), (5). Then Ker(S) is the set of
all reducible elements.

Proof. Since the kernel Ker(S) is simple, Theorem 2 gives Ker(S) = (G,P,Λ, I) for
some finite G,P,Λ, I. Let b ∈ S. We have (λ, g, i)b = (λ, g, i)(1, 1, i)b = (λ, g, i)r, where
r = (1, 1, i)b ∈ Ker(S). By (4), we obtain ab = ar for any a ∈ S. Since ar ∈ Ker(S), so is
ab. Thus, any product of elements belongs to Ker(S), hence Red(S) = Ker(S).

Theorem 4. If Ker(S) = Red(S) for a finite homogroup S, then S satisfies (4), (5)
or, equivalently, ΠS is Ls−pred(ΠS)-equationally Noetherian.

Proof. Let us take a, b, α, β such that aα = aβ, and e be the identity of Ker(S). We
have

aα = aβ | ·e,
eaα = eaβ,

(ea)α = (ea)β | ·(ea)−1 since ea belongs to the group Ker(S),

eα = eβ | e is a central element,
αe = βe.

We have (below we use bα, bβ ∈ Ker(S) = Red(S)):

bα = (bα)e = b(αe) = b(βe) = (bβ)e = bβ.
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Thus, the quasi-identity (4) holds for S. The proof for the quasi-identity (5) is similar.

One can directly check that for a rectangular band of groups S = (G,P,Λ, I) the
analogue of Theorem 4 also holds.

Thus, there arises the following question.

Question. Suppose the kernel Ker(S) of a finite semigroup S satisfies the following
conditions:

1) Ker(S) = Red(S);
2) Ker(S) is a rectangular band of groups.
Does S satisfy the quasi-identities (4), (5)?
Example 1. The answer for the last question is negative. Let us consider a

semigroup S with the following multiplication table:

· a b z1 z2 z3 z4

a z4 z4 z2 z4 z4 z4
b z4 z4 z3 z4 z4 z4
z1 z1 z1 z1 z1 z1 z1
z2 z2 z2 z2 z2 z2 z2
z3 z3 z3 z3 z3 z3 z3
z4 z4 z4 z4 z4 z4 z4

This Table defines an associative binary operation (we checked it by a computer).
One can directly compute that Ker(S) = Red(S) = {z1, z2, z3, z4}. Since the elements zi

are left zeros, we have Ker(S) = (G,P,Λ, I), where G = {1}, P = (1, 1, 1, 1), Λ =
= {1, 2, 3, 4}, I = {1}. However, the quasi-identity (5) does not hold in S, since az1 = bz1,
but az0 6= bz0.
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