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CONDENSED-STATE PHYSICS 

PLASTIC STRAIN LOCALIZATION IN POLYCRYSTALLINE 

TITANIUM. NUMERICAL SIMULATION 

E. S. Emelianova,1,2 V. A. Romanova,1 R. R. Balokhonov,1 and M. V. Sergeev2  UDC 539.3 

The paper presents numerical simulation of polycrystalline titanium deformation in terms of the crystal 
plasticity theory. Based on the experimental data, a three-dimensional polycrystalline model is generated by 
a method of step-by-step packing. Constitutive relations for the deformation behavior of grains are based on 
the crystal plasticity theory with regard to the crystalline structure and dislocation glide in hexagonal close-
packed crystal lattices. The boundary value problem of elastoplastic deformation is solved numerically using 
the finite element method. The proposed model is tested by elastoplastic deformation of titanium single crystals 
having different orientation. The proposed model is used to study the influence of the crystallographic 
orientation on localized plastic deformation in polycrystals. 

Keywords: micromechanics, crystal plasticity, polycrystalline structure, numerical simulation, localized 
deformation. 

INTRODUCTION 

In the framework of contemporary understanding of the load-induced deformation and fracture processes in 
materials, their microstructure plays a critical role. Experimental and theoretical data indicate that the material 
interfaces cause microstress concentrations that can differ by an order of magnitude from an average value. It is 
a microstress concentration that causes irreversible deformation and microcrack initiation. Irreversible deformation at 
lower scale levels generates the material response at higher scale levels. Thus, early-predicted irreversible macroscale 
deformation and fracture require knowledge of the deformation response at the micro- and mesoscales. 

Along with experimental, numerical simulation is an important tool for studying deformation processes in 
materials developing at different scales. With regard to numerical simulation, a key challenge is the development of 
constitutive models allowing to describe the deformation behavior of materials.  

It is important for the models to describe the plastic behavior of polycrystalline materials having significant 
anisotropy of elastoplastic properties attributed to the crystalline structure, materials having the restricted number of slip 
systems, and textured metals and alloys. Such models are developed in terms of the crystal plasticity which considers 
the relation between the stress-strain state and physical (dislocation) mechanisms of plastic flow at the microscale. 

The existing models of crystal plasticity can be divided into two groups. The first group aims to construct 
constitutive relations for the description of averaged response of the material with regard to the contribution from grains 
oriented in various directions [1, 2]. More complicated models of this type are being currently developed; they consider 
contributions from deformation mechanisms at different scales, the mesoscale, in particular [3]. These models are 
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important for analyzing the deformation-induced texture evolution, response of textured materials during pressure 
forming or other kinds of plastic deformation. These approaches, however, cannot evaluate local stress and strain 
values. Such problems can be solved by using another type of the crystal plasticity models that involve boundary value 
problems explicitly subject to the microstructure [4–6]. Such models allow users to explicitly study the evolution of 
local characteristics of the stress-strain state under load. 

This paper proposes the crystal plasticity approach with explicit subject consideration of the material 
microstructure to ascertain the properties of the deformation behavior of polycrystalline titanium. As is known, titanium 
and titanium alloys with a hexagonal close-packed (HCP) crystal lattice have highly anisotropic elastoplastic properties 
[7–10]. It is therefore very important to use methods which consider plastic flow contributions at the microscale. The 
purpose of this work is to explain the influence of the crystallographic texture on the plastic strain localization under the 
uniaxial load of polycrystalline titanium. 

1. MATHEMATICAL PROBLEM FORMULATION AND NUMERICAL SIMULATION 

1.1. Three-dimensional boundary value problem  

The solution of micromechanical problems explicitly subject to the material microstructure requires high 
computation capacity. One of the approaches allowing to significantly minimize the requirements for random-access 
memory, disc space and processing speed is the simulation of quasi-static deformation in terms of dynamics. The 
solution of such problems provides a transfer from implicit to explicit time integration schemes, thereby giving 
advantages to solution of nonlinear problems. The applicability of dynamic approaches to modelling quasi-static 
deformation in materials with inner boundaries is thoroughly investigated in [11]. Using a polycrystalline aluminum 
alloy, it is shown that the solutions of the dynamic and statistic problems are closely identical providing smooth growth 
in dynamic load and elimination of the material sensitivity to the strain rate. In our work, we use the dynamic problem 
to simulate the quasi-static deformation of commercially pure titanium.  

The boundary value problem includes equations of motion: 

 ,i ij jU   , (1) 

the equation of continuity: 

 , 0i i
V

U
V
 


, (2) 

the kinematic relations for total strain rates: 

  , ,
1

2ij i j j iU U    (3) 

and constitutive relations in the rate form of generalized Hooke’s law for an anisotropic elastoplastic material:  

  p
ij ijkl kl klC      . (4) 

Here Ui is the velocity vector, V is the relative volume, ρ is the current density of the material, σij is the stress tensor, εij 

and p
ij  are the total and plastic strain tensors, respectively, ijklC  is the tensor of elastic moduli. 

The system of equations (1)–(4) is closed by the boundary conditions given on US  and TS  surfaces in rates: 
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and forces: 

 
T

ij j iS
n T  . (6) 

The loading conditions applied in calculations are discussed in Section 2.  

1.2. Crystal plasticity-based constitutive relations for HCP crystals  

Titanium has an HCP crystal lattice schematically shown in Fig. 1а. Let us write constitutive relations (Eq. (4)) 
for titanium single crystal relative to the orthogonal coordinate system ix , where the axes coincide with [210] , [010]  

and [001]  crystallographic directions. The matrix of elastic moduli of HCP crystals has twelve non-zero constants; five 

of them are independent, namely: 1111C , 1122C , 1133C , 3333C  and 2323C . Titanium single crystals are cannot be 

deformed by the dislocation glide along Xtal
3x  axis (Fig. 1а). In this regard, the constitutive relations take the form 

 11 1111 11 1122 22 1133 3311 22( ) ( )p pC C C               , 

 22 1122 11 1111 22 1133 3311 22( ) ( )p pC C C               , 

 33 1133 11 1133 22 3333 3311 22( ) ( )p pC C C               , (7) 

 23 2323 23 232 ( )pC      , 

 13 2323 13 132 ( )pC      , 

  12 1111 1122 12 12( )pC C       . 

  

Fig. 1. Schematic of HCP crystal (а) and different slip systems (b). 
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Tensor components ij  of total strain rates are determined by kinematic relations from Eq. (3) depending on 

the displacement velocities only. The derivation of tensor p
ij of plastic strain rates from Eq. (4) is associated with 

physical models constructed with account of plastic deformation mechanisms operating at the selected scales. Within 
the crystal plasticity, the main mechanism of plastic deformation in single crystals is the dislocation motion in the active 
slip systems and twinning, in particular case. The plastic strain rate components geometrically relate to plastic shear 
strains in active slip systems (Fig. 2): 

 ( ) ( )p
ij ij

 


     , (8) 

where ( )  is the shear strain rate in α slip system, 

  ( ) ( ) ( ) ( ) ( )1

2ij i j j is n s n        (9) 

is the orientation tensor for α slip system determining its orientation through the components of slip direction ( )
is   and 

slip plane normal vectors ( )
in   in the orthogonal coordinate system ix . 

In terms of the numerical simulation, the orientation tensor components are expressible through Miller indices 

that determine slip systems. Let us write Eq. (9) for an arbitrary slip system α given by  1 1 1h k l  crystallographic plane 

and 2 2 2[ ]h k l  direction. In HCP crystals, Miller indices for the direction normal to  1 1 1h k l  crystallographic plane are 

determined by  

 2 1 12h h k  , 2 1 12k h k  , 
2

2 1
3

2

a
l l

c
   
 

. (10) 

 

Fig. 2. Geometric interpretation of crystal plasticity relations (Eq. (8)). 
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The point coordinates given in the orthogonal and crystallographic coordinate systems ix  and Xtal
ix  are 

connected by the following relations: 

 Xtal
1 1

3

2
x x , 

Xtal
Xtal 1

2 2 2

x
x x  , Xtal

3 3( / )x с a x . (11) 

Substituting Eq. (10) in Eq. (11), we obtain the equation for ( )
in   normal components: 
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3
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 . In the same way we find the coordinates for the slip direction 

vector ( )
is  : 
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where 1 2
3

2
sx h , 

 2 2
2

2

2
s k h

x


 , 3 2( / )sx с a l . 

Based upon Eqs. (12) and (13), orientation tensor components for  1 1 1h k l 2 2 2[ ]h k l  arbitrary slip system in the 

HCP crystal can be expressed by the Miller indices as 

  ( )
1 1 211

1 3
2

4
h k h

Q
   , ( )

1 2 222
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Q
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where 2 2 2 2 2 2
1 2 3 1 2 3( ) ( ) ( ) ( ) ( ) ( )n n n s s sQ x x x x x x     . 

In many works, the shear strain rate ( )  is described by viscoplastic models [1], where ( )  is the function of 

resolved shear stress ( ) : 

  
( )

( ) ( )
0 ( )

CRSS

sign


 




   


  , (15) 
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where 0  is the initial shear strain rate, ν is the strain rate sensitivity exponent. The resolved shear stress in the α slip 

system can be determined as 

 ( ) ( ) ( )
i ij js m     . (16) 

In accordance with Schmid’s law, the slip system is active, if the resolved shear stress in it achieves the critical 

value of ( )
CRSS
 . The critical resolved shear stress CRSS  is the most important parameter of the crystal plasticity. The 

modern literature on the evolution of critical resolved shear stresses shows a variety of models considering different 
mechanisms of strain hardening and softening, microstructure and phase composition of the material, interaction 
between dislocations in different slip systems, dislocation kinetics, scaling factor, loading history, and so on [1]. 
Apparently, the more complex is the model, the wider is the spectrum of physical phenomena the model is able to 
describe. Physically-based models certainly contain a great deal of constants and parameters that are difficult to 
determine and considerably complicate the numerical analysis. From the viewpoint of efficiency of numerical 
experiments, interesting is the development of phenomenological models describing a certain range of physical 
phenomena at a given scale. In order to define the resolved critical shear stresses in the active slip systems of titanium, 
we offer the phenomenological dependence of strain hardening and grain-boundary strengthening mechanisms in the 
form of additive contributions: 

 ( ) ( ) 1/ 2
1 2 eqCRSS 0 i

pk D k        . (17) 

Here ( )
0
  is the resolved critical shear stress in a single crystal. The second term of the sum is the Hall–Petch 

relationship, which considers the increase in the yield stress of polycrystals owing to the grain boundaries preventing 
the dislocation motion. In the numerical simulation, the grain diameter iD  is calculated as a diameter of a sphere of the 

same volume. The third term of the sum is the function of accumulated equivalent plastic strain, which considers the 
increase in resolved critical shear stresses due to strain hardening. The coefficients 1k  and 2k  of the grain-boundary 

strengthening and strain hardening can be obtained from experimental stress-strain curves for polycrystalline titanium 
with a given grain size.  

In commercially pure titanium, potentially active are three prismatic, three basal, six a -pyramidal, twelve 

c a -pyramidal and six c a -pyramidal slip systems, as shown in Fig. 1b. It is significant that in titanium, 

resolved critical shear stresses initiating slip in different slip systems differ by several times and considerably depend on 
the content of alloying elements, including oxygen [10, 12]. In pure titanium consisting less than 0.2% of oxygen, the 
primary and secondary slip systems are prismatic and basal, respectively [8, 12]. The former have minimum CRSS  

value. According to [8, 12], a -pyramidal slip systems insignificantly affect the deformation process. Under quasi-

static deformation at room temperature, c a  slip does not occur and thus is not considered in the model as well as 

a twinning mechanism which provides deformation 33
p  along the prismatic axis in the HCP crystal at elevated 

temperatures, high strain rates, severe plastic deformation and other specific loading conditions [10]. 

1.3. Polycrystalline titanium model and numerical simulation 

The model of the polycrystalline structure is based on the experimental data of the electron backscatter 
diffraction (EBSD) analysis of commercially pure titanium presented in [13, 14]. The orientation imaging microscopy 
(OIM) shows that the structure of non-deformed titanium specimens consists of ~70 µm equiaxed grains (Fig. 3а). The 
analysis of pole figures displaying the crystallographic texture before and after deformation as given in Fig. 3b, shows 
the basal texture with the misorientation angle of about 40 degrees, which is common to rolled titanium. 



 1545

The polycrystalline structure is generated by the step-by-step packing (SSP) method [15]. The idea is to 
incrementally fill the computational domain preliminary discretized by a computational mesh with structural elements, 
in conformity with the analytically specified growth-rate functions, such as equations of sphere, ellipsoid, cylinder, etc. 
The initial conditions include the spatial distribution of nuclei, i.e. centers of growing structural elements (grains). In the 
simplest case of growth in all the elements according to spherical equation at the same rate, the structure generated by 
the SSP method coincides with the Voronoi diagram representing cells as convex polyhedra [5]. In such models, the 
grain boundaries are formed by the mesh nodes, while physical-and-mechanical properties of the material are set inside 
the mesh elements. The groups of contacting elements with the same properties form a grain. The SSP method applied 
to the generation of various microstructures is described in details in [15].  

Based on the experimental data [14], the polycrystalline structure consisting of 3300 quasi-equiaxed grains is 
generated on a finite element mesh comprising 3.375106 hexahedral elements. The model size is 0.3×0.035×0.1 cm; the 
average grain size is 70 m (Fig. 4). 

The initial conditions assume that all grains possess similar physical-and-mechanical properties, such as 
density, elastic moduli, initial resolved critical shear stress, activating dislocation slip, etc. and differ only by the 
orientation of local coordinate systems ix  relative to the global coordinate system iX  associated with the specimen 

geometry (Fig. 4а). Initially, orientation of the local coordinate system is constant within the grain and changes when 
crossing the grain boundary. Orientations of the local coordinate systems relative to the global coordinate system are 
given by Euler angles, such that to simulate the basal texture according to the experimental data (cf. Figs 3b and 4b). 
Calculations are also made for the non-textured microstructure, for which the grain orientation is determined by a set of 
Euler angles defined by a random number generator (Fig. 4c).  

The boundary value problem of uniaxial tension of the modeled polycrystalline structures is solved by the finite 
element (FE) method using the ABAQUS/Explicit. FE calculations of uniaxial tension are carried out in terms of the 
dynamic problem using parallel algorithm. A constitutive model based on the crystal plasticity obtained for HCP 
crystals, is introduced in the ABAQUS/Explicit via VUMAT user subroutine, where Eqs. (7)–(17) are solved by 
an iteration method.  

The tension along X1-axis is given in Eq. (5) (Fig. 4а). In order to minimize the dynamic effect, the load is 
linearly increased up to the peak value, and then kept constant. On the bottom surface, the symmetry conditions are set 
relative to X3-axis. The rest surfaces are considered to be unaffected by external forces. 

It is important to underline that Eqs. (1)–(3) and boundary conditions in Eqs. (5) and (6) are formulated and 
solved in the global coordinate system (Fig. 4а), whereas the constitutive relations – in the local coordinate system (see 
Fig. 1а). The calculation algorithm includes the following steps: 

1) solution of Eqs. (1)–(3), (5), (6) in the global coordinate system; 
2) transformation of the total strain rate tensor components to the local coordinate system and solution of 

constitutive relations in the crystal system of coordinates; 

   

Fig. 3. OIM map (а) and pole figures (b) of pure titanium microstructure [14]. 
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3) inverse transformation of the obtained stress tensor components to the global coordinate system and a 
transfer to a new time step. 

2. SIMULATION RESULTS 

2.1. Analysis of single crystal uniaxial tension 

The model testing includes the analysis of uniaxial tension of titanium single crystals with three different 
crystallographiс orientations relative to the loading axis as schematically shown in Fig. 5а–c. A 5×5×10 mm 
geometrical model is approximated by a regular FE mesh consisting of 31250 hexahedral elements. The values of 
elastic moduli and resolved critical shear stresses for different slip systems are summarized in Table 1. Strain hardening 
is not considered in calculations. In this case, it is possible to compare the stress-strain parameters in crystals having 
different crystallographic orientation with analytical data and expected geometry of active slip systems. The calculated 
yield stress values are compared with analytical values obtained from Schmid’s law: 

 0τσ
cosλcosy  

, (18) 

where 0τ  is the resolved shear stress, y  is the equivalent stress,   is an angle between the loading axis and the 

normal to the slip plane,   is an angle between the loading axis and the direction of slip. 

In all modeled single crystals, plastic deformation occurs due to slip on prismatic slip systems. In Fig. 5а–c, 
one can see one of the prismatic slip systems. Due to the symmetry of the crystal lattice, orientation of other prismatic 

 
a 

   
 b c 

Fig. 4. Polycrystalline titanium model (а) and pole figures displaying textured (b) and non-
textured (c) microstructure.  
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slip systems is determined by the incremental rotations to an angle of 60 degrees relatively [0001] axis. The analytical 
vs. numerical values of the yield stress are given in Table 2 for the modeled crystals with different orientation. The 
analytical values of y  are obtained from Eq. (18), while the numerical values eq    are the equivalent stresses 

averaged over specimens. The difference between the analytical and numerical values is not over 0.2% that confirms 
correctness of the model and numerical implementation. 

Analytically, in each of the studied crystallographic orientations, two of three prismatic slip systems are equally 
loaded and their activation must occur simultaneously under the same stress applied (see Table 2). In the case of no 
hardening, at the initial stage of loading, plastic deformation localizes throughout the thickness of macroscale shear 
band, whose orientation coincides with that of one of the prismatic slip systems for all the studied single crystals. 

TABLE 1. Material Constants and Model Parameters  

С1111, GPa 162 
С1133, GPa 92 
С1122, GPa 69 
С3333, GPa 181 
С2323, GPa 47 

prismatic
0 , MPa 50 

basal
0 , MPa 100 

pyramidal
0 , MPa 180 

1k , MPa ·сm1/2 0.664 

2k , MPa 50.0 

    
 a b c 

    
 d e f 

Fig. 5. Three-dimensional simulation of single crystals with different orientations (а–c) and 
respective equivalent plastic strain distributions at 0.5% tensile strain (e–f). 
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Deformation in the macroscale shear band is caused by dislocation glide in all active slip systems, but the most serious 
contribution belongs to the slip system of the respective orientation. 

2.2. Influence of texture on localized plastic deformation in polycrystal models 

The FE analysis is provided for both textured and non-textured polycrystals with a glance to strain hardening 
and grain-boundary strengthening. The data from Table 1 are used in FE calculations. Localized plastic deformations 
shown in Fig. 6 for textured and non-textured polycrystals demonstrate significant difference. 

In the case of the non-textured microstructure, there are two distinct scales of plastic strain localization. At 
a microscale, we observe in-grain and near-grain boundary plastic strain localization. It should be noted that although 
this approach does not explicitly consider the dislocation motion, the model describes in-grain plastic strain localization 
controlled by the lattice orientation, as illustrated in Fig. 5 for single crystals. The surface roughness of non-textured 
material is provided by the out-of-plane surface displacement of neighbor grains relatively each other. Such 
a deformation-induced surface roughness is observed in many materials and called orange peel (e.g. [16, 17]). Along 
with the microscale roughness, the surface is characterized by non-crystallographic mesoscale shear bands passing 
across the surface normal to the axis of tension. 

In the case of textured microstructure, mesoscale shear bands appear on the surface already at the initial stage 
of plastic flow. During tension, the angle between the shear bands and the tensile axis changes from 50 to 45 degrees. 
The microscale roughness provided by the out-of-plane surface displacement of individual grains and grain clusters, is 
ill-defined during the whole deformation process. 

Let us analyze the detected differences concerning the dislocation glide in the modeled microstructures. HCP 
crystals are characterized by significant anisotropy of plastic properties. There are two grain orientations affecting the 
microstructure ability to dislocation glide. When the load is parallel to basal planes, the grain is easily involved in 

TABLE 2. Yield Stress in HCP Single Crystals with Different Orientation 

Orientation Analytical value y , MPa Numerical value eq   , MPa 

Fig. 5а 138.56 138.42 
Fig. 5b 275.42 275.35 
Fig. 5c 138.56 138.38 

 
а     б 

Fig. 6. Equivalent plastic deformations in textured (а) and non-textured (b) polycrystals at 
a 20% tensile strain.  
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plastic deformation owing to the dislocation glide on favorably oriented prismatic slip systems. On the contrary, when 
the load is parallel to the prismatic crystal axis, the grains cannot be deformed by the dislocation glide. The grains of 
intermediate orientation are more or less involved in the dislocation glide. In [13, 14] it is shown that strain 
accommodation of unfavorably oriented grains can occur due to both their rigid rotation and plastic deformation of 
favorably oriented neighbor grains. A non-textured microstructure always contains favorably oriented grains, which can 
provide the given deformation. And a textured microstructure enables the formation of directions in which deformation 
is either easy or difficult. In the case of a basal texture, a slip normal to the specimen surface is difficult because this 
direction matches the preferential orientation of prismatic axes of grains.  

Let us discuss the change in prismatic and basal slip contributions to plastic deformation of textured and non-
textured polycrystals. This is shown in Figs 7 and 8 containing bar graphs representing the amount of slip in the 
respective slip systems calculated for each finite element as 

 
3

total
1 t

dt 


     , (19) 

where summation is made by three prismatic or three basal slip systems. The volume fraction *V  of the material is on 
y-axis and expressed as a percentage. 

    

Fig. 7. Bar graphs of slip accumulated on prismatic (a, b) and basal (c, d) slip systems of 
non-textured microstructure. 

    

Fig. 8. Bar graphs of slip accumulated on prismatic (a, b) and basal (c, d) slip systems of 
basal texture microstructure. 
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In both models, the dislocation glide on prismatic slip systems activates at an earlier stage of tension and 
contributes much to deformation throughout the whole process, which is in agreement with the experimental data [7, 8]. 
But the ratio between prismatic and basal slip substantially depends on the texture. The total slip accumulated on 
prismatic slip systems in non-textured microstructure of the half-volume polycrystal ranges from 4 to 16% at a 9% 
deformation degree and from 6 to 22% at a deformation degree of 18%. In the microstructure with a basal texture, the 
amount of prismatic slip is higher. Thus, at a 9% deformation degree, over 60% of the material manifest prismatic slip 
varying from 10 to 20%, while in localized regions, the total prismatic slip reaches 50%. When the deformation degree 
is 18%, the total prismatic slip varies between 10 and 50%, and in 10% of the material it reaches 70% and over. 

Basal slip systems become active at a later stage of tension and less contribute to the deformation process. But 
in the case of the basal texture, at a 9% deformation degree, the slip amount in basal slip systems is negligible, namely it 
is not over 6% in a half the material, and zero in the rest. When deformation increases up to 18%, the amount of basal 
slip grows up to 3–10% in 40% of the material, but is still insignificant as compared to the contribution from prismatic 
slip systems. In the non-textured microstructure the ratio between basal and prismatic slip can be measured already at 
a 9% deformation degree, when about 50% of the material is subjected to basal slip ranging from 3 to 10%. At 
a deformation degree up to 18%, only 7% of the material is not subjected to basal slip, while in 50% of grains the 
accumulated basal slip ranges from 2 to 12%. 

Figure 9 presents the stress-strain curves calculated for both textured and non-textured microstructures 
compared with the experimental data [14]. The numerical curve for the basal microstructure is in agreement with the 
experimental data on pure titanium with the similar texture (see Fig. 3) that proves a correct choice of the model 
parameters. The numerical curve for the non-textured microstructure is higher, which is also in agreement with the 
experimental data [8]. Despite the fact that strain hardening of grains is set to be low (see Table 1) in the linear function 
models (Eq. (17)), the stress-strain curves have a parabolical section next to the elastic stage. This is due to a gradual 
involvement of differently-oriented grains relatively the load axis in plastic deformation.  

CONCLUSIONS 

In terms of micromechanics and crystal plasticity, the deformation behavior of polycrystalline titanium was 
numerically investigated. The polycrystalline model generated by the method of step-by-step packing was introduced in 
FE calculations in an explicit form. The model describing the plastic behavior of grains was proposed on the basis of the 
crystal plasticity, which considered anisotropy of elastoplastic properties at the microscale. Anisotropy of properties 
was provided by the specific crystallographic structure and dislocation glide in the material. The proposed model was 
used to study the texture influence on localized plastic deformation in polycrystals. 

 

Fig. 9. Calculated vs. experimental [13] stress-strain curves of polycrystal models. 
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It was found that the presence of basal texture prevented microscale roughening caused by out-of-plane 
displacements of individual grains and grain clusters. At the mesoscale, localized shear bands of non-crystallographic 
nature formed on the textured surface at an angle of 45–50 degrees to the axis of tension already at the beginning of 
plastic deformation. 

In the polycrystal with the non-textured structure, the well-defined deformation-induced roughness developed 
at the microscale due to shear of individual grains and their clusters normal to the free surface. Along with the 
microscale roughness, mesoscale-localized plastic deformation developed in the form of non-crystallographic shear 
bands crossing the whole specimen surface normal to the axis of tension. 

This work was performed within the frame of the Fundamental Research Program of the State Academies of 
Sciences for 2013–2020, research line III.23. 
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