Институт оптики атмосферы им. В.Е. Зуева СО РАН Сибирский государственный университет геосистем и технологий Институт солнечно-земной физики СО РАН

XXV Международный симпозиум ОПТИКА АТМОСФЕРЫ И ОКЕАНА. ФИЗИКА АТМОСФЕРЫ

1–5 июля 2019 года Новосибирск

Тезисы докладов

Томск Издательство ИОА СО РАН 2019

ОБРАЗОВАНИЕ МАЛЫХ КОМПЛЕКСОВ ВОДЯНОГО ПАРА В РАМКАХ ХИМИЧЕСКОЙ КИНЕТИКИ

В.Д. Гольдин¹, Т.Е. Климешина², О.Б. Родимова²

¹Национальный исследовательский Томский государственный университет, Россия ²Институт оптики атмосферы им. В.Е. Зуева СО РАН, г. Томск, Россия

Решены уравнения химической кинетики для реакций с мономерами и димерами водяного пара для числа мономерных единиц ≤10. Распределение стационарных концентраций кластеров различного размера носит монотонный характер, показывая логарифмическое уменьшение концентрации кластера с увеличением его размера.

ДИМЕРНОЕ ПОГЛОЩЕНИЕ В ИК-ПОЛОСАХ ВОДЯНОГОПАРА В КОНТЕКСТЕ РАЗЛИЧНЫХ ИЗМЕРЕНИЙ

Ю.В. Богданова¹, Т.Е. Климешина², О.Б. Родимова²

¹Томский государственный педагогический университет, Россия ²Институт оптики атмосферы им. В.Е. Зуева СО РАН, г. Томск, Россия

Рассмотрены вклады в димерное поглощение в ИК-области спектра водяного пара, определяемые как разность между экспериментальными данными и данными расчета по асимптотической теории крыльев линий. В расчетах использованы контура линий, параметры в которых найдены подгонкой к различным экспериментальным данным. Полученные результаты пока не позволяют отдать предпочтения тому или иному эксперименту.

ВИЗУАЛИЗАЦИЯ СТРУКТУРЫ БИОЛОГИЧЕСКИХ ТКАНЕЙ МЕТОДОМ ОПТИЧЕСКОЙ КОГЕРЕНТНОЙ ЭЛАСТОГРАФИИ

А.А. Лохин^{1, 2}, А.И. Князькова^{1, 2}, Е.А. Сандыкова^{2, 3}

¹Институт физики прочности и материаловедения СО РАН, г. Томск, Россия
²Национальный исследовательский Томский государственный университет, Россия
³Сибирский государственный медицинский университет, г. Томск, Россия

Проводится исследование и анализ упругих свойств хрящевой ткани курицы, с помощью метода оптической когерентной эластографии. Реализуется компрессионный метод эластографии, который позволяет установить значение модуля Юнга для визуализации биологических свойств эластичности куриного хряща.

ВЛИЯНИЕ МАГНИТНОГО ПОЛЯ НА РАЗВИТИЕ ГИДРОДИНАМИЧЕСКИХ НЕУСТОЙЧИВОСТЕЙ В ТАХОКЛИНЕ

С.В. Олемской, С.В. Латышев, В.И. Мордвинов, Е.В. Девятова

Институт солнечно-земной физики СО РАН, г. Иркутск, Россия

Многие из особенностей динамики крупномасштабных магнитных полей Солнца могут формироваться в тахоклине — тонком слое под конвективной оболочкой с большими вертикальными градиентами дифференциального вращения. Выполненные ранее численные эксперименты с гидродинамической моделью «мелкой воды» показали, что структура тахоклина сильно влияет на баротропные неустойчивости, развивающиеся в тахоклине. Дополнительным фактором, влияющим на развитие неустойчивостей, является магнитное поле. Для проверки этой гипотезы в линейном квазигеострофическом и магнитострофическом приближениях выполнены расчеты эволюции локальных возмущений в тахоклине при на-