

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ (ИТММ-2019)

МАТЕРИАЛЫ
XVIII Международной конференции
имени А. Ф. Терпугова
26–30 июня 2019 г.

Часть 2

PATHALIC GO, TEXHAUR CO, TEXHA

ТОМСК «Издательство НТЛ» 2019

Оценка параметров плотности вероятности длительности интервала между событиями в рекуррентном полусинхронном потоке второго порядка методом моментов

Л.А. Нежельская, Д.А. Тумашкина

Национальный исследовательский Томский государственный университет, г. Томск, Россия

В телекоммуникационных системах, спутниковых сетях связи и глобальных компьютерных сетях функционируют информационные потоки сообщений [1, 2], адекватными математическими моделями которых являются дважды стохастические потоки событий [3–6].

В настоящей работе рассматривается полусинхронный поток событий второго порядка. Приводится явный вид плотности вероятности значений длительности интервала между моментами наступления событий потока, явный вид совместной плотности вероятности значений длительностей смежных интервалов и выписываются условия рекуррентности. Для рекуррентного потока решается задача оценивания параметров плотности методом моментов.

Постановка задачи

Рассматривается стационарный режим функционирования полусинхронного потока событий второго порядка (поток), сопровождающий случайный процесс которого $\lambda(t)$ является кусочно-постоянным с двумя состояниями S_1 и S_2 . Далее под i-м состоянием процесса понимается состояние S_i , если $\lambda(t)=\lambda_i$, $i=1,\ 2$; $\lambda_1>\lambda_2\geq 0$.

Длительность интервала между событиями потока в S_1 определяется случайной величиной $\eta = \min(\xi^{(1)},\ \xi^{(2)})$, где случайная величина $\xi^{(1)}$ имеет функцию распределения $F_1^{(1)}(t) = 1 - e^{-\lambda_1 t}$, случайная величина $\xi^{(2)} - F_1^{(2)}(t) = 1 - e^{-\alpha_1 t}$; $\xi^{(1)}$ и $\xi^{(2)}$ — независимые случайные величины.

В момент наступления события потока процесс $\lambda(t)$ переходит из состояния S_1 в S_i либо с вероятностью $P_1^{(1)}(\lambda_i|\lambda_1)$, либо с вероятно-

стью $P_1^{(2)}(\lambda_j\,|\lambda_1)\,,\;j=1,\;2\,,$ в зависимости от значения случайной величины η . Здесь $\sum_{j=1}^2 P_1^{(k)}(\lambda_j\,|\lambda_1) = 1\,,\;k=1,\;2\,.$

Длительность пребывания процесса $\lambda(t)$ в состоянии S_2 есть случайная величина с функцией распределения $F_2(t)=1-e^{-\alpha_2 t}$. В течение времени пребывания процесса $\lambda(t)$ в состоянии S_2 имеет место пуассоновский поток событий с параметром λ_2 . Процесс $\lambda(t)$ является скрытым марковским, наблюдаются только моменты наступления событий t_1,t_2,\ldots .

Требуется найти явный вид совместной плотности вероятности значений длительностей смежных интервалов и для рекуррентного потока оценить параметры плотности методом моментов.

Вид плотности $p(\tau)$ и совместной плотности $p(\tau_1, \tau_2)$

Обозначим $p(\tau_k)$ — плотность вероятности значений длительности интервала между событиями t_k и t_{k+1} , где $\tau_k = t_{k+1} - t_k$. В силу стационарного режима функционирования потока, $p(\tau_k) = p(\tau)$ для всех $k=1,\ 2,\ \dots,\ \tau \geq 0$. Поэтому момент t_k наступления события потока есть $\tau=0$.

Лемма 1. Условные финальные вероятности $\pi_i(0)$, i=1,2, в полусинхронном потоке событий второго порядка имеют вид

$$\pi_{1}(0) = \frac{\alpha_{2}[\lambda_{1}P_{1}^{(1)}(\lambda_{1} | \lambda_{1}) + \alpha_{1}P_{1}^{(2)}(\lambda_{1} | \lambda_{1})]}{\lambda_{2}[\lambda_{1}P_{1}^{(1)}(\lambda_{2} | \lambda_{1}) + \alpha_{1}P_{1}^{(2)}(\lambda_{2} | \lambda_{1})] + (\lambda_{1} + \alpha_{1})\alpha_{2}},$$

$$\pi_{2}(0) = \frac{(\lambda_{2} + \alpha_{2})[\lambda_{1}P_{1}^{(1)}(\lambda_{2} | \lambda_{1}) + \alpha_{1}P_{1}^{(2)}(\lambda_{2} | \lambda_{1})]}{\lambda_{2}[\lambda_{1}P_{1}^{(1)}(\lambda_{2} | \lambda_{1}) + \alpha_{1}P_{1}^{(2)}(\lambda_{2} | \lambda_{1})] + (\lambda_{1} + \alpha_{1})\alpha_{2}},$$

$$\pi_{1}(0) + \pi_{2}(0) = 1.$$
(1)

Теорема 1. Плотность вероятности значений длительности интервала между соседними событиями в коррелированном полусинхронном потоке второго порядка определяется выражением

$$p(\tau) = \gamma z_1 e^{-z_1 \tau} + (1 - \gamma) z_2 e^{-z_2 \tau}, \ \tau \ge 0,$$
 (2)

$$\gamma = \frac{\pi_1(0)(\lambda_1 + \alpha_1 - \lambda_2) - \alpha_2}{(\lambda_1 + \alpha_1) - (\lambda_2 + \alpha_2)}, \ z_1 = \lambda_1 + \alpha_1, \ z_2 = \lambda_2 + \alpha_2,$$
$$(\lambda_1 + \alpha_1) - (\lambda_2 + \alpha_2) \neq 0,$$

где вероятность $\pi_1(0)$ определена в (1).

Рассмотрим два смежных временных интервала (t_1,t_2) , (t_2,t_3) со значениями длительностей $\tau_1=t_2-t_1$ и $\tau_2=t_3-t_2$ соответственно. При этом совместная плотность вероятности есть $p(\tau_1,\tau_2)$, $\tau_1\geq 0$, $\tau_2\geq 0$ [6].

Теорема 2. Полусинхронный поток событий второго порядка в общем случае является коррелированным и совместная плотность вероятности значений длительностей смежных интервалов имеет вид

$$p(\tau_{1}, \tau_{2}) = p(\tau_{1})p(\tau_{2}) + \left(1 - \frac{\lambda_{1}P_{1}^{(1)}(\lambda_{2} \mid \lambda_{1}) + \alpha_{1}P_{1}^{(2)}(\lambda_{2} \mid \lambda_{1})}{\lambda_{1} + \alpha_{1}}\right) \frac{\lambda_{2}}{\lambda_{2} + \alpha_{2}} \times (3)$$

$$\times \gamma(1 - \gamma) \left[z_{1}e^{-z_{1}\tau_{1}} - z_{2}e^{-z_{2}\tau_{1}}\right] \left[z_{1}e^{-z_{1}\tau_{2}} - z_{2}e^{-z_{2}\tau_{2}}\right],$$

где $\tau_1 \geq 0$, $\tau_2 \geq 0$, γ , z_1 , z_2 , $p(\tau_k)$ определены в (2) для $\tau = \tau_k$, $k=1,\ 2$.

Условия рекуррентности полусихронного потока второго порядка

Рассмотрим случаи, когда поток является рекуррентным. Анализируя (3), заметим, что совместная плотность факторизуется $p(\tau_1, \tau_2) = p(\tau_1) p(\tau_2)$, если:

1)
$$[\lambda_1 P_1^{(1)}(\lambda_2 \mid \lambda_1) + \alpha_1 P_1^{(2)}(\lambda_2 \mid \lambda_1)]/(\lambda_1 + \alpha_1) = 1$$
, при этом из (1) и (2) получим $p(\tau) = \gamma z_1 e^{-z_1 \tau} + (1 - \gamma) z_2 e^{-z_2 \tau}$, где $\gamma = -\alpha_2/[(\lambda_1 + \alpha_1) - (\lambda_2 + \alpha_2)]$, $z_2 = \lambda_2 + \alpha_2$, $z_1 = \lambda_1 + \alpha_1$;

$$\begin{split} 2) \ \ \lambda_2 &= 0 \quad , \ \ \text{при этом} \quad p(\tau) = \gamma z_1 e^{-z_1 \tau} + (1-\gamma) z_2 e^{-z_2 \tau} \, , \ \ \text{где} \quad z_1 = \lambda_1 + \alpha_1 \, , \\ z_2 &= \alpha_2 \, , \ \ \gamma = [\lambda_1 P_1^{(1)}(\lambda_1 \mid \lambda_1) + \alpha_1 P_1^{(2)}(\lambda_1 \mid \lambda_1) - \alpha_2] / (\lambda_1 + \alpha_1 - \alpha_2) \, . \end{split}$$

Условие $\gamma(1-\gamma)=0$ дает простейший поток событий. Для рекуррентного потока оценим параметры плотности в случаях 1) и 2).

Оценивание параметров плотности методом моментов

Рассмотрим статистики $C_l=(1/n)\sum_{k=1}^n \tau_k^{\ l}$, где $\tau_k=t_{k+1}-t_k$. Пусть имеется выборка $\tau_1,\,\tau_2,\,...,\,\tau_n$ из распределения $p(\tau\,|\,z_1,z_2,\gamma)$, зависящего от трех неизвестных параметров $z_1,\,z_2,\,\gamma$. Пусть $M(\tau^l)=\int\limits_0^\infty \tau^l p(\tau\,|\,z_1,z_2,\gamma)\,d\tau$ — начальный теоретический момент l-го порядка. Тогда он близок к соответствующему выборочному моменту — статистике C_l при достаточно больших n. Для первых трех начальных моментов имеют место уравнения моментов $M(\tau^l)=C_l$, $l=1,\,2,\,3$. Учитывая вид плотности (2), получим

$$M(\tau^{l}) = l!\gamma/z_{1}^{l} + l!(1-\gamma)/z_{2}^{l}, l=1, 2, 3.$$
 (4)

Система (4) после необходимых преобразований примет вид

$$z_1 z_2 C_1 - z_2 \gamma - z_1 (1 - \gamma) = 0, \quad (z_1 + z_2) C_1 - z_1 z_2 C_2 / 2 = 1,$$

$$(z_1 + z_2) C_2 - z_1 z_2 C_3 / 3 = 2C_1.$$
(5)

Решая систему уравнений (5), получим состоятельные оценки \hat{z}_1 , \hat{z}_2 , $\hat{\gamma}$ параметров плотности $p(\tau)$ [7]

$$\hat{z}_{1,2} = \frac{1}{2} \left(-\frac{2(C_3 - 3C_1C_2)}{3C_2^2 - 2C_1C_3} \pm \sqrt{\left(\frac{2(C_3 - 3C_1C_2)}{3C_2^2 - 2C_1C_3}\right)^2 + 4\frac{6(C_2 - 2C_1^2)}{3C_2^2 - 2C_1C_3}} \right), \quad (6)$$

$$\hat{\gamma} = \hat{z}_1 (1 - C_1 \hat{z}_2) / (\hat{z}_1 - \hat{z}_2), \ \hat{z}_2 \neq \hat{z}_1.$$

Результаты численных расчетов

С целью установления качества оценивания проведены статистические эксперименты с использованием имитационной модели потока [8]. По формулам (6) вычисляются оценки \hat{z}_1 , \hat{z}_2 , $\hat{\gamma}$; находятся выборочные средние $\hat{M}(\hat{\theta}) = (1/N) \sum_{k=1}^N \hat{\theta}^{(k)}$ и выборочные вариации $\hat{V}(\hat{\theta}) = (1/N) \sum_{k=1}^N (\hat{\theta}^{(k)} - \theta)^2$, где $\theta \in \{z_1, z_2, \gamma\}$, $\hat{\theta} \in \{\hat{z}_1, \hat{z}_2, \hat{\gamma}\}$.

В статистическом эксперименте рассматривается поток при выполнении первого условия рекуррентности. Здесь $P_1^{(1)}(\lambda_2|\lambda_1)==P_1^{(2)}(\lambda_2|\lambda_1)=1$, $P_1^{(1)}(\lambda_1|\lambda_1)=P_1^{(2)}(\lambda_1|\lambda_1)=0$. При $T_m=700$ ед. времени, N=100, параметрах $\lambda_2=0,8$, $\alpha_2=1$ устанавливается зависимость $\hat{M}(\hat{\theta})$, $\hat{V}(\hat{\theta})$ от значений $z_1=\lambda_1+\alpha_1=4$, 6, 8, 10, 12, при этом положим $\lambda_1=\alpha_1$. Результаты эксперимента приведены в табл. 1–3.

 ${\rm T}\, {\rm a}\, {\rm f}\, {\rm n}\, {\rm h}\, {\rm ц}\, {\rm a} \quad {\rm 1}$ Результаты статического эксперимента для z_1

z_1	4	6	8	10	12
$\hat{M}(\hat{z}_1)$	4.3279	6.1566	8.0599	10.0345	11.9817
$\hat{V}(\hat{z}_1)$	0.1156	0.0254	0.0041	0.0020	0.0007

 $\label{eq:2.2} {\rm \mbox{\it T}}\, a\, \delta\, \pi\, u\, u\, a\, 2$ **Результаты статического эксперимента** для z_2

z_1	4	6	8	10	12
$\hat{M}(\hat{z}_2)$	2.1543	2.0167	1.9552	1.8959	1.8463
$\hat{V}(\hat{z}_2)$	0.1347	0.0593	0.0382	0.0066	0.0021
z_2	1.8	1.8	1.8	1.8	1.8

 $\label{eq: 2.1.1} \mbox{ Таблица 3}$ Результаты статического эксперимента для γ

z_1	4	6	8	10	12
$\hat{M}(\hat{\gamma})$	-0.7388	-0.3967	-0.2133	-0.1570	-0.1142
$\hat{V}(\hat{\gamma})$	0.0999	0.0278	0.0035	0.0022	0.0006
γ	-0.4545	-0.2380	-0.1612	-0.1219	-0.0980

Анализ численных результатов в таблицах 1–3 показывает, что с увеличением параметра z_1 , значение $\hat{V}(\hat{\theta})$ уменьшается, так как условия различимости состояний процесса $\lambda(t)$ улучшаются.

Заключение

В настоящей работе получен явный вид $p(\tau_1, \tau_2)$ и для рекуррентного потока построены оценки параметров плотности методом моментов. Алгоритм вычисления оценок реализован на языке программирования С# в среде Visual Studio 2013. Проведены статистические эксперименты.

ЛИТЕРАТУРА

- 1. Дудин А.Н., Клименок В.И. Системы массового обслуживания с коррелированными потоками. Минск: Изд-во Белорусского государственного университета, 2000. 175 с.
- 2. Basharin G.P., Gaidamaka Yu.V., Samouylov K.E. Mathematical theory of teletraffic and its application to the analysis of multiservice comminocation of next generation networks // Automatic Control and Computer Sciences. 2013. V. 47. No. 2. P. 62–69.
- 3. *Горцев А.М.*, *Нежельская Л.А.* Оценивание длительности мертвого времени и параметров синхронного альтернирующего потока событий // Вестник Томского государственного университета. 2003. № S6. C. 232–239.
- 4. *Горцев А.М.*, *Нежельская Л.А.* Оценивание параметров синхронного дважды стохастического потока событий методом моментов // Вестник Томского государственного университета. 2002. № S1-1. C. 24–29.
- Nezhelskaya L., Tumashkina D. Optimal state estimation of semi-synchronous event flow of the second order under its complete observability // Communications in Computer and Information Science. 2018. V. 912. P. 93–105.
- 6. Нежельская Л.А. Совместная плотность вероятностей длительности интервалов модулированного МАР-потока событий и условия рекуррентности потока // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2015. № 1 (30). С. 57–67.
- 7. *Малинковский Ю.В.* Теория вероятностей и математическая статистика (часть 2. Математическая статистика). Гомель: УО "ГТУ им. Ф. Скорины", 2004. 146 с.
- 8. Нежельская Л.А., Тумашкина Д.А. Имитационная модель полусинхронного потока второго порядка // Труды Томского государственного университета. Серия физико-математическая. Томск: Издательский Дом ТГУ, 2016. Т. 299. С. 109–114.