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A B S T R A C T

Mixed convective flow in a vertical channel filled with electrically conducting viscous fluid with
isothermal wall conditions is investigated for variable properties. The combined effects of tem-
perature dependent viscosity and temperature dependent thermal conductivity are analyzed. The
solutions are obtained both analytically by perturbation method and numerically by Runge–Kutta
method with shooting technique. The dimensionless governing parameters affecting velocity and
temperature fields are variable viscosity parameter (−0.5≤ bν ≤ 0.5), variable thermal con-
ductivity parameter (−0.5 ≤ bk ≤ 0.5), Hartmann number (1≤M≤ 3), applied electric field
parameter (E0= ±1, 0), wall temperature ratio parameter (−2≤m≤ 2) and buoyancy para-
meter (0 < N≤ 1.5). For some limiting cases, the obtained results are validated by comparing
with those available from the existing literature. Correlations for skin friction and Nusselt
number in terms of governing parameters are developed.

1. Introduction

When a conductive fluid moves through a magnetic field, an ionized gas is electrically conductive, the fluid may be influenced by
the magnetic field. The birth of magnetohydrodynamic (MHD) phenomenon may be identified with the first experiments by Faraday
who attempted to measure the electric potential induced between the opposite banks of the Thames River by the motion of the
(weakly) conducting water in the Earth's magnetic field [1]. The principle behind Faraday's (unsuccessful) experiment is the same
which underlies modern MHD flow meters. About in the same period, Ritchie developed a rudimentary electro-magnetic pumping
device, although the first working MHD pump was presented only much later [2]. MHD natural convection heat transfer flow is of
considerable interest in the technical field due to its frequent occurrence in industrial technology and geothermal application, high-
temperature plasmas applicable to nuclear fusion energy conversion, liquid metal fluids, and MHD power generation systems.
Roming [3] studied the effect of electric and magnetic fields on the heat transfer of electrically conducting fluids. Hartmann [4]
carried out the pioneer work on the study of steady MHD channel flow of a conducting fluid under a uniform magnetic field
transverse to an electrically insulated channel wall. Later Osterle and Young [5] investigated the effect of viscous and Joule dis-
sipations on hydromagnetic free convection flows and heat transfer between two vertical plates with transverse magnetic field under
short circuit condition. Garandet et al. [6] analyzed the buoyancy driven convection in a rectangular enclosure with a transverse
magnetic field. The analysis of MHD mixed convection interaction with thermal radiation and higher order chemical reaction is
carried out by Makinde [7]. Mahian et al. [8] discussed entropy generation between two vertical cylinders in the presence of MHD
flow subjected to constant wall temperature. Irreversibility analysis of a vertical annulus using TiO2/water nanofluid with MHD flow
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effects was also studied by Mahian et al. [9]. Aziz [10] theoretically examined a similarity solution for a laminar thermal boundary
layer over a flat plate with a convective surface boundary condition. He found an interesting result that a similarity solution is
possible if the convective heat transfer along with the hot fluid on the lower surface of the plate is inversely proportional to the square
root of the axial distance. Öztop et al. [11] studied MHD natural convection in an enclosure from two semi-circular heaters on the
bottom wall. Effects of moving lid direction on MHD mixed convection in a linearly heated cavity were analyzed by Al-Salem et al.
[12]. The combined effects of an exponentially decaying internal heat generation and a convective boundary condition on the
thermal boundary layer over a flat plate are investigated by Olanrewaju et al. [13]. Malashetty et al. [14] studied the magneto-
hydrodynamic two fluid flow and heat transfer in an inclined channel. Prathap Kumar et al. [15] analyzed the MHD mixed convection
flow of viscous fluid in a vertical channel. Umavathi et al. [16] and Umavathi and Liu [17] studied the laminar MHD convective flow
in a vertical channel in the presence of heat generation and heat absorption. Recently Selimefendigil and Öztop [18] worked on the
analysis of MHD mixed convection in a flexible walled and nanofluids filled lid-driven cavity with volumetric heat generation. The
same authors Selimefendigil and Öztop [19] also analyzed MHD mixed convection and entropy generation of power law fluids in a
cavity with a partial heater under the effect of a rotating cylinder. Soid et al. studied numerically the problem of unsteady MHD
stagnation point flow over a stretching/shrinking sheet in a viscous fluid with viscous dissipation and ohmic heating [20] and steady
MHD flow past a radially stretching or shrinking disk [21]. Analysis was performed using the similarity technique and Matlab
software. Impact of magnetic field was examined in detail.

The use of electrically conducting fluids under the influence of magnetic fields in various industries has lead to the renewed
interest in investigating flow structures and heat transfer in different geometries. For example, Sparrow and Cess [22] and Umavathi
[23] studied MHD convective heat transfer in vertical channel in the presence of electric field. Umavathi et al. [24] numerically
studied fully developed magnetoconvection flow in a vertical rectangular duct.

In recent years, much attention has been devoted to the study of MHD effects on natural and mixed convection flows [25–35].
Indeed, convective flows in presence of magnetic fields occur in many technical applications, for instance, the optimization of
industrial casting of metals [33]. In particular, an analytical solution for the natural convection in a two-dimensional rectangular
cavity in the presence of a vertical magnetic field has been determined by Garandet et al. [25]. Pan and Li [26] has studied the mixed
convection in a vertical plane channel with a horizontal magnetic field, in conditions of micro gravity with a gravitational accel-
eration that oscillates in time with a sinusoidal law (g-jitter effect). The mixed convection flow in a horizontal circular duct in the
presence of a uniform vertical magnetic field has been studied numerically in [27]. An experimental study of the natural convection
of Na22K78 alloy in a cavity with a rectangular section under the vertical magnetic field effect, has been presented by Burr and Muller
[28]. These authors have shown that the magnetic field produces a symmetric reduction of heat fluxes in the fluid. Bondareva and
Sheremet [29,30] have numerically analyzed the effect of uniform magnetic field on natural convection melting in a square [29] and
cubical [30] cavities with a local heater. It has been found that uniform magnetic field allows to essentially homogenize the melting
inside the cavity, while the melt rate changes insignificantly. Mixed convection in a vertical channel under the effects of viscous
dissipation and Joule heating has been studied by Umavathi and Malashetty [31]. They determined the velocity and temperature
distributions both analytically, by means of a perturbation expansion and numerically, by the finite difference method. Sposito and
Ciofalo [32] have obtained analytical solutions of the local balance equations for fully developed mixed convection in a vertical plane
channel, by considering isothermal walls and several electric boundary conditions. Sheikholeslami and Rokni [34] have examined
MHD nanofluid flow and heat transfer with melting thermal transmission using the Buongiorno's two-component model. Effects of
governing parameters on the average Nusselt number have been described. Sheikholeslami and Oztop [35] have investigated an
influence of external magnetic source on ferrofluid convection in a cavity with sinusoidal outer cylinder. It has been shown that an
impact of adding nanoparticles is more effective in high Hartmann number.

Nomenclature

B0 uniform magnetic field
b width of the channel
b̃ empirical constant for the thermal conductivity
bν viscosity variation parameter
bk conductivity variation parameter
E electric field loading parameter
E0 applied electric field
g acceleration due to gravity
K thermal conductivity of the fluid
K0 thermal conductivity at temperature T0
M Hartmann number
m wall temperature ratio
N buoyancy parameter
Nu1, Nu2 dimensionless Nusselt numbers
p pressure
P dimensionless pressure
T0 reference temperature

T fluid temperature
T1, T2 wall temperatures
U velocity
u dimensionless velocity
Y dimensional coordinate axis
y dimensionless coordinate axis

Greek symbols

β thermal expansion coefficient
μ dynamic viscosity
μ0 dynamic viscosity at temperature T0
θ dimensionless temperature
ρ density of the fluid
ρ0 static density
σe electrical conductivity
τ1, τ2 dimensionless skin friction
ν0 kinematic viscosity
ΔT temperature difference
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All the above mentioned studies continued their discussion by assuming the uniform fluid viscosity and thermal conductivity.
However, it is known that the physical properties of fluid may be changed significantly with temperature [36–42]. The variations of
properties with temperature have several practical applications in the field of metallurgy and chemical engineering. The temperature
increase leads to a local growth of the transport phenomena by reducing the viscosity across the momentum boundary layer and the
heat transfer rate at the wall is also affected. Therefore, to predict the flow behavior accurately it is necessary to take into account the
viscosity variation for incompressible fluids. Gary et al. [43] and Mehta and Sood [44] showed that, when this effect is included the
flow characteristic may be changed substantially compared to constant viscosity assumption. For lubricating fluids the heat generated
by internal friction and the corresponding rise in the temperature affect the viscosity of the fluid and so the fluid viscosity is no longer
to be constant.

Liquid metals have high thermal conductivity and they are used as coolants, moreover they have high electrically conductivity
hence they are susceptible to transverse magnetic field. The Prandtl number of liquid metals is low and generally it is of order
0.01–0.1, e.g. Bismuth (Pr=0.011), Mercury (Pr=0.023), PbBi (Pr=0.18) etc. Kay [45] reported that thermal conductivity of
liquids with low Prandtl number varies linearly with temperature in range of 0°F–400°F. Arunachalam and Rajappa [46] considered
forced convection in liquid metals (fluids with low Prandtl numbers) with variable thermal conductivity and heat capacity in po-
tential flow and they derived explicit closed form of analytical solution. Chaim [47] studied the heat transfer of low Prandtl number
fluid with variable thermal conductivity, induced due to stretching sheet and he compared the numerical results with the results
obtained by perturbation technique. Van den Berg et al. [48] and Van den Berg and Yuen [49] showed that variable thermal
conductivity can delay the secular cooling of the mantle with a constant viscosity model. El-Aziz [50] analyzed the effect of tem-
perature dependent viscosity and thermal conductivity on MHD flow over stretching sheet in the presence of Ohmic heating. Elgazery
and Elazem [51] studied the effect of variable viscosity and thermal conductivity on the heat and mass transfer in MHD natural
convective flow. Sharma and Singh [52] obtained the similarity solution of natural convective flow taking into account temperature
dependent viscosity and thermal conductivity in the presence of transverse magnetic field and exponentially decaying heat source.

Aim of the present paper is to investigate the combined effects of exponential varying viscosity and thermal conductivity on the
mixed convection flow of viscous incompressible electrically conducting fluid in a vertical channel in the presence of viscous dis-
sipation, Ohmic heating, transverse magnetic field and applied electric field. The non-dimensional governing equations are solved
analytically using the perturbation method and numerically by Runge–Kutta method with shooting technique. The combined effect of
viscosity and thermal conductivity variation on the flow variables such as velocity, temperature, skin friction, and Nusselt number is
studied. The solutions obtained by the Runge–Kutta method with shooting technique are justified by comparing with solutions
obtained by perturbation method.

2. Mathematical formulation

Fully developed flow of Newtonian fluid in a vertical channel is studied (see Fig. 1). The vertical channel walls are kept at
constant temperatures T1 and T2. The domain of interest is defined by Y-coordinate, where − ≤ ≤b Y b. It should be noted that fluid
flow is defined by the effect of buoyancy force and electromagnetic force. Along the rigid walls one can find a zero velocity and these
walls are infinite in the X-direction. The latter characterizes that the problem is essentially one-dimensional. The fluid is heat-

Fig. 1. Domain of interest.
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conducting, viscous and the Boussinesq approximation is valid. The fluid flow and heat transfer are described taking into account the
temperature dependent viscosity and thermal conductivity.

The governing equations in the presence of viscous dissipation, Ohmic heating, transverse magnetic field and applied electric field
in the case of variable physical properties can be defined as follows
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The boundary conditions for the velocity and temperature fields are given as

= = ±U Y b0 at (3)

= = − = =T T Y b T T Y bat , at1 2 (4)

The fluid viscosity μ is considered as follows [53,54]

= − −μ μ e a T T
0

( )0 (5)

where the subscript “0” denotes the reference state and a is an empirical constant.
The thermal conductivity of the fluid is assumed as [53,54]
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Eqs. (1) and (2) can be written in a non-dimensional form using the following parameters

= = − = =

= = =
∂
∂

u
μ

ρ gβb T
U θ T T

T
y Y

b
N

ρ b g β T
μ K

M
σ B b

μ
E ν E

b B gβ T
P b

μ u
p
X

Δ
,

Δ
, ,

Δ
,

,
Δ

,
¯

e

0

0
2

0 0
2 4 2 2

0 0

2 0
2 2

0

0 0
2

0

2

0 (7)

Using temperature dependences for viscosity (5) and thermal conductivity (6) the governing Eqs. (1)–(4) can be reduced to
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with corresponding boundary conditions

= = ±u y0 at 1 (10)

= + = − = =θ m y θ y1 at 1, 1 at 1 (11)

where = − =T T T b a TΔ , Δv2 0 is the variable viscosity parameter, = −m T T
TΔ

1 2 is the wall temperature ratio and N is the buoyancy
parameter.

3. Solutions

The solutions of the governing equations of motion are found using perturbation method and numerical method based on the
Runge–Kutta algorithm with shooting technique.

3.1. Perturbation method

Eqs. (8) and (9) are coupled nonlinear equations due to variable physical parameters, viscous dissipation, Ohmic heating,
transverse magnetic field and applied electric field and it is difficult, in general, to solve analytically. When neglecting the viscous
dissipative heating (N=0), Eqs. (8) and (9) become linear and solutions can be easily obtained. In many practical applications cited
above, N can not be zero (N≠ 0), but in many situations it can take small values. For example, for mercury in a channel of half-width
2 cm, and with − = ∘T T 20 C1 0 , N takes the value of 0.128. Small values of N(< 1) facilitate the finding analytical solutions of Eqs. (9)
and (10) in the form

= + + ……u u Nu0 1 (12)

= + + ……θ θ Nθ0 1 (13)

where the second and higher order terms on the right-hand side give a correction to u0, θ0 accounting for the dissipative effects.
Substituting Eqs. (12) and (13) into Eqs. (8) and (9), and equating like powers of N to zero, we obtain the following equations.
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Zeroth order equations are
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with corresponding boundary conditions
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First order equations are
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with corresponding boundary conditions

= = ±u y0 at 11 (20)

= = ±θ y0 at 11 (21)

We shall further perform a perturbation analysis of the Eqs. (14), (15), (18) and (19) considering variable conductivity parameter
as a perturbation parameter. The solutions of Eqs. (14), (15), (18) and (19) are assumed as follows

= +u u b uk0 00 01 (22)

= +θ θ b θk0 00 01 (23)
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Substituting Eqs. (22) and (23) into Eqs. (14) and (15) and considering powers of bk, we obtain the following boundary value
problems.
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Substituting Eqs. (24) and (25) into Eqs. (18) and (19) and considering powers of bk, we obtain the following boundary value
problems.

First order equations are
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The solutions of Eqs. (26)–(29) can be obtained easily and hence they are not represented here. The results are presented in graphs
and tabular form.
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3.2. Numerical solutions

The analytical solutions obtained in the above section are valid for small values of perturbation parameters. Further it is seen in
the above section that it is not possible to find solutions of even the first order. Hence we used Runge–Kutta method with shooting
technique (RKSM) for numerical solution to the formulated problem. The validity of RKSM is justified by comparing the solutions
with the results obtained by the perturbation method and the values are displayed in Tables. The perturbation method and RKSM
solutions agree very well in the absence of perturbation parameter.

Also the used RKSM has been validated using the data of Crepeau and Clarksean [55] presented in Table 1.

3.3. Skin friction and Nusselt number

During the present problem we also defined the following parameters: the dimensionless skin friction
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4. Results and discussion

To the study the behavior of solutions, numerical calculations for several values of variable viscosity parameter bν, thermal
conductivity parameter bk, Hartmann number M, wall temperature ratio m and buoyancy parameter N for open = ±E( 1) and short
(E=0) circuits have been carried out and displayed graphically. Figs. 2–11 show the effect of these governing parameters on fluid
flow and heat transfer.

The effects of variable viscosity parameter bν on the velocity and temperature profiles for open and short circuits can be found in
Figs. 2 and 3. An increase in bν leads to a growth of the temperature profiles for open and short circuit. While in the case of velocity
profiles, it is possible to conclude that for E=1 one can find a formation of descending flow where an increase in bν leads to a
reduction of the absolute velocity value. At the same time one can find an asymmetrical distribution of velocity inside the channel
due to a presence of variable physical properties. Further one can also observe that for short circuit E=0 and E=−1, as bν
increases, the velocity increases and the profiles for constant viscosity (bν=0) lies above bν < 0 and below bν > 0. For open and
short circuit, the effect of variable viscosity parameter bν on the velocity was the similar to results observed by Attia [56] for MHD
channel flow of dusty fluids. For constant viscosity (bν=0), the results agree well with data of Umavathi and Malashetty [31].

The effects of variable conductivity parameter bk on the velocity and temperature fields for open and short circuits are observed in
Figs. 4 and 5. The effect of thermal conductivity parameter bk shows the opposite results on the velocity and temperature fields when
compared with variable viscosity parameter (Figs. 2 and 3). That is to say that an increase in the thermal conductivity parameter
leads to a reduction of temperature. While velocity decreases for E=−1 and 0 and it increases for E=1, where a descending flow
formed. For open and short circuits, the effect of bk is similar to results obtained by Attia [57] and Palani and Kim [58]. For constant
thermal conductivity (bk=0), the results agree well with data of Umavathi and Malashetty [31].

Figs. 6 and 7 show the effect of Hartmann number M. It is seen that an increase in M leads to an attenuation of the flow for short
circuit (E=0), whereas for open circuits = ±E( 1) one can find an acceleration of the fluid flow. The nature of velocity profiles for
E=− and for E=1 is in the opposite directions exhibiting the tunneling effect, namely, boundary layer nature near the boundaries
and a flattening nature in the middle of the channel. This is a classical Hartmann result. This is also a similar result observed by
Umavathi and Malashetty [31] for constant properties. The effect of Hartmann number M on temperature field is not very effective.
However one can see from Fig. 7 that as M increases the temperature decreases for both open and short circuits, the magnitude of
temperature is low for E=0 and high for E=1.

Figs. 8 and 9 illustrate the plots of u and θ for variations of wall temperature ratio m. As the wall temperature ratio m increases the
velocity and temperature are enhanced for both open and short circuits. It is an expected result because the boundary conditions for
temperature are defined as = +θ m1 at the left wall and =θ 1 at the right wall. For values of m < 0 the temperature of the left wall
is less then the temperature of the right wall, for m=0 both walls are maintained at equal temperatures, and for values of m > 0 the
left wall is at higher temperature. Therefore as m increases, rate of heat transfer also increases which in turn results in the

Table 1
Comparison of =dθ dη/ |η 0 for the similarity equations for a constant temperature plate.

Pr 0.1 1.0 10.0

Data of Crepeau and Clarksean [55] −0.2302 −0.5671 −1.169
Obtained data −0.230142 −0.567147 −1.16933
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enhancement of velocity profiles.
Figs. 10 and 11 show the fluid flow intensification and heat transfer enhancement with buoyancy parameter N for both open and

short circuits. From Fig. 10, it is seen that the direction of velocity for E> 0 is opposite to that for E< 0 and hence present results can
be used effectively for the flow reversal situation required in many practical problems. Fig. 11 display that as the buoyancy parameter
N increases, temperature increases for both open (E= ±1) and short circuits (E=0). The increase in temperature is higher for
E=1. The effect of N is to enhance the velocity and temperature fields. Physically, increase in the buoyancy parameter implies that N
acts as the driving force in the momentum equation, the velocity and/or velocity gradient increases and therefore the effect of
dissipation increases, which results in the enhancement of temperature field also. The effect of N on the flow for variable properties is
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the similar result observed by Umavathi and Malashetty [31] for constant properties.
Table 2 shows the values of skin friction and Nusselt number for different values of variable viscosity parameter bν, variable

thermal conductivity parameter bk, Hartmann number M, wall temperature ratio m and buoyancy parameter N for open and short
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circuits. One can find that as bν increases the absolute value of skin friction decreases at both walls for open circuits, while for short
circuits the maximum absolute values of τ1 and τ2 are at bν=0. At the same time, Nusselt numbers increase at the left wall and
decrease at the right wall for open circuit whereas for short circuit the effect is nonlinear. Fixing bν=0.1, a growth of bk leads to a
decrease in the absolute values of skin friction at both walls for E=−1 and 0, while the absolute values of skin friction increase with
bk for E=1. At the same time Nusselt numbers at both walls are increasing functions of bk for open and short circuits. As the
Hartmann number M increases the absolute values of skin friction increase for E=−1 and 1 and these values decrease for E=0.
While the Nusselt number decreases at the left wall and increases at the right wall with Hartmann number for E=−1 and 1 and for
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E=0 the behavior is opposite. When the wall temperature ratio m rises, the absolute values of skin friction increase at the left and
right walls for E=−1 and 0 and these values decrease at both walls for E=1. At the same time the Nusselt number increases at both
walls for open and short circuits. A growth of the buoyancy parameter N increases the skin friction at the left wall and decreases it at
the right wall for both open and short circuits. Nusselt number is decreased at the left wall and it is increased at the right wall as
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buoyancy parameter N increases for both open and short circuits.
The analytical solutions obtained by regular perturbation method are valid only for small values of perturbation parameter. To

overcome this restriction, the governing equations have been solved numerically using the Runge–Kutta method with shooting
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Table 2
Computations showing the effect of governing parameters on skin frictions and Nusselt numbers.

τ1 τ2 Nu1 Nu2

bν = − = = = = = −b m M N P E0.2, 1, 2, 0.01, 0.5, 1k

−0.5 5.12485 −3.59855 0.258501 0.46259
0 2.55161 −2.28339 0.264175 0.455602
0.5 1.20202 −1.42732 0.271253 0.448532

bν = − = = = = =b m M N P E0.2, 1, 2, 0.01, 0.5, 0k

−0.5 0.140698 −0.219221 0.271869 0.442887
0 0.622773 −0.354437 0.271307 0.443532
0.5 0.456137 −0.326862 0.271655 0.443431

bν = − = = = = =b m M N P E0.2, 1, 2, 0.01, 0.5, 1k

−0.5 −4.84775 3.160200 0.258415 0.462437
0 −1.30410 1.572330 0.264277 0.455822
0.5 −0.28940 0.772945 0.270752 0.448054

bk = = = = = = −b m M N P E0.1, 1, 2, 0.01, 0.5, 1v

−0.5 2.20944 −2.08838 0.000000 0.328313
0 2.19844 −2.07598 0.482244 0.518034
0.5 2.18629 −2.06468 1.223810 0.629572

bk = = = = = =b m M N P E0.1, 1, 2, 0.01, 0.5, 0v

−0.5 0.616629 −0.367296 0.0000 0.3246
0 0.601713 −0.349951 0.498247 0.501263
0.5 0.584880 −0.33453 1.29057 0.592599

bk = = = = = =b m M N P E0.1, 1, 2, 0.01, 0.5, 1v

−0.5 −0.975782 1.35300 0.000000 0.328068
0 −0.992439 1.37335 0.482611 0.518427
0.5 −1.011700 1.39125 1.223650 0.629914

M = = = = = = −b b m N P E0.1, 0.1, 1, 0.01, 0.5, 1v k

1 1.52272 −1.28547 0.617333 0.534105
2 2.19609 −2.07363 0.605427 0.545157
3 2.89706 −2.89909 0.594193 0.555951

M = = = = = =b b m N P E0.1, 0.1, 1, 0.01, 0.5, 0v k

1 0.888787 −0.605220 0.626599 0.526202
2 0.598493 −0.346706 0.628535 0.524884
3 0.431879 −0.218634 0.629551 0.524230

M = = = = = =b b m N P E0.1, 0.1, 1, 0.01, 0.5, 1v k

1 0.257739 0.0720698 0.617582 0.534361
2 −0.99609 1.3771400 0.605921 0.545614
3 −2.03108 2.4595600 0.594670 0.556378

m = = = = = = −b b N M P E0.1, 0.1, 0.01, 2, 0.5, 1v k

−2 1.56060 −1.80565 −0.8325220 −1.194770
0 1.98544 −1.98544 −0.0214239 0.0214239

(continued on next page)
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technique. The validity of the Runge–Kutta shooting method is justified by Table 1 and comparing with the results obtained by
perturbation method in the absence of variable thermal conductivity parameter bk and displayed in Table 3. It is viewed from Table 3
that the analytical and numerical solutions are exact for bk=0 and the error increases as variable thermal conductivity parameter bk
increases.

5. Conclusions

The problem of mixed convective flow of an electrically conducting fluid in a vertical channel under the effects of viscous
dissipation, Ohmic heating, transverse magnetic field and applied electric field was studied analytically and numerically. The ana-
lytical solutions were defined by the perturbation method valid for small values of perturbation parameter, while numerical solutions
were found by Runge–Kutta shooting method valid for any values of governing parameters. The Runge–Kutta shooting method and
perturbation method show good agreement in the absence of buoyancy parameter. The following results were revealed:

1. For the combined effect of variable viscosity and thermal conductivity, an increase in the variable viscosity parameter enhances
the flow and heat transfer whereas the increase in the variable thermal conductivity parameter suppresses the flow and heat
transfer for E=−1 and 0. Behavior is opposite for E=1. The Hartmann number accelerates the flow for open circuit and
suppresses the flow for short circuit.

2. The wall temperature ratio and buoyancy parameter enhance the flow for the combined effect of variable viscosity parameter and
variable thermal conductivity parameter for both open and short circuits.

3. The solutions obtained by Runge–Kutta shooting method and perturbation method are exact in the absence of variable thermal
conductivity parameter and the error increases as the variable thermal conductivity parameter increases.
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Table 2 (continued)

τ1 τ2 Nu1 Nu2

2 2.39597 −2.15978 1.40730000 1.0198100

m = = = = = =b b N M P E0.1, 0.1, 0.01, 2, 0.5, 0v k

−2 −0.528263 −0.0175782 −0.8163050 −1.2173600
0 0.2399270 −0.2399270 −0.0004268 0.0004268
2 0.9324300 −0.4498430 1.43210000 1.0001800

m = = = = = =b b N M P E0.1, 0.1, 0.01, 2, 0.5, 1v k

−2 −2.614290 1.76763 −0.8332680 −1.195920
0 −1.502550 1.50255 −0.0214246 0.0214246
2 −0.528163 1.25700 1.40810000 1.0206000

N = − = = = = = −b b m M P E0.1, 0.2, 1, 2, 0.5, 1v k

0.1 2.96011 −2.51178 0.294366 0.864145
0.5 3.07973 −2.61609 −1.69180 2.188390
1 3.24026 −2.75574 −4.34601 3.960940

N = − = = = = =b b m M P E0.1, 0.2, 1, 2, 0.5, 0v k

0.1 0.606163 −0.335355 0.750355 0.556560
0.5 0.613481 −0.341525 0.647516 0.610361
1 0.623583 −0.350078 0.507077 0.684830

N = − = = = = =b b m M P E0.1, 0.2, 1, 2, 0.5, 1v k

0.1 −1.70534 1.80222 0.300400 0.870547
0.5 −1.63005 1.72840 −1.69499 2.242880
1 −1.51543 1.61259 −4.51823 4.184910
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