ТЕЗИСЫ ДОКЛАДОВ

INTERNATIONAL WORKSHOP

«Multiscale Biomechanics and Tribology of Inorganic and Organic Systems»

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ

«Перспективные материалы с иерархической структурой для новых технологий и надежных конструкций»

VIII ВСЕРОССИЙСКАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ С МЕЖДУНАРОДНЫМ УЧАСТИЕМ, ПОСВЯЩЕННАЯ 50-ЛЕТИЮ ОСНОВАНИЯ ИНСТИТУТА ХИМИИ НЕФТИ

«Добыча, подготовка, транспорт нефти и газа»

Томск Издательский Дом ТГУ 2019

DOI: 10.17223/9785946218412/201

ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ МИКРОСТРУКТУРЫ И МИКРОТВЕРДОСТИ ОБРАЗЦОВ Ni₃Al, СИНТЕЗИРОВАННЫХ МЕТОДОМ ИСКРОВОГО ПЛАЗМЕННОГО СПЕКАНИЯ, В ЗАВИСИМОСТИ ОТ ПРОДОЛЖИТЕЛЬНОСТИ ПРЕДВАРИТЕЛЬНОЙ МЕХАНИЧЕСКОЙ АКТИВАЦИИ

¹Осипов Д.А., ^{1,2}Смирнов И.В., ^{1,2}Гриняев К.В., ¹Мельников В.В., ³Корчагин М.А., ^{1,2}Дитенберг И.А. ¹Томский государственный университет, Томск ²Институт физики прочности и материаловедения СО РАН, Томск ³Институт химии твердого тела и механохимии СО РАН, Новосибирск

На сегодняшний день комбинированное использование механической активации с последующим импульсным плазменным спеканием широко применяется при получении сплавов разных систем, в том числе жаропрочных материалов на интерметаллидной основе. Одной из актуальных задач по-прежнему является выявление влияния механической активации на процессы спекания/синтеза.

В настоящей работе проведено изучение влияния продолжительности предварительной механической активации на термическую стабильность микроструктуры и микротвердости образцов Ni₃Al, синтезированных методом искрового плазменного спекания.

Механическая активация смеси порошков 3Ni-Al проведена в энергонапряженных планетарных шаровых мельницах $A\Gamma O-2$ с водяным охлаждением. Продолжительность обработки составляла 1, 3.5, 5.5 и 10.5 минут. Импульсное плазменное спекание прекурсоров проведено при температуре $1050\,^{\circ}$ С. Полученные образцы Ni_3Al подвергли часовыми вакуумными отжигами при температурах 1100, 1200 и $1300\,^{\circ}$ С.

Установлено, что влияние продолжительности предварительной механической активации на микроструктуру и свойства образцов Ni_3Al , синтезированных методом искрового плазменного спекания, сохраняется независимо от режима дальнейшего температурного воздействия.

Выявлено, что повышение температуры отжига сопровождается плавным снижением средних значений микротвердости. При этом увеличение разброса значений микротвердости с ростом температуры отжига образцов с малой продолжительностью предварительной механической активации связано с формированием неоднородной зеренной структуры.

Использовано оборудование Томского материаловедческого центра коллективного пользования ТГУ. Работа выполнена при поддержке Министерства образования и науки Российской Федерации (Государственное задание № 3.9586.2017/8.9).