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Abstract—We extend the category of (super)manifolds and their smooth mappings by intro-
ducing a notion of microformal, or “thick,” morphisms. They are formal canonical relations of a
special form, constructed with the help of formal power expansions in cotangent directions. The
result is a formal category so that its composition law is also specified by a formal power series.
A microformal morphism acts on functions by an operation of pullback, which is in general a
nonlinear transformation. More precisely, it is a formal mapping of formal manifolds of even
functions (bosonic fields), which has the property that its derivative for every function is a ring
homomorphism. This suggests an abstract notion of a “nonlinear algebra homomorphism” and
the corresponding extension of the classical “algebraic–functional” duality. There is a parallel
fermionic version. The obtained formalism provides a general construction of L∞-morphisms
for functions on homotopy Poisson (P∞) or homotopy Schouten (S∞) manifolds as pullbacks
by Poisson microformal morphisms. We also show that the notion of the adjoint can be gener-
alized to nonlinear operators as a microformal morphism. By applying this to L∞-algebroids,
we show that an L∞-morphism of L∞-algebroids induces an L∞-morphism of the “homotopy
Lie–Poisson” brackets for functions on the dual vector bundles. We apply this construction
to higher Koszul brackets on differential forms and to triangular L∞-bialgebroids. We also
develop a quantum version (for the bosonic case), whose relation to the classical version is like
that of the Schrödinger equation to the Hamilton–Jacobi equation. We show that the nonlinear
pullbacks by microformal morphisms are the limits as � → 0 of certain “quantum pullbacks,”
which are defined as special form Fourier integral operators.
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INTRODUCTION

1. Generalization of pullbacks and homotopy brackets. Constructing L∞-morphisms
between L∞-algebras is in general a difficult task; in some cases a particular example of an L∞-mor-
phism can represent a solution of a highly nontrivial problem such as Kontsevich’s construction [23]
of deformation quantization of Poisson manifolds.
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MICROFORMAL GEOMETRY AND HOMOTOPY ALGEBRAS 89

One of the results of this paper is a general method giving L∞-morphisms for L∞-algebras of
functions. This is based on a certain extension, or “thickening,” of the usual category of smooth
manifolds or supermanifolds.

It is well known that the duality of the geometric (“functional”) and algebraic viewpoints (see,
e.g., [30]) plays an important role in many mathematical theories, sometimes as a heuristic principle,
and sometimes in the form of precise statements and constructions, such as the Gelfand duality or
Grothendieck’s theory of schemes. By the geometric viewpoint, we mean a picture based on “spaces”
(in one or another sense), and by the algebraic viewpoint, a picture based on algebras, treated as
algebras of functions. Under this duality, maps of spaces correspond to algebra homomorphisms,
so that to a map there corresponds the pullback of functions, ϕ∗ : g �→ ϕ∗(g) = g ◦ ϕ, which is
a linear map preserving the multiplication, i.e., a homomorphism. In the present paper, we give
constructions leading to a nonlinear generalization of such a duality.

We construct two formal categories extending the category of smooth (super)manifolds and
smooth maps, with the same set of objects. Morphisms Φ in these formal categories, which we call
microformal or thick morphisms, still act on smooth functions by a generalization of pullbacks. A key
ingredient in the construction is an equation of the fixed point type, whose solution is obtained by
iterations. Pullbacks by thick morphisms Φ∗ are formal nonlinear differential operators, represented
by perturbative series around ordinary pullbacks combined with additive shifts. Nonlinearity is the
distinctive property of these new pullbacks. Similar equations and perturbative series arise for the
composition law of thick morphisms (which is therefore formal).

Because of the nonlinearity, we have to distinguish functions that are of odd or even parity in
the sense of the Z2-grading, as they have different commutativity properties. That is why there are
two formal categories, so that morphisms in one of them, denoted EThick, induce pullbacks of even
functions (“bosonic fields”), while morphisms in the other, denoted OThick, induce pullbacks of odd
functions (“fermionic fields”). They are obtained by parallel constructions. Each of them contains the
semidirect product category SMan �C∞ or SMan �ΠC∞, respectively, as a closed subspace and
can be regarded as its formal neighborhood. (Here SMan is the ordinary category of supermanifolds
and C∞ or ΠC∞ is the space of even or odd functions, on which smooth maps act by pullbacks.)
There are embedding and retraction functors SMan�C∞ � EThick and SMan�ΠC∞ � OThick.

“Nonlinear pullbacks” were first introduced by us in [44] for the purpose of constructing L∞-mor-
phisms of homotopy Poisson algebras of functions (motivated by a problem for higher Koszul brack-
ets [21]). Such an L∞-morphism by definition should be a nonlinear map of functional superman-
ifolds, so it certainly cannot be a usual pullback. The idea of the construction of a “nonlinear
pullback” was inspired by the cotangent philosophy of Kirill Mackenzie [27]. As we showed, these
newly defined pullbacks with respect to thick morphisms indeed give the desired solution for ho-
motopy Poisson brackets. Namely, if a thick morphism Φ is Poisson, which means that the master
Hamiltonians or multivector fields specifying homotopy Schouten or Poisson structures are Φ-re-
lated (a condition expressed in coordinates by a Hamilton–Jacobi type equation), then the pullback
map Φ∗ is an L∞-morphism of the algebras of functions.

2. Nonlinear algebraic–functional duality. As the pullback with respect to a thick mor-
phism is a nonlinear transformation, it cannot be a ring homomorphism in the ordinary sense. It
turns out, however, that its derivative at each function will be a ring homomorphism! Besides that,
in spite of the nonlinearity, the pullbacks themselves exhibit some kind of duality similar to the
classical case. For ordinary smooth maps, it is known that the pullbacks on functions determine a
map completely; in particular, giving the pullbacks of coordinate functions is the same as specifying
a map in coordinates. Similarly for a thick morphism, although it is not sufficient to know the
images of individual coordinate functions, it is sufficient however to know the images of their linear
combinations Φ∗[yici] with arbitrary parameters ci. Another example of such a “nonlinear extension”
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90 Th.Th. VORONOV

from multiplicative generators is given by the pushforward of functions on the dual vector spaces
or vector bundles by a nonlinear bundle map. We introduce it as the pullback with respect to the
“adjoint operator,” which, as we show, can be defined for a nonlinear map, but as a thick morphism
rather than an ordinary map; as we show, on vectors or on sections of the original bundle this
pushforward agrees with a given nonlinear mapping.

Algebraic properties of nonlinear pullbacks suggest the following abstract framework. For alge-
bras A and B, define a nonlinear homomorphism as a smooth map of vector spaces α : A → B such
that the derivative Tα(a) : A → B at each a ∈ A is an algebra homomorphism in the ordinary sense.
(For superalgebras, one has to consider a map α : A → B of the associated “linear supermanifolds” A
and B.) Similarly formal homomorphisms are defined. These notions should lead us to a nonlinear
generalization of the algebraic–functional duality.

It can be asked whether every nonlinear (or formal) homomorphism between the algebras of
smooth functions on (super)manifolds arises as the nonlinear pullback induced by some thick mor-
phism. A positive answer would be a nonlinear counterpart of the well-known statement for ordinary
homomorphisms and ordinary smooth maps.

3. Idea of construction. To construct the formal categories EThick and OThick and nonlin-
ear pullbacks, we use very classical tools of mathematical physics such as canonical relations and
their generating functions. To V. I. Arnold belongs a remark about the “unfortunately noninvari-
ant” nature of generating functions [2, Sect. 47]. The positive interpretation of this fact is that
generating functions possess a nontrivial transformation law under changes of coordinates. In our
constructions, generating functions of a particular type appear as central geometric objects. A thick
morphism between two supermanifolds is given by a generating function S(x, q), which specifies
a canonical relation between the corresponding cotangent bundles and is regarded as part of the
structure. A generating function S(x, q) is a function of positions on the source manifold and of
momenta on the target manifold. The action on functions, g(y) �→ f(x), is defined in terms of this
generating function as

f(x) = g(y) + S(x, q)− yiqi,

where to eliminate the variables q and y one uses the coupled equations qi = ∂g
∂yi

and yi = ∂S
∂qi

, solved
by iterations. One can show that this formula generalizes the ordinary pullback (as the substitution
into the argument). As the reader will see, we have to consider generating functions as formal power
expansions in the momentum variables. This explains the adjective “microformal” in the alternative
name for thick morphisms and the name microformal geometry for the whole theory.1

4. Plan of the paper. The exposition is organized as follows.
In Section 1, we introduce the microformal categories EThick and OThick, and develop the

functorial properties of thick morphisms (the construction of pullback).
In Section 2, we define the adjoint for a nonlinear morphism of vector spaces or vector bundles

as a thick morphism of the dual bundles, with properties similar to those of the ordinary adjoints.
The construction uses the canonical diffeomorphism T ∗E ∼= T ∗E∗ of Mackenzie and Xu [28] and
its odd analog ΠT ∗E ∼= ΠT ∗(ΠE∗) introduced in [36]. Using them, we prove in Section 3 that an
L∞-morphism of L∞-algebroids induces L∞-morphisms of the homotopy Lie–Poisson brackets on
the dual vector bundles and Lie–Schouten brackets on the antidual vector bundles. We then apply
this result to the theory of higher Koszul brackets and to triangular L∞-bialgebroids.

In Section 4, we show that, in the bosonic case, the microformal category and nonlinear pullbacks
are the classical limit (for � → 0) of a quantum microformal category, which is dual to a category

1The prefix “micro-” has an established usage, e.g., in microlocal analysis (local in the cotangent or jet directions)
and Milnor’s microbundles. It is also used in “symplectic microgeometry” [4–6].
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whose morphisms are a particular type of Fourier integral operators perceived as “quantum pull-
backs.” Each such operator is specified by a “quantum generating function.” Quantum pullbacks
act on oscillatory wave functions, which are linear combinations of oscillatory exponentials with
coefficients in formal power series in �. Calculating the integrals by the stationary phase method
yields formulas for “classical” thick morphisms. In hindsight, one may see this as a justification of
the “classical” formulas. Finally, in Section 5, we show how the applications of thick morphisms to
homotopy bracket structures can be lifted to the “quantum” level.

Since the quantum version of our constructions relies on the stationary phase method, we in-
cluded an appendix containing the necessary statements in the form adapted for our purposes.

One clarifying remark is in order, that two different types of formal power expansions arise here.
One expansion is present already in the classical theory (generating functions themselves, pullback,
composition law). It can be compared with the “expansion in the coupling constant” in field theory.
Another is the expansion in � and gives “quantum corrections.”

We also wish to point out a relation between this “microformal geometry” and the “symplectic
microgeometry” of A. Cattaneo, B. Dherin and A. Weinstein. In a remarkable series of papers [4–6]
(see also [7, 51]), they systematically developed a “micro” analog of symplectic geometry with
“symplectic microfolds” defined as germs of symplectic manifolds at Lagrangian submanifolds and
with germs of canonical relations as morphisms. The microsymplectic category so obtained was
intended to cure the problem of partially defined multiplication in Weinstein’s symplectic “category
in quotes” [45–50]. Our formal categories EThick and OThick are close to this microsymplectic
category. The key difference is that in our case, (formal) canonical relations between the cotangent
bundles play the role of morphisms between the bases—not between the bundles themselves—and
they are introduced in order to obtain an action on smooth functions on the bases, which is our
central concept of nonlinear pullback.2

5. Terminology and notations. For simplicity, we often use “manifolds” for “supermani-
folds” and generally suppress the prefix “super-” unless we wish to emphasize that we consider the
super case. Also, to simplify the speech, we as a rule suppress the prefix “pseudo-” and speak
about differential forms and multivector fields, on a supermanifold, when, strictly speaking, pseu-
dodifferential forms and pseudomultivector fields are discussed (i.e., by definition, arbitrary smooth
functions on the bundles ΠTM and ΠT ∗M , respectively). In the notation and terminology we
generally follow [36–40]. The parity (Z2-grading) of an object is denoted by a tilde over its symbol.
Tensor indices carry the parities of the corresponding coordinates. The symbol Π stands for the
parity reversion functor on vector spaces, modules or vector bundles. For a substantial part of
our constructions, the supergeometric context is inessential. Consideration of supermanifolds is
necessary for applications to homotopy structures. For applications, one may also need graded
manifolds, which are supermanifolds that besides the Z2-grading, or parity, possess an independent
Z-grading, or weight (see [36] as well as [38–40]). Our constructions can be extended to the graded
case without difficulty.

Throughout the paper we denote local coordinates on a manifold M by xa and the canonically
conjugate momenta by pa. The canonical symplectic form on T ∗M is

ω = dpa dx
a = d(pa dx

a).

Note that the Liouville 1-form θ = pa dx
a is defined invariantly. When we need several manifolds,

we introduce different letters for local coordinates on each of them, as well as for the corresponding
conjugate momenta.

2This action on functions on Lagrangian submanifolds in the ambient symplectic manifolds brings to mind the
spinor representation in its various versions; it is curious to clarify whether this is more than a superficial
resemblance.
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1. “EVEN” AND “ODD” MICROFORMAL CATEGORIES. MAIN PROPERTIES

Consider supermanifolds M1 and M2 with local coordinates xa and yi, and the corresponding
conjugate momenta pa and qi (coordinates on the cotangent spaces). Let T ∗M2 × (−T ∗M1) denote
the product T ∗M2 × T ∗M1 equipped with the symplectic form3

ω = ω2 − ω1 = d(qi dy
i − pa dx

a).

Definition 1. A thick morphism (or microformal morphism) Φ: M1 → M2 is defined as a
formal canonical relation (which we denote by the same letter) Φ ⊂ T ∗M2 × (−T ∗M1), together
with an even function S = S(x, q) defined in each local coordinate system and depending on
(having as arguments) position variables on the source manifold and momentum variables on the
target manifold, such that

Φ =

{
(yi, qi;x

a, pa)
∣∣∣ yi = (−1)ı̃

∂S

∂qi
(x, q), pa =

∂S

∂xa
(x, q)

}
. (1.1)

We call the function S = S(x, q) the generating function of a thick morphism. It is considered part
of the structure.

We shall elaborate this definition below, but first give an example.
Example 1. Consider a smooth map ϕ : M1 → M2. In local coordinates, it is given by

yi = ϕi(x). Set
S(x, q) = ϕi(x)qi. (1.2)

This function gives a canonical relation Rϕ ⊂ T ∗M2 × (−T ∗M1) specified by the equations (as one
immediately sees)

yi = ϕi(x), pa =
∂ϕi

∂xa
(x)qi.

The relation Rϕ is the canonical lifting of a map ϕ to the cotangent bundles. In a coordinate-free
language,

Rϕ = graph(ϕ) ◦ (graph(T ∗ϕ))op,

where ϕ : ϕ∗(T ∗M2) → T ∗M2 is the vector bundle morphism which is identity on the fibers and
covers a map of the bases ϕ : M1 → M2, and T ∗ϕ : ϕ∗(T ∗M2) → T ∗M1 is the dual to the tan-
gent map Tϕ : TM1 → ϕ∗(TM2). Here (graph(T ∗ϕ))op is the opposite relation for graph(T ∗ϕ) ⊂
T ∗M1 × ϕ∗(T ∗M2), so the composition Rϕ is indeed a submanifold in T ∗M2 × T ∗M1.

It follows that we can identify ordinary smooth maps ϕ : M1 → M2 with a subclass of thick
morphisms M1 → M2 specified by generating functions S(x, q) of the form (1.2), i.e., linear in
momenta.

Consider now the general case. Recall that a canonical relation (or correspondence) Φ between
symplectic manifolds N1 and N2 (in our case these are T ∗M1 and T ∗M2) is a Lagrangian submanifold
in the product N2 × (−N1) taken with the form ω = ω2 − ω1. Such relations are customarily
perceived as partial multivalued mappings N1 ��� N2 (direction of the arrow being a matter of
convention) that generalize symplectomorphisms. However, this is not the intuition that we shall
follow. For us this relation (or correspondence) Φ is an analog of a map between the manifolds M1

and M2 themselves (and not between their cotangent bundles). For our purposes we consider not
arbitrary canonical relations but only of a particular kind, those that are specified by generating

3We have changed notations in comparison with [44], where T ∗M1 × (−T ∗M2) was used. The order T ∗M2 ×
(−T ∗M1) is more traditional in symplectic geometry. Note that it is also convenient to regard the graphs of
maps f : X → Y as subspaces of Y ×X, not X × Y .
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functions of the type S(x, q). (In particular, unlike relations in general, the direction from M1 to M2

in our constructions is unambiguous and not a matter of convention.)
To understand the role of the generating function S in Definition 1, recall that for an arbitrary

Lagrangian submanifold Φ ⊂ T ∗M2 × (−T ∗M1) the 1-form qi dy
i − pa dx

a is closed, hence locally
exact; i.e., there is a function F on Φ defined independently of a choice of coordinates (but possibly
only locally and up to a constant), such that

qi dy
i − pa dx

a = dF. (1.3)

In Definition 1 it is assumed that the variables xa and qi yield a system of local coordinates on the
submanifold Φ. (This follows the case of an ordinary map.) The equations specifying Φ mean that
pa dx

a + (−1)ı̃yidqi = dS, which is equivalent to

qi dy
i − pa dx

a = d(yiqi − S). (1.4)

The left-hand side of (1.4) is invariant, but the explicit appearance of the variables yi and qi on
the right-hand side makes the function S(x, q) a coordinate-dependent object (unlike F in (1.3)).
We shall give below the precise transformation law for S. The functions S and F are related by a
Legendre transform type formula,

F = yiqi − S. (1.5)

(It is an actual Legendre transform if F can be regarded as a function of independent variables xa, yi,
which may not necessarily hold in general.) The relation Φ defines only the differentials dF or dS.
We assume that constants of integration are chosen, so that we can speak unambiguously about the
functions F or S, and that F can be defined globally.

What is a coordinate-free characterization of the considered type of Lagrangian submanifolds?
The condition that xa be independent on Φ is equivalent to the submanifold Φ projecting on M1

without degeneration (with full rank). In contrast with that, the second condition, that qi be
independent on Φ, is equivalent to Φ “projecting without degeneration on the fibers of T ∗M2,” but
this seems to not have a well-defined meaning without a choice of a local trivialization. Consider,
however, the differentials dqi. We have qi =

∂yi
′

∂yi
qi′ , so obtain

dqi = d

(
∂yi

′

∂yi

)
qi′ + (1)ı̃+ı̃ ′ ∂y

i′

∂yi
dqi′ .

We see that when qi′ are small (i.e., we are near the zero section of T ∗M2), the linear independence
of dqi on Φ implies the linear independence of dqi′ , and vice versa. Therefore, we conclude that
the condition that the variables qi be independent on Φ (or “Φ project without degeneration on the
fibers of T ∗M2”) has an invariant meaning on a small neighborhood of the zero section of T ∗M2. In
particular, it makes sense on the formal neighborhood of M2 in T ∗M2. Therefore, we define Φ as a
formal canonical relation, i.e., a Lagrangian submanifold of the formal neighborhood4 of M2 × T ∗M1

in T ∗M2 × (−T ∗M1).
Hence we consider the generating function S(x, q) of a thick morphism Φ: M1 →M2 as a formal

power series

S(x, q) = S0(x) + Si(x)qi +
1

2
Sij(x)qjqi +

1

3!
Sijk(x)qkqjqi + . . . (1.6)

4Replacing a formal submanifold by a germ would give a “symplectic micromorphism” between “symplectic mi-
crofolds” represented by the pairs (T ∗M1,M1) and (T ∗M2,M2), a notion introduced by Cattaneo, Dherin and
Weinstein. Note that our thick morphisms are morphisms between M1 and M2, while symplectic micromorphisms
are morphisms between objects of double dimensions.
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in the momentum variables qi. In the sequel we frequently suppress the adjective “formal” for various
objects that we consider (functions, submanifolds, etc.). As we shall see, it makes sense to group
the terms in this expansion as

S(x, q) = S0(x) + Si(x)qi + S+(x, q), (1.7)

where S+(x, q) contains all terms of order 2 and higher in qi.
To conclude elaborating our definition, we state the following transformation law for the gener-

ating functions S. For logical simplicity we may regard it as part of the definition, but it can be
deduced from equations (1.3)–(1.5) together with the invariance condition for a submanifold Φ.

Transformation law (for generating functions). A generating function S of a thick morphism
Φ: M1 →M2 as a geometric object on M1 ×M2 transforms by

S′(x′, q′) = S(x, q)− yiqi + yi
′
qi′ (1.8)

under an invertible change of local coordinates xa = xa(x′), yi = yi(y′). Here S(x, q) is the
expression for S in “old” coordinates and S′(x′, q′) is the expression for S in “new” coordinates. The
variables xa and yi

′ on the right-hand side of (1.8) are given simply by the substitutions xa = xa(x′)
and yi

′
= yi

′
(y) (where, as usual, yi′ = yi

′
(y) is the inverse change of coordinates), while qi and yi

are determined from the coupled equations

qi =
∂yi

′

∂yi
(y) qi′ , yi = (−1)ı̃

∂S

∂qi
(x, q). (1.9)

Proposition 1. The transformation law (1.8) satisfies the cocycle condition (hence, in partic-
ular, the set of generating functions S is nonempty). A generating function S with local represen-
tations S(x, q) and the transformation law (1.8) specifies a well-defined formal canonical relation
Φ ⊂ T ∗M2 × (−T ∗M1).

Proof. The cocycle condition immediately follows because the transformation law (1.8) has a
“coboundary” form. Equation (1.8) also means that the functions yiqi − S(x, q) glue into one global
function. To check the second statement, we need to show that if (1.4) holds for S, xa, pa, yi and qi
and S′ is related to S by the given transformation law, then the same relation

qi′ dy
i′ − pa′ dx

a′ = d(yi
′
qi′ − S′) (1.10)

holds for the “new” variables S′, xa′ , pa′ , yi
′ and qi′ (assuming the standard transformation laws for

the positions and momenta). But the left-hand side of (1.10) equals qi dyi − pa dx
a by the invariance

of the Liouville forms, and yi
′
qi′ − S′ on the right-hand side equals yiqi − S by (1.8). Hence, (1.4)

and (1.10) are equivalent. �
Example 2. Consider a generating function S that in one coordinate system has the form

S(x, q) = S0(x) + ϕi(x)qi (1.11)

(we write ϕi instead of Si for convenience, as will become clear shortly). Explore the action of the
transformation law on S. We have

S′(x′, q′) = S(x, q)− yiqi + yi
′
qi′ = S0(x) + ϕi(x)qi − yiqi + yi

′
qi′ ,

where we should substitute x = x(x′) and y′ = y′(y); and for y and q′ we need to solve equa-
tions (1.9). But in our case, they decouple and for y simply give

yi = (−1)ı̃
∂S

∂qi
(x, q) = ϕi(x).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 302 2018



MICROFORMAL GEOMETRY AND HOMOTOPY ALGEBRAS 95

Hence the terms ϕi(x)qi − yiqi in S′ cancel and we obtain (taking into account the substitutions
y′ = y′(y), y = ϕ(x) and x = x(x′))

S′(x′, q′) = S0(x) + yi
′
qi′ = S0(x(x′)) + yi

′
(ϕ(x(x′)))qi′ .

In other words, in new coordinates S has the same form

S′(x′, q′) = S′0(x′) + ϕi′qi′ ,

where
S′0(x′) = S0(x(x′)) and ϕi′ = yi

′
(ϕ(x(x′))).

These are precisely the transformation laws for coordinate representations of a scalar function on M1

and a map ϕ : M1 → M2.
We conclude that thick morphisms Φ: M1 →M2 with generating functions S of the form (1.11),

of degree ≤ 1 in momenta, invariantly correspond to pairs (ϕ, S0) where ϕ : M1 → M2 is a smooth
map and S0 ∈ C∞(M1) is an (even) smooth function on the source manifold. (We shall see later
that such pairs are morphisms in a semidirect product category.)

Example 3. Consider now the general case where the generating function of a thick morphism
Φ: M1 →M2 has the form (1.7). We rewrite it as

S(x, q) = S0(x) + ϕi(x)qi + S+(x, q), (1.12)

having in mind the previous example. Let us analyze how the particular terms in (1.12) transform.
The transformation law gives

S′(x′, q′) = S(x, q)− yiqi + yi
′
qi′ = S0(x) + ϕi(x)qi + S+(x, q)− yiqi + yi

′
qi′ ,

where as before we have to substitute x = x(x′) and y′ = y′(y); and y and q are obtained by solving
equations (1.9). But now the equation for determining y takes the form

yi = ϕi(x) + (−1)ı̃
∂S+

∂qi

(
x,

∂y′

∂y
(y)q′

)
;

note that the second term is of order ≥ 1 in q′. This gives a unique solution as a power series in q′,
of the form

yi = ϕi(x) + y+i(x, q′)

(the second term is of order ≥ 1 in q′). Hence

qi =
∂yi

′

∂yi
(
ϕ(x) + y+(x, q′)

)
qi′ ,

and for S′ we arrive at

S′(x′, q′) = S0(x) + (ϕi(x)− yi)qi + S+(x, q) + yi
′
qi′

= S0(x)− y+i(x, q′) qi + S+(x, q) + yi
′(
ϕ(x) + y+(x, q′)

)
qi′

= S0(x) + yi
′(
ϕ(x) + y+(x, q′)

)
qi′ − y+i(x, q′)

∂yi
′

∂yi
(
ϕ(x) + y+(x, q′)

)
qi′

+ S+

(
x,

∂y′

∂y

(
ϕ(x) + y+(x, q′)

)
q′
)
,

where we need to substitute finally x = x(x′). In particular, we obtain

S′(x′, q′) ≡ S0(x(x′)) + yi
′
(ϕ(x(x′)))qi′ mod 〈q′〉2.
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Hence
S′(x′, q′) = S′0(x′) + ϕi′(x′)qi′ + S′+(x′, q′),

where
S′0(x′) = S0(x(x′)) and ϕi′ = yi

′
(ϕ(x(x′))).

This means that the first two terms in the expansion (1.7) or (1.12) represent, respectively, a scalar
function on M1 and a map ϕ : M1 → M2. At the same time, the transformation law for the term S+

includes higher derivatives of changes of coordinates on M2 calculated at the points ϕ(x).
From Examples 2 and 3, we see that pairs (ϕ, S0) correspond to thick morphisms M1 →M2 of

a special type and, conversely, an arbitrary thick morphism Φ: M1 →M2 canonically defines such
a pair. So we have an “inclusion–retraction” setting. We shall come back to that.

Our next task is to define the action of thick morphisms on functions.
Consider the algebras of smooth functions C∞(M). For each supermanifold M , the algebra

C∞(M) is a commutative Z2-graded algebra. We shall regard smooth functions of particular parity
on M as points of an infinite-dimensional supermanifold. (The word “smooth” will often be omitted
in the sequel.) We have the supermanifold of all even functions on M , which we denote by C∞(M),
and the supermanifold of all odd functions on M , which we denote by ΠC∞(M). We use bold-
face to distinguish vector supermanifolds from the Z2-graded linear spaces corresponding to them.
(A physicist would say that the points of C∞(M) are “bosonic fields” and the points of ΠC∞(M)
are “fermionic fields” on M .)

Definition 2 [44]. Let Φ: M1 →M2 be a thick morphism with a generating function S. The
pullback Φ∗ is a formal mapping of functional supermanifolds of even functions, g �→ Φ∗[g],

Φ∗ : C∞(M2) → C∞(M1), (1.13)

defined by
Φ∗[g](x) = g(y) + S(x, q) − yiqi, (1.14)

where qi and yi are determined from the equations

qi =
∂g

∂yi
(y) and yi = (−1)ı̃

∂S

∂qi
(x, q). (1.15)

Here g ∈ C∞(M2) is an even function on M2 and Φ∗[g] is its image in C∞(M1).
Remark 1. We showed in [44] that the pullback Φ∗ does not depend on a choice of coordinates.

This is guaranteed by the transformation law of the generating function S.
Example 4. Consider a thick morphism Φ: M1 →M2 defined by a pair (ϕ, S0). We have

S(x, q) = S0(x) + ϕi(x)qi.

From the second equation in (1.15), we obtain yi = ϕi(x), so

Φ∗[g](x) = g(y) + S(x, q)− yiqi = g(y) + S0(x) + ϕi(x)qi − yiqi = g(ϕ(x)) + S0(x).

Hence Φ∗ in this case is an affine transformation,

Φ∗[g] = S0 + ϕ∗(g), (1.16)

the combination of the ordinary pullback by a map ϕ : M1 → M2 and the shift by a function
S0 ∈ C∞(M1). (In particular, formula (1.14) gives the usual pullback when a thick morphism is an
ordinary smooth map.)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 302 2018



MICROFORMAL GEOMETRY AND HOMOTOPY ALGEBRAS 97

Let us see how the construction of Φ∗ works in general.
Substituting the first equation in (1.15) into the second gives the equation for yi,

yi = (−1)ı̃
∂S

∂qi

(
x,

∂g

∂y
(y)

)
, (1.17)

which can be solved by iterations. If we use (1.12), the equation takes the form

yi = ϕi(x) + (−1)ı̃
∂S+

∂qi

(
x,

∂g

∂y
(y)

)
, (1.18)

where the second term is of order ≥ 1 in ∂g
∂y . There is a unique solution for y as a “functional”

power series in g. More precisely, this is a formal power series in the first and higher derivatives of g
evaluated at y = ϕ(x) and starting from y = ϕ(x) as the zero-order term. This gives a “perturbed”
map ϕg : M1 → M2 depending on g ∈ C∞(M2) as a series

ϕg = ϕ+ ϕ(1) + ϕ(2) + . . . , (1.19)

where ϕ : M1 → M2 is defined by the thick morphism Φ and does not depend on g, while the next
terms ϕ(k) give “higher corrections” to ϕ (linear, quadratic, etc., in the function g). Using ϕg, one
can express the pullback Φ∗[g] as

Φ∗[g](x) = g(ϕg(x)) + S

(
x,

∂g

∂y
(ϕg(x))

)
− ϕi

g(x)
∂g

∂yi
(ϕg(x)), (1.20)

which demonstrates the nonlinear dependence on g. In terms of (1.12), after simplification we
obtain

Φ∗[g](x) = S0(x) + g
(
ϕ(x) + ϕ(1)(x) + . . .

)

−
(
ϕi
(1)(x) + . . .

) ∂g

∂yi
(
ϕ(x) + ϕ(1)(x) + . . .

)
+ S+

(
x,

∂g

∂y

(
ϕ(x) + ϕ(1)(x) + . . .

))
. (1.21)

Example 5. Calculate Φ∗[g] to the second order in g. From (1.21), we immediately see that
the terms of order ≤ 1 are precisely

S0(x) + g(ϕ(x)).

For the quadratic correction, there are inputs from the three last summands in (1.21), but two of
them cancel:

ϕi
(1)(x)

∂g

∂yi
(ϕ(x)) − ϕi

(1)(x)
∂g

∂yi
(ϕ(x)) + S+

(2)

(
x,

∂g

∂y
(ϕ(x))

)
= S+

(2)

(
x,

∂g

∂y
(ϕ(x))

)
.

Here S+
(2)(x, q) =

1
2S

ij(x)qjqi is the quadratic term in the expansion of S. Altogether,

Φ∗[g](x) = S0(x) + g(ϕ(x)) +
1

2
Sij(x) ∂ig(ϕ(x)) ∂jg(ϕ(x)) + . . . . (1.22)

This is the general pattern: the pullback Φ∗ : C∞(M2) → C∞(M1) with respect to a thick
morphism is a formal nonlinear differential operator, so that the terms of order k in g of the
expansion of Φ∗[g] are homogeneous polynomials of degree k in the derivatives of g of orders ≤ k − 1
evaluated at y = ϕ(x), with the zero- and first-order terms being the combination of the shift and
ordinary pullback: S0 + ϕ∗(g). We again see the different roles of the three summands in the
expansion (1.7), (1.12).
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Remark 2. Pullbacks with respect to thick morphisms can be applied to functions defined on
an open domain U ⊂ M2. The image will be in C∞(ϕ−1(U)), where ϕ : M1 → M2 is the underlying
ordinary map.

Example 6. If we apply Φ∗ to the function g = yici, where yi are local coordinates on M2

and ci are some auxiliary variables, then we obtain qi = ci from the first equation in (1.15) and

Φ∗[yici] = yici − yiqi + S(x, q) = S(x, c).

In this way we recover the generating function S = S(x, q).
A thick morphism Φ is therefore determined by the action of Φ∗ on linear combinations of

coordinate functions. Hence, although the pullback Φ∗ is a nonlinear mapping, it still respects some
algebraic properties such as the role of local coordinates as “free generators.”5

In [44], we proved the following statement that points to another aspect of algebraic properties
of pullbacks Φ∗.

Theorem 1 [44]. For every function g ∈ C∞(M2), the tangent map

TΦ∗[g] : C∞(M2) → C∞(M1)

for the pullback Φ∗ : C∞(M2) → C∞(M1) by a thick morphism Φ: M1 → M2 is the ordinary
pullback ϕ∗

g by the map
ϕg : M1 → M2

that corresponds to the function g. �
(Note that tangent spaces to C∞(M) can be identified with C∞(M).)
We see that though the pullback with respect to a thick morphism as a mapping between the

vector supermanifolds corresponding to the algebras of smooth functions is in general a nonlinear
(and indeed formal) mapping, and as such cannot be an algebra homomorphism in the usual sense,
it possesses the remarkable property that its derivative (= tangent map or linearization) at every
point is an algebra homomorphism. It is tempting to give the following definition.

Definition 3. Let A and B be (super)algebras and A and B denote the corresponding vector
supermanifolds. A map (formal map) α : A → B is a nonlinear algebra homomorphism (respec-
tively, a formal nonlinear algebra homomorphism) if its derivative Tα(a) : A → B is an algebra
homomorphism for every a ∈ A.

(The distinction between A and A, as well as B and B, is important only in the super case.)
Pullbacks with respect to thick morphisms are formal nonlinear algebra homomorphisms. (In

the abstract case, it is unclear whether formal or informal version of the notion is more important.)
Following the known statement for ordinary algebra homomorphisms, we are tempted to suggest a
conjecture.

Conjecture 1. For smooth (super)manifolds M1 and M2 (with the usual assumptions leading
to paracompactness), every formal nonlinear algebra homomorphism

α : C∞(M2) → C∞(M1)

is the pullback, α = Φ∗, with respect to some thick morphism

Φ: M1 →M2.

(So far we do not know whether this is true or not.)
5The algebra of smooth functions on a coordinate (super)domain is not of course a free algebra in the standard
algebraic sense with respect to arbitrary homomorphisms (which would be the polynomial algebra), but it behaves
as a free algebra with respect to the homomorphisms induced by smooth maps, which are defined by the images
of the coordinate functions not subject to any restrictions.
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Now we wish to establish categorical properties of thick morphisms.
Consider thick morphisms Φ21 : M1 →M2 and Φ31 : M2 →M3 with generating functions S21 =

S21(x, q) and S32 = S32(y, r), respectively. Here zμ are local coordinates on M3 and by rμ we denote
the corresponding conjugate momenta.

Theorem 2. The composition Φ32 ◦ Φ21 is well defined as a thick morphism

Φ31 : M1 →M3

with the generating function S31 = S31(x, r), where

S31(x, r) = S32(y, r) + S21(x, q)− yiqi (1.23)

and yi and qi are expressed through (xa, rμ) from the system

qi =
∂S32

∂yi
(y, r) and yi = (−1)ı̃

∂S21

∂qi
(x, q), (1.24)

which has a unique solution as a power series in rμ and a functional power series in S32.
Proof. To find the composition of Φ32 and Φ21 as relations Φ32 ⊂ T ∗M3 × T ∗M2 and Φ21 ⊂

T ∗M2 × T ∗M1, we need to consider all pairs (z, r;x, p) ∈ T ∗M3 × T ∗M1 for which there exist
(y, q) ∈ T ∗M2 such that (z, r; y, q) ∈ Φ32 ⊂ T ∗M3 × T ∗M2 and (y, q;x, p) ∈ Φ21 ⊂ T ∗M2 × T ∗M1.
By the definition of Φ21, we should have

yi = (−1)ı̃
∂S21

∂qi
(x, q),

where xa and qi are free variables, and by the definition of Φ32, we should have

qi =
∂S32

∂yi
(y, r),

where now yi and rμ are free variables. Therefore, we arrive at system (1.24), where yi and qi are
to be determined and the variables xa and rμ are free. Substituting the first equation in (1.24) into
the second, we obtain for determining y the equation

yi = (−1)ı̃
∂S21

∂qi

(
x,

∂S32

∂y
(y, r)

)
,

which has a unique solution yi = yi(x, r) by iterations, similarly to the construction of pullback.
Here the “parameter of smallness” is S32, more precisely, its derivative in yi in the lowest order
in rμ. The solution for yi can be substituted back into the first equation in (1.24) to obtain an
expression qi = qi(x, r). It remains to show that this composition of relations is indeed specified by
the generating function given by (1.23). We have

qi dy
i − pa dx

a = d(yiqi − S21) and rμdz
μ − qi dy

i = d(zμrμ − S32).

We obtain
rμ dz

μ − pa dx
a = d

(
zμrμ − S32 + yiqi − S21

)
.

Therefore, S31 = S32 − yiqi + S21, as claimed. �
Theorem 3. The composition of thick morphisms is associative.
Proof. Consider the diagram

M1
Φ21→M2

Φ32→M3
Φ43→M4.
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Let Φ42 = Φ43 ◦ Φ32 and Φ31 = Φ32 ◦ Φ21. We need to check that Φ43 ◦ Φ31 = Φ42 ◦ Φ21. Consider
the generating functions. For the left-hand side, we obtain S43 + S31 − zμrμ = S43 + S32 + S21 −
yiqi − zμrμ. For the right-hand side, we obtain S42 + S21 − yiqi = S43 + S32 − zμrμ + S21 − yiqi,
and the associativity follows. �

Remark 3. Since there is an identity thick morphism for each supermanifold M , given by the
generating function S = xaqa, we conclude that thick morphisms form a formal category, which we
denote by EThick (with the same set of objects as the usual category of supermanifolds). “Formality”
of the category means that the composition law is given by a power series. Formality enters our
constructions in two related but different ways: as micro formality, i.e., power expansions in the
cotangent directions, and as formal “functional” expansions in the formulas for pullback and for the
generating function of composition.

Example 7. Let us compute the composition of thick morphisms in the lowest order. Suppose
Φ21 and Φ32 are given by generating functions

S21(x, q) = f21(x) + ϕi
21(x)qi + . . . , S32(y, r) = f32(y) + ϕμ

32(y)rμ + . . . . (1.25)

We need to determine the generating function for the composition Φ32 ◦ Φ21,

S31(x, r) = f31(x) + ϕμ
31(x)rμ + . . . . (1.26)

(Here the dots stand for the terms of higher order in momenta.) In the lowest order, we have

S31(x, r) = S32(y, r) + S21(x, q)− yiqi = f32(y) + ϕμ
32(y)rμ + f21(x) + ϕi

21(x)qi − yiqi + . . .

= f32(y) + ϕμ
32(y)rμ + f21(x) + . . . = f32(ϕ21(x)) + ϕμ

32(ϕ21(x))rμ + f21(x) + . . . .

Here we are calculating modulo J2 where the ideal J is generated by the momenta and the zero-
order terms such as f21. Note that yi have to be determined only modulo J , so from the second
equation in (1.24) we have yi = ϕi

21(x) mod J , and the terms ϕi
21(x)qi and yiqi mutually cancel.

Therefore, we see that
f31 = ϕ∗

21(f32) + f21, ϕ31 = ϕ32 ◦ ϕ21. (1.27)

This means that, in the lowest order, we obtain the composition in the semidirect product cat-
egory SMan � C∞. The objects in this category are supermanifolds and the morphisms are
pairs (ϕ21, f21), where ϕ21 : M1 → M2 is a supermanifold map and f21 ∈ C∞(M1) is an even
function on the source supermanifold, with the composition of pairs (ϕ32, f32) ◦ (ϕ21, f21) =
(ϕ32 ◦ ϕ21, ϕ

∗
21f32 + f21).

Remark 4. The category SMan � C∞ is a closed subspace in the formal category EThick,
and the whole EThick is its formal neighborhood. Our calculations show that there are inclusion
and retraction functors

SMan�C∞ � EThick.

Theorem 4. For pullbacks defined by thick morphisms the identity

(Φ32 ◦ Φ21)
∗ = Φ∗

21 ◦ Φ∗
32 (1.28)

holds.
Proof. Consider f3 ∈ C∞(M3). Then for Φ∗

32[f3] we have

Φ∗
32[f3] = f3 + S32 − zμrμ

and for (Φ∗
21 ◦Φ∗

32)[f3] we obtain

(Φ∗
21 ◦ Φ∗

32)[f3] = Φ∗
21[Φ

∗
32[f3]] = f3 + S32 − zμrμ + S21 − yiqi.
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This coincides with

Φ∗
31[f3] = f3 + S31 − zμrμ = f3 + S32 + S21 − yiqi − zμrμ

by (1.23), where Φ31 = Φ32 ◦ Φ21. �
So far we have dealt with even functions, and what we have defined as EThick will be called

the even microformal category. Parallel constructions are based on the anticotangent bundles,
i.e., the cotangent bundles with reversed parity in the fibers (see [44]). For local coordinates xa

on a supermanifold M , let x∗a be the conjugate antimomenta (fiber coordinates on ΠT ∗M). The
canonical odd symplectic form on ΠT ∗M is

ω = d(dxax∗a) = −(−1)ã dxa dx∗a = −(−1)ã dx∗a dx
a, (1.29)

and let −ΠT ∗M denote ΠT ∗M considered with the form −ω.
Definition 4. An odd thick morphism (or odd microformal morphism) Ψ: M1 ⇒M2 is speci-

fied by a formal odd generating function S = S(x, y∗) (defined locally) and corresponds to a formal
canonical relation Ψ ⊂ ΠT ∗M2 × (−ΠT ∗M1) (denoted by the same letter),

Ψ =

{
(yi, y∗i ;x

a, x∗a)
∣∣∣ yi = ∂S

∂y∗i
(x, y∗), x∗a =

∂S

∂xa
(x, y∗)

}
. (1.30)

On the submanifold Ψ we have

dyiy∗i − dxax∗a = d(yiy∗i − S). (1.31)

Under changes of coordinates, the odd generating function S of an odd thick morphism has the
transformation law

S′(x′, y′∗) = S(x, y∗)− yiy∗i + yi
′
y∗i′ (1.32)

similar to (1.8), where variables on the right-hand side are determined from the equations similar
to those that arise in the even case.

The following Theorems 5–7 are completely analogous to the “even” versions above, and we omit
their proofs.

Theorem 5. There is a well-defined composition Ψ32 ◦ Ψ21 of odd thick morphisms, which is
an odd thick morphism

Ψ31 : M1 ⇒M3

with the generating function S31 = S31(x, z
∗), where

S31(x, z
∗) = S32(y, z

∗) + S21(x, y
∗)− yiy∗i (1.33)

and yi and y∗i are expressed uniquely via (xa, z∗μ) from the system

y∗i =
∂S32

∂yi
(y, z∗) and yi =

∂S21

∂y∗i
(x, y∗) (1.34)

as a power series in z∗μ and a functional power series in S32. �
Theorem 6. The composition of odd thick morphisms is associative. �
Odd thick morphisms form a formal category OThick, which we call the odd microformal category.

It is the formal neighborhood of the subcategory SMan�ΠC∞ contained as a closed subspace (and
there are inclusion and retraction functors). The affine action of the category SMan � ΠC∞ on
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supermanifolds of odd functions extends to a nonlinear action of the formal category OThick as
follows.

Definition 5. The pullback Ψ∗ with respect to an odd thick morphism Ψ: M1 ⇒ M2 is a
formal mapping of functional supermanifolds

Ψ∗ : ΠC∞(M2) → ΠC∞(M1) (1.35)

defined for γ ∈ ΠC∞(M2) by

Ψ∗[γ](x) = γ(y) + S(x, y∗)− yiy∗i , (1.36)

where y∗i and yi are determined from the equations

y∗i =
∂γ

∂yi
(y) and yi =

∂S

∂y∗i
(x, y∗). (1.37)

Theorem 7. For odd thick morphisms, the identity

(Ψ32 ◦Ψ21)
∗ = Ψ∗

21 ◦Ψ∗
32 (1.38)

holds. �
As in the even case, the pullback Ψ∗ is a formal nonlinear differential operator for which the

kth term in the power expansion contains derivatives of orders ≤ k − 1. An analog of Theorem 1
holds [44]. One can formulate “odd” versions of Definition 3 and Conjecture 1.

Remark 5. Pullback of functions with respect to a thick morphism is a particular case of the
composition of thick morphisms (both in the bosonic and fermionic cases)—the same as for usual
pullbacks. One may wish to consider “thick functions” on supermanifolds as thick morphisms to R

or C. One may also wish to consider gluing “thick supermanifolds” from ordinary ones with the help
of thick diffeomorphisms or, for example, to introduce “thick analogs” of Lie groups. Constructions
in this section suggest many attractive paths, which we hope to explore in the future.

2. APPLICATION TO VECTOR BUNDLES: THE NOTION
OF THE ADJOINT FOR A NONLINEAR MAP

In this section, we generalize the notion of the adjoint of a linear operator. We show that using
thick morphisms one can speak of the adjoint for a nonlinear map of vector spaces or vector bundles.
Such generalized adjoints are thick morphisms rather than ordinary maps. There are two versions
of this construction, “even” and “odd.”

Our construction is based on the canonical diffeomorphism between the cotangents of dual vector
bundles discovered by Kirill Mackenzie and Ping Xu [28, Theorem 5.5]6 (see also [26; 27, Ch. 9]
and [36] for the super case):

T ∗E ∼= T ∗E∗, (2.1)

which will be referred to as the Mackenzie–Xu transformation. (Some authors use the name “Leg-
endre transformation,” but this is really confusing since the Legendre transformation or transform
in the standard sense acts on functions, not points.) There is a parallel canonical diffeomorphism
for the fermionic case [36]

ΠT ∗E ∼= ΠT ∗(ΠE∗). (2.2)
6The special case of E = TM , i.e., the diffeomorphism T ∗TM ∼= T ∗T ∗M , is due to Tulczyjew [33]; the case of
general E was considered independently by J.-P. Dufour in an unpublished work.
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Recall these natural diffeomorphisms in the form suitable for our purposes. For a vector bundle
E → M , denote local coordinates on the base by xa and linear coordinates in the fibers by ui.
The transformation law for ui has the form ui = ui

′
Ti′

i. Denote the fiber coordinates for the dual
bundle E∗ → M and the antidual bundle ΠE∗ → M by ui and ηi, respectively. We assume that
the invariant bilinear forms are uiui and uiηi. (This means that ui and ηi are the right coordinates
with respect to the basis which is “right dual” to a basis in E.) Consider the cotangent and the
anticotangent bundles for E. Denote the canonically conjugate momenta for xa and ui by pa and pi,
and the conjugate antimomenta, by x∗a and u∗i . A similar notation will be used for E∗ and ΠE∗.

The Mackenzie–Xu transformation

κ : T ∗E → T ∗E∗ (2.3)

is defined by the formulas

κ∗(xa) = xa, κ∗(ui) = pi, κ∗(pa) = −pa, κ∗(pi) = (−1)ı̃ui. (2.4)

It is well defined and is an antisymplectomorphism. (The choice of signs in (2.4) agrees with that
in the book [27] and differs from that of [36]. The choice used in [36] gives a symplectomorphism.)

An odd version of this transformation [36] (which we denote by the same letter)

κ : ΠT ∗E → ΠT ∗(ΠE∗) (2.5)

is defined by

κ∗(xa) = xa, κ∗(ηi) = u∗i , κ∗(x∗a) = −x∗a, κ∗(η∗i) = ui (2.6)

(note the absence of signs depending on parities). It is also an antisymplectomorphism with respect
to the canonical odd symplectic structures.

Remark 6. The invariance of formulas (2.4), (2.6) is nontrivial and follows from the analysis
of T ∗E and ΠT ∗E as double vector bundles over M . On the other hand, from the coordinate
formulas (2.4) and (2.6), it is obvious that κ∗ω = −ω for the canonical symplectic structures.
Moreover, one can immediately see that for the canonical Liouville 1-forms

κ∗(dxapa + duip
i) = −(dxapa + duipi) + d(uipi) (2.7)

on the cotangent bundle and

κ∗(dxax∗a + dηiη
∗i) = −(dxax∗a + duiu∗i ) + d(uiu∗i ) (2.8)

on the anticotangent bundle. Note that uipi and uiu∗i are invariant functions.
Now we proceed to construct generalized adjoints. Let E1 and E2 be vector bundles over a fixed

base M . Consider a fiber map over M ,

Φ: E1 → E2,

which is not necessarily fiberwise linear. (Here Φ is an ordinary map, not a thick morphism.) In
local coordinates, it is given by

Φ∗(ya) = xa, Φ∗(wα) = Φα(x, u)

for some functions Φα(x, u), where ui and wα are linear coordinates on the fibers of E1 and E2. For
the fiber coordinates on the dual bundles we use the same letters with the lower indices so that the
forms uiui and wαwα give invariant pairings.
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Note that it makes sense to speak about fiberwise thick morphisms.
Theorem 8. 1. For an arbitrary fiberwise map of vector bundles Φ: E1 → E2 over a base M,

there are a fiberwise even thick morphism (“adjoint”)

Φ∗ : E∗
2 →E∗

1 (2.9)

and a fiberwise odd thick morphism (“antiadjoint”)

Φ∗Π : ΠE∗
2 ⇒ΠE∗

1 (2.10)

such that if the map Φ: E1 → E2 is fiberwise linear, i.e., is a vector bundle homomorphism, then
the thick morphisms Φ∗ and Φ∗Π are ordinary maps which are the usual adjoint homomorphism
and the adjoint homomorphism combined with the parity reversion, respectively.

2. For the composition of fiberwise maps of vector bundles over M,

E1
Φ21−−→ E2

Φ32−−→ E3, (2.11)

we have the equality
(Φ32 ◦ Φ21)

∗ = Φ∗
21 ◦ Φ∗

32 (2.12)

of even thick morphisms E∗
3 →E∗

1 and the equality

(Φ32 ◦ Φ21)
∗Π = Φ∗Π

21 ◦Φ∗Π
32 (2.13)

of odd thick morphisms ΠE∗
3 ⇒ΠE∗

1 .
Proof. Consider a fiberwise map7 Φ: E1 → E2,

(xa, ui) �→
(
ya = xa, wα = Φ(xa, ui)

)
.

To the map Φ corresponds the canonical relation RΦ ⊂ T ∗E2 × (−T ∗E1),

RΦ =
{
(ya, wα, qi, qα;x

a, ui, pa, pi)
∣∣ (−1)ãdqay

a + (−1)α̃dqαw
α + dxapa + duipi = dS

}
,

with the generating function S = S(xa, ui, qi, qα), where

S = xaqa +Φα(xa, ui)qα. (2.14)

We define the thick morphism Φ∗ : E∗
2 →E∗

1 by a generating function S∗ = S∗(ya, wα, pa, p
i), where

S∗ := yapa +Φα
(
ya, (−1)ı̃pi

)
wα. (2.15)

The corresponding canonical relation Φ∗ ⊂ T ∗E∗
1 × (−T ∗E∗

2) is given by the equation

(−1)ãdpax
a + (−1)ı̃dpiui + dya qa + dwα q

α = dS∗,

or, more explicitly,

xa = ya, ui =
∂Φα

∂ui
(
y, (−1)ı̃pi

)
wα,

qa = pa +
∂Φα

∂xa
(
y, (−1)ı̃pi

)
wα, qα = (−1)α̃Φα

(
y, (−1)ı̃pi

)
.

The construction of the thick morphism Φ∗ can be stated geometrically as follows. We first apply
the transformation κ to the canonical relation RΦ ⊂ T ∗E2 × (−T ∗E1). Since κ is an antisym-
plectomorphism, we obtain a Lagrangian submanifold (κ × κ)(Rϕ) ⊂ −T ∗E∗

2 × T ∗E∗
1 . The thick

7For clarity, although against our own taste, we use the physicists’ notation with arguments of functions equipped
with indices.
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morphism Φ∗ is then defined by the opposite relation:

Φ∗ :=
(
(κ × κ)(Rϕ)

)op ⊂ T ∗E∗
1 × (−T ∗E∗

2).

Expressing this by generating functions, we arrive at the formulas above. One can see that the
thick morphism Φ∗ : E∗

2 → E∗
1 is also fiberwise. Let us check that Φ∗ is the ordinary adjoint when

Φ: E1 → E2 is linear on fibers. Indeed, in such a case we have

Φ(xa, ui) = uiΦi
α(x);

hence the above formulas give
xa = ya, ui = Φi

α(y)wα,

as expected. The odd thick morphism Φ∗Π : ΠE∗
2 ⇒ ΠE∗

1 is built in a similar way: we take the
canonical relation RΦ ⊂ ΠT ∗E2 × (−ΠT ∗E1) corresponding to a map Φ: E1 → E2, apply the odd
version of the Mackenzie–Xu transformation and then take the opposite relation.

To obtain equations (2.12) and (2.13), notice that the composition of maps (2.11) induces the
composition of the corresponding canonical relations between the cotangent bundles in the same
order. This is preserved by the Mackenzie–Xu transformation. Taking the opposite relations reverses
the order. �

Corollary 1. On functions on the dual bundles, the pullback with respect to the adjoint Φ∗ :
E∗

2 →E∗
1 induces a “nonlinear pushforward map”

Φ∗ := (Φ∗)∗ : C∞(E∗
1) → C∞(E∗

2). (2.16)

The restriction of Φ∗ to the space of even sections C∞(M,E1) regarded as the subspace in C∞(E∗
1)

consisting of the fiberwise linear functions takes it to the subspace C∞(M,E2) in C∞(E∗
2) and

coincides with the usual pushforward of sections Φ∗(v) = Φ ◦ v.
Proof. The nonlinear pushforward Φ∗ : C∞(E∗

1) → C∞(E∗
2) is defined as the pullback with

respect to the thick morphism Φ∗ : E∗
2 →E∗

1 . To an even function f = f(xa, ui) the map Φ∗ assigns
the even function g = Φ∗[f ], where g(xa, wα) is given by

g(x,wα) = f(x, ui) + Φα
(
x, (−1)ı̃pi

)
wα − uip

i, (2.17)

and ui and pi are found from the equations

pi =
∂f

∂ui
(x, ui) and ui =

∂Φα

∂ui

(
x, (−1)ı̃

∂f

∂ui
(x, ui)

)
wα. (2.18)

The latter equation is solvable by iterations. Now let the function f on E∗
1 have the form

f(x, ui) = vi(x)ui, which corresponds to an even section v = vi(x)ei of the bundle E1. Then

pi = (−1)ı̃vi(x); (2.19)

hence
Φ∗[f ] = vi(x)ui +Φα(x, vi(x))wα − ui(−1)ı̃vi(x) = Φα(x, vi(x))wα, (2.20)

which is the fiberwise linear function on E∗
2 corresponding to the section Φ ◦ v. �

A similar statement holds for the odd case: there is an odd nonlinear pushforward map
ΦΠ
∗ := (Φ∗Π)∗,

ΦΠ
∗ : ΠC∞(ΠE∗

1) → ΠC∞(ΠE∗
2 ). (2.21)
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On the space of even sections v ∈ C∞(M,E1) regarded as a subspace of fiberwise linear functions
C∞(M,E1) ⊂ ΠC∞(ΠE∗

1) in the space of all odd functions on ΠE∗
1 , the map ΦΠ

∗ again coincides
with the obvious pushforward v �→ Φ ◦ v.

The algebra of fiberwise polynomial functions on the dual bundle E∗ is freely generated by the
sections of E over the algebra of functions on the base M . For the vector bundle homomorphisms
E1 → E2, the pushforward of functions C∞(E∗

1) → C∞(E∗
2) is the algebra homomorphism extending

a linear map from free generators. As seen from Corollary 1, the nonlinear pushforward map
Φ∗ : C∞(E∗

1) → C∞(E∗
2) can be similarly regarded as the extension of a “nonlinear homomorphism”

from generators.
Remark 7. If the base M is a point, we have a nonlinear map of vector spaces Φ: V → W .

Replacing it by the Taylor expansion gives a sequence of linear maps Φk : S
kV → W . The functions

on the dual spaces can themselves be seen as elements of the symmetric powers. By expanding the
pushforward Φ∗ in a Taylor series, we arrive at linear maps of the form Sn(

⊕
SpV ) →

⊕
SqW . It

would be interesting to obtain for them a purely algebraic description.
Remark 8. From the proof of Theorem 8 it is clear that instead of an ordinary map one can

start from a fiberwise even thick morphism E1 → E2 and construct its adjoint E∗
2 → E∗

1 by the
same method; or one can start from a fiberwise odd thick morphism E1 ⇒ E2 and construct the
antiadjoint ΠE∗

2 ⇒ΠE∗
1 .

Remark 9. “Nonlinear adjoints” can be generalized to vector bundles over different bases by
using the concept of comorphisms of Higgins and Mackenzie [16].8 Suppose E1 → M1 and E2 → M2

are fiber bundles over bases M1 and M2. Then a bundle morphism Φ: E1 → E2 can be defined
as a fiberwise map over the fixed base E1 → ϕ∗E2 and a bundle comorphism Ψ: E1 → E2 can be
defined as a fiberwise map over the fixed base ψ∗E1 → E2. (It would be better to use arrows of
different shape for morphisms and comorphisms.) In both cases, there is a map of the bases ϕ or ψ
pointing in the same direction for a morphism and in the opposite direction for a comorphism.

For bundles over the same base, morphisms and comorphisms over the identity map coincide, and
for manifolds regarded as “zero vector bundles,” morphisms are ordinary maps while comorphisms
are morphisms in the opposite category. As was shown in [16], for vector bundles (assuming the
fiberwise linearity for maps over a fixed base), the adjoint of a morphism E1 → E2 is a comorphism
E∗

2 → E∗
1 and vice versa; so this gives an anti-isomorphism of the two categories of vector bundles.

To generalize this to our setup, one may wish to keep a map between the bases as an ordinary map
while using fiberwise thick morphisms over a fixed base. This incorporates the possible nonlinearity
of morphisms. In this way, one obtains base-changing “thick morphisms” and “thick comorphisms”
of vector bundles to which the duality theory extends.

3. APPLICATION TO LIE ALGEBROIDS AND HOMOTOPY POISSON BRACKETS

It is well known that, for Lie algebras g1 and g2, a linear map of the underlying vector spaces
ϕ : g1 → g2 is a Lie algebra homomorphism if the adjoint map of the dual spaces ϕ∗ : g∗2 → g∗1
is Poisson with respect to the induced Lie–Poisson brackets (also known as the Berezin–Kirillov
brackets). The same holds true for Lie algebroids [27, Ch. 10] (see [16] for base-changing morphisms).
In this section we use the construction of the adjoint for a nonlinear map of vector bundles and the
results from [44] to establish the homotopy analogs of these statements for the case of L∞-morphisms
of L∞-algebroids. It is convenient to work in the super setting, though we generally suppress the
prefix “super-.”

8This notion has a rich prehistory and numerous connections. Besides citations in [16], see Guillemin and Stern-
berg [15], who suggested redefining morphisms of vector bundles as, basically, comorphisms. A close notion was
introduced in [35] in connection with integral transforms. In [7] it is argued that comorphisms are the “correct”
notion in the context of Poisson geometry.
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For simplicity consider the case of fixed base. We do not consider the “if and only if” form of
the statement. Our main theorem here is as follows.

Theorem 9. An L∞-morphism of L∞-algebroids over a base M induces L∞-morphisms of the
homotopy Poisson and homotopy Schouten algebras of functions on the dual and antidual bundles,
respectively.

Before proving the theorem, we recall some definitions and statements.
Recall that an L∞-algebroid (see, e.g., [21]) is a (super) vector bundle E → M endowed with

a sequence of n-ary brackets that defines an L∞-algebra structure on sections and a sequence of
n-ary anchors a : E ×M . . . ×M E → TM (multilinear bundle maps) so that the brackets satisfy
the Leibniz identities with respect to the multiplication of sections by functions on the base,

[u1, . . . , un−1, fun] = a(u1, . . . , un−1)(f)un + (−1)(ũ1+...+ũn−1+n) ˜ff [u1, . . . , un]. (3.1)

Here we follow the convention of Lada and Stasheff for L∞-algebras [25] that the brackets are
antisymmetric and of alternating parities. So the unary bracket is odd, the binary bracket is
even, etc. (Under the alternative convention, all brackets are symmetric and odd. Its equivalence
with the antisymmetric convention is by the parity reversion; see the discussion in [37]. In the
sequel, we shall need to use both versions.) With this convention, ordinary Lie algebroids are a
particular case of L∞-algebroids. An L∞-algebroid structure on E → M is equivalent to a formal
homological vector field on the supermanifold ΠE. An L∞-morphism of L∞-algebroids Φ: E1 � E2

is specified by a fiberwise map (in general, nonlinear) Φ: ΠE1 → ΠE2 such that the corresponding
homological vector fields are Φ-related.9 With some abuse of language, it is convenient to call the
map ΠE1 → ΠE2 itself an L∞-morphism. This definition includes as particular cases L∞-morphisms
of L∞-algebras and morphisms of Lie algebroids. Note that what we call L∞-algebras are often
called “curved” L∞-algebras. By default we include a 0-ary operation.

An L∞-algebroid structure on E → M induces a homotopy Poisson structure on the super-
manifold E∗ and a homotopy Schouten structure on the supermanifold ΠE∗. This means that
there are given sequences of brackets turning the space C∞(E∗) into an L∞-algebra in the Lada–
Stasheff sense (“antisymmetric convention”) and C∞(ΠE∗) into an L∞-algebra in the sense of the
alternative (“symmetric”) convention. Each bracket must also be a derivation in each argument. We
shall refer to these brackets as the homotopy Lie–Poisson and homotopy Lie–Schouten brackets.
These structures on E∗ and ΠE∗, as well as the homological vector field on ΠE, are all equivalent
to each other and should be seen as different manifestations of one structure of an L∞-algebroid,
as in the familiar cases of Lie algebras and Lie algebroids [36, 40].

Proof of Theorem 9. Consider an L∞-algebroid E → M . We shall give the proof for the
homotopy Lie–Schouten brackets on ΠE∗. (The case of the homotopy Lie–Poisson brackets on E∗ is
similar.) Let QE be the homological vector field on ΠE specifying the algebroid structure in E. The
homotopy Lie–Schouten brackets of functions on ΠE∗ are the higher derived brackets generated by
the odd master Hamiltonian H∗ = H∗

E (i.e., an odd function on the cotangent bundle T ∗(ΠE∗) sat-
isfying (H∗,H∗) = 0 for the canonical Poisson bracket), which is obtained from the fiberwise linear
Hamiltonian HE = QE · p on T ∗(ΠE) by the Mackenzie–Xu diffeomorphism T ∗(ΠE) ∼= T ∗(ΠE∗).
Suppose there is an L∞-morphism of L∞-algebroids E1 � E2, i.e., a map Φ: ΠE1 → ΠE2 over M
such that the vector fields Q1 and Q2 are Φ-related. This is equivalent to the Hamiltonians H1 = HE1

and H2 = HE2 being RΦ-related [44, Sect. 2, Example 6]. By applying the Mackenzie–Xu transfor-
mations and flipping the factors, we conclude that the Hamiltonians H∗

2 = H∗
E2

and H∗
1 = H∗

E1
are

Φ∗-related, where Φ∗ : ΠE∗
2 → ΠE∗

1 is the adjoint thick morphism. By a key statement from [44]
9Note that here there is no single map of manifolds from E1 to E2; hence the nonstandard arrow E1 � E2

denoting a morphism.
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(corollary to Theorems 6 and 7), if the master Hamiltonians are related by a thick morphism,
then the pullback is an L∞-morphism of the homotopy Schouten algebras of functions. Hence the
pushforward map Φ∗ = (Φ∗)∗ : C∞(ΠE∗

1) → C∞(ΠE∗
2 ) is an L∞-morphism, as claimed. �

With suitable modifications, the statement should hold for base-changing morphisms.
The following lemma should be known. It extends the corresponding property of ordinary Lie

algebroids [27]. We give a proof for completeness (compare with the statement for higher Lie
algebroids [38, 39]).

Lemma 1. For an L∞-algebroid E → M, the higher anchors assemble into an L∞-morphism

a : E � TM,

to which we also refer as an anchor (and for which we use the same notation), where TM has the
standard Lie algebroid structure.

Proof. The sequence of n-ary anchors assembles into a single map a : ΠE → ΠTM , which is
given by a = ΠTp ◦Q, where Q = QE and ΠTp : ΠT (ΠE) → ΠTM is the differential of the bundle
projection p : ΠE → M . For an arbitrary Q-manifold N , the map Q : N → ΠTN is tautologically
a Q-morphism; i.e., the vector fields Q on N and d on ΠTN are Q-related. Also, for any map,
its differential is a Q-morphism of the antitangent bundles. Hence the map a : ΠE → ΠTM is a
Q-morphism as the composition of Q-morphisms. Therefore, it gives an L∞-morphism E � TM
(which we denote by the same letter). �

Corollary 2. The anchor for every L∞-algebroid E → M induces an L∞-morphism

a∗ : C∞(ΠE∗) → C∞(ΠT ∗M) (3.2)

for the homotopy Lie–Schouten brackets and an L∞-morphism

a∗ : ΠC∞(E∗) → ΠC∞(T ∗M) (3.3)

for the homotopy Lie–Poisson brackets. (The functions on the bundles ΠT ∗M and T ∗M are con-
sidered with the canonical Schouten and Poisson brackets, respectively.)

Note that on the right-hand sides of (3.2) and (3.3) there is only a binary bracket, while on the
left-hand sides there are in general infinitely many brackets with all numbers of arguments. There-
fore, for a general L∞-algebroid E → M , these L∞-morphisms must be nontrivial, i.e., expressed
by supermanifold maps that are substantially nonlinear.

Corollary 3. On a homotopy Poisson manifold M, there is an L∞-morphism

C∞(ΠTM) → C∞(ΠT ∗M), (3.4)

where functions on ΠTM (i.e., pseudodifferential forms) are considered with the higher Koszul
brackets introduced in [21].

To appreciate the meaning of Corollary 3, recall that for an ordinary Poisson structure on a (su-
per)manifold M , there is a linear transformation from forms to multivector fields, Ωk(M) → Ak(M),
preserving degrees and parities, basically “raising indices” with the help of the Poisson tensor, which
intertwines the de Rham differential on forms and the Poisson–Lichnerowicz differential on multi-
vector fields, as well as the Koszul bracket on forms and the Schouten bracket on multivector fields.
Recall that the Poisson–Lichnerowicz differential dP can be defined by dP = [[P,−]], the Schouten
bracket with the Poisson tensor. The Koszul bracket induced by a Poisson structure can be defined
on 1-forms by formulas such as [df, dg]P = d{f, g}P and [df, g]P = {f, g}P , where {f, g}P is a
given Poisson bracket, and then extended to all forms as a biderivation. It is best to see this

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 302 2018



MICROFORMAL GEOMETRY AND HOMOTOPY ALGEBRAS 109

as a Lie algebroid structure induced on T ∗M (see [27]). For the homotopy case, the picture will
be as follows [21]. A single binary Koszul bracket is replaced by an infinite sequence of “higher
Koszul brackets” on Ω(M) making T ∗M an L∞-algebroid. It is still possible to define a linear
transformation from forms to multivectors (no longer preserving degrees), such that the diagram

A(M)
dP−−−−→ A(M)�⏐⏐ �⏐⏐

Ω(M)
d−−−−→ Ω(M)

is commutative, where the analog of the Poisson–Lichnerowicz differential dP = [[P,−]] is an odd
operator (but not of a particular degree). However, there is a problem with the brackets. Unlike
the classical case, this linear map Ω(M) → A(M) (and any linear map) clearly cannot transform a
sequence of many higher Koszul brackets into one Schouten bracket. We conjectured in [21] that an
L∞-morphism from Ω(M) to A(M) must exist instead. Corollary 3 gives the desired solution. The
linear map from forms to multivectors constructed in [21] is induced by a fiberwise (nonlinear) map
ΠT ∗M → ΠTM , which represents the anchor T ∗M � TM . The dual to it is a thick morphism
ΠT ∗M →ΠTM , the nonlinear pullback by which is exactly the sought L∞-morphism. See [22] for
details.

Corollary 4 (generalization of Corollary 3). There is an L∞-morphism of homotopy Schouten
algebras

C∞(ΠE) → C∞(ΠE∗) (3.5)

for “triangular L∞-bialgebroids.”

Recall that Mackenzie and Xu [28] introduced the concept of a triangular Lie bialgebroid as
a generalization of Drinfeld’s triangular Lie bialgebras. It is a pair of vector bundles in duality
(E,E∗), where a Lie algebroid structure on E is initially given and the bundle E∗ is made a Lie
algebroid with the help of an element r ∈ Γ(M,Λ2E) playing the role of the classical r-matrix.
In our language, r is a fiberwise quadratic function on ΠE∗. The Lie algebroid structure on E∗

is defined by the Hamiltonian HE∗ := (H∗
E, r) ∈ C∞(T ∗(ΠE∗)), where H∗

E is obtained by the
Mackenzie–Xu transformation from the Hamiltonian HE ∈ C∞(T ∗(ΠE)) corresponding to the
Lie algebroid structure on E. (Counting weights shows that the Hamiltonian HE∗ is linear in
momenta on ΠE∗, as required.) The pair (TM,T ∗M) for a Poisson manifold is a model example of
a triangular Lie bialgebroid. The role of an r-matrix is played by the Poisson bivector. Transporting
this analogy to the homotopy case, we can define an L∞-analog of the Mackenzie–Xu triangular
Lie bialgebroids. For a pair (E,E∗), one starts from an L∞-algebroid structure on E and an
even function r on ΠE∗ (no constraints on degrees), and then introduces a compatible “triangular”
structure, which will make the pair (E,E∗) a triangular L∞-bialgebroid.10 The key observation
here is that the homotopy analog of a triangular structure is the shift in the argument of the
master Hamiltonian, H(x, p) �→ H ′(x, p) = H

(
x, p + ∂r

∂x

)
. Corollary 4 in this setting arises as an

abstract version of Corollary 3. We elaborate these questions elsewhere (see [22]; another paper is
in preparation11).

10There is some freedom as to what should be called an L∞-bialgebroid structure on (E,E∗) in general. The options
range from L∞-algebroid structures on E and E∗ with a compatibility condition expressible as (H1,H2) = 0 for
the corresponding odd Hamiltonians which live on T ∗(ΠE) ∼= T ∗(ΠE∗), which in particular gives a self-commuting
Hamiltonian H := H1 +H2, to the apparently more general structure described by a single self-commuting odd
Hamiltonian H of an arbitrary form. In the latter option the distinction between the bialgebroid and its “Drinfeld
double” looks blurred. One should certainly wish to have a pair of structures that can be combined into a family.

11Th. Th. Voronov, “L∞-bialgebroids and homotopy Poisson structures” (in preparation).
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4. QUANTUM THICK MORPHISMS: GENERAL PROPERTIES

We shall show now that the construction of thick morphisms in the bosonic case has a “quantum”
counterpart. Namely, we shall define “quantum pullbacks” depending on Planck’s constant � as
certain oscillatory integral operators that transform functions on one (super)manifold to functions
on another (super)manifold. We then define the “quantum microformal category” as the dual to
the category of such integral operators. We shall show that in the limit � → 0 this picture gives
rise to thick morphisms and the corresponding nonlinear pullbacks. This in hindsight may be seen
as clarifying the origin of the above “classical” constructions. For quantum pullbacks it is possible
to give a closed formula as opposed to the pullbacks by “classical” thick morphisms, defined only
by an iterative procedure. Quantum thick morphisms were first introduced in the short note [42].
Some further results were obtained in the preprint [41].

We first need to introduce a class of functions on which quantum pullbacks will be acting.
Definition 6. An oscillatory wave function on a (super)manifold M is a linear combination

of formal expressions of the form

w�(x) = a(�, x)e
i
�
b(x,�) (4.1)

where a(x, �) =
∑

n≥0 �
nan(x) and b(x, �) =

∑
n≥0 �

nbn(x) are formal expansions in nonnegative
powers of � whose coefficients are smooth functions on M . (Here b(x, �) is even.)

We customarily drop explicit indication of dependence on � for oscillatory wave functions and
write w(x) for w�(x). We assume natural rules of manipulations with the expression like (4.1).
Note that we can always rearrange the exponential in (4.1) so as to make w(x) = A(�, x)e

i
�
b0(x),

with no dependence on � in the phase b0(x). Conversely, an invertible factor in front of the ex-
ponential can be made into a term in the phase if we forsake the reality restriction. Oscillatory
wave functions on M form an algebra, which we denote by OC∞

�
(M) and which extends the algebra

C∞
�
(M) := C∞(M)[[�]] of formal power series in � with smooth coefficients. Symbolically,

OC∞
� (M) = C∞

� (M) exp
i

�
C∞(M).

Consider supermanifolds M1 and M2. In the same way as thick morphisms M1 →M2 are speci-
fied by their generating functions, quantum thick morphisms will be specified by certain “quantum”
generating functions. As in Section 1, denote by xa local coordinates on M1, by yi local coordinates
on M2, and by pa and qi the corresponding conjugate momenta. In given coordinate systems on
M1 and M2, a quantum generating function S�(x, q) is a formal power series in qi,

S�(x, q) = S0
�(x) + ϕi

�(x)qi +
1

2
Sij
�
(x)qjqi +

1

3!
Sijk
�

(x)qkqjqi + . . . , (4.2)

where the coefficients are formal power series in �. Note that, the same as for the “classical” case
considered before, S�(x, q) is a coordinate representation of a geometric object and not a scalar
function. Its transformation law will be clarified shortly.

Definition 7. A quantum thick morphism, or quantum microformal morphism,

Φ̂ : M1 →q M2

with a (quantum) generating function S�(x, q) is identified with its action on functions

Φ̂∗ : OC∞
� (M2) → OC∞

� (M1)

in the opposite direction, called quantum pullback and defined by the formula

(Φ̂∗w)(x) =

∫
T ∗M2

Dy D̄q e
i
�
(S�(x,q)−yiqi) w(y). (4.3)
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Integration in (4.3) is with respect to the normalized Liouville measure Dy D̄q on T ∗M2. Here and
in the future, we use the notation D̄q := (2π�)−n(i�)mDq if Dq is a coordinate volume element in
(super)dimension n|m.

The source of the normalization factor above is in the formulas for the direct and inverse �-Fourier
transform. Recall that on R

n|m they read

f̃(p) =

∫
Dx e−

i
�
xapaf(x)

and

f(x) = (2π�)−n(i�)m
∫

Dp e
i
�
xapa f̃(p) =

∫
D̄p e

i
�
xapa f̃(p),

where the integration is over R
n|m and over its dual. (There may be an extra common sign factor

depending on choices of signs in the Berezin integral, which we take to be 1.) In particular,

δ(x) =

∫
D̄p e

i
�
xapa .

Remark 10. The form of integral operators (4.3) is familiar in the theory of partial differential
equations (not the super case of course). Operators of a slightly more general form

Au(x) =

∫
ei(S(x,p)−x′p)a(x, p)u(x′) dx′d̄p, (4.4)

but with both x and x′ in the same domain Ω ⊂ R
n, were studied by M. I. Vishik and G. I. Eskin [34]

and especially by Yu. V. Egorov [8, 9] and M. V. Fedoryuk [11]. Together with Maslov’s canonical
operator [29], they were precursors of the Fourier integral operators introduced by L. Hörmander
in [17, 18]. Hörmander [18] stressed as a crucial observation of Egorov a connection between op-
erators (4.4) and canonical transformations in T ∗Ω. (As noticed in [11], such a connection was
indicated earlier by V. A. Fock [12], who was making a precise statement out of Dirac’s analogy
between unitary transformations in quantum mechanics and canonical transformations in classical
mechanics. See also [13, Pt. I, Ch. III, § 16].) In Hörmander’s construction of Fourier integral op-
erators, canonical transformations gave way to canonical relations, specified by equivalence classes
of phase functions depending on auxiliary variables. In standard theory, these canonical relations
are conical, so the phase functions are positively homogeneous of degree +1 (see [32, 10, 31]).
Operators (4.3) can therefore be seen as a special case of Fourier integral operators, but not exactly
fitting in the standard definitions because of the different type of their phase functions.

Example 8. Let S�(x, q) = S0
�
(x) + ϕi

�
(x)qi. Then

(Φ̂∗w)(x) = e
i
�
S0
�
(x)

∫
T ∗M2

D̄(y, q) e
i
�
(ϕi

�
(x)−yi)qi w(y) = e

i
�
S0
�
(x)w(ϕ�(x)). (4.5)

We arrive at a “quantum analog” of the category SMan�C∞ and its action on smooth functions.
Morphisms here are pairs (ϕ, e

i
�
f ), and the composition of pairs is given by

(
ϕ32, e

i
�
f32

)
◦
(
ϕ21, e

i
�
f21

)
=

(
ϕ32 ◦ ϕ21, e

i
�
(ϕ∗

21f32+f21)
)
.

The phase functions f and maps ϕ are expansions in nonnegative powers of �, f = f� and ϕ = ϕ�

(so the “maps” are formal perturbations of ordinary maps). The action (4.5) is clearly well defined
for oscillatory wave functions w.
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Example 9. Let w(y) ≡ 1. Then, for arbitrary S�(x, q), we have

Φ̂∗(1) = e
i
�
S0
�
(x). (4.6)

Example 10. Let w(y) = e
i
�
yc, where yc ≡ yici and ci are parameters. Then

(Φ̂∗w)(x) = e
i
�
S�(x,c) (4.7)

(cf. Example 6). We can restate this as a formula for reconstructing the quantum generating
function:

e
i
�
S�(x,q) = Φ̂∗[e i

�
yq
]
(x) (4.8)

(where we restored q in the argument).
Let S0(x, q) be obtained by substituting � = 0 in a quantum generating function S�(x, q). We

regard S0(x, q) as the generating function of a classical thick morphism Φ: M1 → M2. Before we
have clarified the transformation law for quantum generating functions, this would make sense at
least in a fixed coordinate system. We shall write Φ = lim�→0 Φ̂.

Theorem 10. In the limit � → 0, the quantum pullback Φ̂∗ transforms the phase of an oscil-
latory wave function as the pullback Φ∗ by the classical thick morphism Φ = lim�→0 Φ̂, so that if
w(y) = e

i
�
g(y) on M2, then on M1

(Φ̂∗w)(x) = e
i
�
f�(x), where f� = Φ∗[g] +O(�).

Proof. For a wave function w(y) = e
i
�
g(y), we have

(Φ̂∗w)(x) =

∫
T ∗M2

D̄(y, q) e
i
�
(S�(x,q)−yiqi+g(y)).

By the stationary phase method (see Appendix A), the value of the integral, in the main order in �,
is the exponential evaluated at the critical points of the phase when � → 0. By differentiating with
respect to yi and qi and setting the result to zero, we arrive at the system of equations

qi =
∂g

∂yi
(y), yi = (−1)ı̃

∂S0

∂qi
(x, q)

for determining yi and qi, whose unique solution should be substituted into S0(x, q) + g(y) − yiqi
to obtain a function f(x) as the leading term of the phase. These are exactly equations (1.15) in
the definition of pullback, and f = Φ∗[g] as claimed. �

Remark 11. The stationary phase method [11] can be applied to Φ̂∗w for w = a(x, �)e
i
�
g(x),

and it also allows to find all terms in the expansion in � (at least, their general form), not only
the main term. The fact that quantum pullback preserves the class of oscillatory wave functions
follows from here. Note that the square root of the Hessian arising as a factor in the stationary
phase method can be formally subsumed into the phase as a correction of the first order in �. Note
also that since in the main order the quantum pullback reduces to the classical pullback, which is a
formal map, so is the quantum pullback (formal on the phases). For convenience, we included the
precise statements concerning the stationary phase method in the form suitable for our needs in the
Appendix (see Theorems 17 and 18 there).

The integral (4.3) can actually be solved in a closed form, giving an expression for a quantum
pullback Φ̂∗ : OC∞

�
(M2) → OC∞

�
(M1) as a “formal differential operator.” (This is an advantage over
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pullbacks by classical thick morphisms, given in general only by an iterative procedure.) Let us write
a quantum generating function S�(x, q) defining a quantum microformal morphism Φ̂ : M1 →q M2 in
the form similar to (1.12),

S�(x, q) = S0
�(x) + ϕi

�(x)qi + S+
�
(x, q), (4.9)

where S+
�
(x, q) is the sum of all terms of order ≥ 2 in qi.

Theorem 11. The action of Φ̂∗ : OC∞
�
(M2) → OC∞

�
(M1) can be expressed as follows:

(Φ̂∗w)(x) = e
i
�
S0
�
(x)

(
e

i
�
S+
�

(
x, �

i
∂
∂y

)
w(y)

)∣∣∣
yi=ϕi

�
(x)

. (4.10)

It is a formal differential operator over a map ϕ� : M1 → M2 given by yi = ϕi
�
(x).

Proof. Substituting (4.9) into (4.3) gives

(Φ̂∗w)(x) =

∫
D̄(y, q) e

i
�
(S0

�
(x)+ϕi

�
(x)qi+S+

�
(x,q)−yiqi) w(y)

= e
i
�
S0
�
(x)

∫
D̄q e

i
�
ϕi
�
(x)qie

i
�
S+
�
(x,q)

∫
Dy e−

i
�
yiqi w(y).

The integral is the composition of the (�-)Fourier transform of a function w(y) from the variables yi

to the variables qi, the multiplication by e
i
�
S+
�
(x,q), treated as a function of qi with xa seen as pa-

rameters, and the inverse Fourier transform from qi to yi, where ϕi
�
(x) is substituted for yi, followed

finally by the multiplication by the phase factor e
i
�
S0
�
(x). Recalling the standard relation between

multiplication and differentiation under Fourier transform, we arrive at the claimed result. �
Remark 12. The notion of a differential operator over a smooth map as opposed to operators

on a single manifold is not very standard, but should be self-explanatory. Separating the “differ-
entiation part” such as S+

�

(
x, �

i
∂
∂y

)
from the purely “substitution part” yi = ϕi

�
(x) in (4.10) is of

course coordinate-dependent. Naively, there are three ingredients in Φ̂∗: a differential operator of
infinite order in yi and of the form 1 + O(�) in � (starting with the second derivatives and where
each term with the derivatives of order k is of order k − 1 in �), the substitution as such, and
the multiplication by the phase factor. Thus, a general quantum thick morphism Φ̂ can be seen
as a perturbation, due to the term S+

�
(x, q) in the expansion (4.9) of the generating function, of a

morphism of the form (ϕ�, e
i
�
f�) as in Example 8.

We can push this a bit further by noticing that the quantum pullback Φ̂∗ can be written as an
integral operator

(Φ̂∗w)(x) =

∫
DyK(x, y)w(y) (4.11)

with the Schwarz kernel

K(x, y) =

∫
D̄q e

i
�
(S�(x,q)−yiqi), (4.12)

i.e., the �-Fourier transform (up to a factor) of the function e
i
�
S�(x,q) from q to y. By expanding

S�(x, q) as in (4.9) and using manipulations similar to those in the proof of Theorem 11, we can
express the integral kernel of the operator Φ̂∗ as

K(x, y) = e
i
�
S0
�
(x)e

i
�
S+
�

(
x,− �

i
∂
∂y

)
δ(y − ϕ�(x)) (4.13)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 302 2018



114 Th.Th. VORONOV

(note the minus sign in the argument of S+
�

). This is basically a restatement of Theorem 11. In this
form it is clear that the integral kernel of Φ̂∗ is supported on a formal neighborhood of the graph
of the “�-perturbed” map ϕ� : M1 → M2.

Theorem 12. The composition of quantum thick morphisms M1

̂Φ21→q M2

̂Φ32→q M3 with

generating functions S21(x1, p2) and S32(x2, p3) is a quantum thick morphism M1

̂Φ31→q M3 with
the generating function S31(x1, p3) given by

e
i
�
S31(x1,p3) =

∫
T ∗M2

D̄(x2, p2) e
i
�
(S32(x2,p3)+S21(x1,p2)−x2p2). (4.14)

(Here S21 := S21,�, etc.; we suppress � to simplify the notation.) In the limit � → 0, this composition
law becomes the composition law for classical thick morphisms given by Theorem 2.

Proof. Apply the composition Φ̂∗
21 ◦ Φ̂∗

32 to a “test function” w(x3) = e
i
�
x3p3 (see Example 10).

The claim is that the result is an oscillatory exponential of the desired form. We work in the
abbreviated notation and denote coordinates on the manifolds Mi by xi and the conjugate momenta
by pi, where i = 1, 2, 3. We have

Φ̂∗
21

(
Φ̂∗
32

[
e

i
�
x3p3

])
(x1) = Φ̂∗

21

[
Φ̂∗
32

[
e

i
�
x3p3

]
(x2)

]
(x1)

=

∫
Dx2 D̄p2 e

i
�
(S21(x1,p2)−x2p2)

∫
Dx3 D̄p′3 e

i
�
(S32(x2,p′3)−x3p′3)e

i
�
x3p3

=

∫
Dx2 D̄p2Dx3 D̄p′3 e

i
�
(S21(x1,p2)+S32(x2,p′3)−x2p2+x3(p3−p′3))

=

∫
Dx2 D̄p2 e

i
�
(S21(x1,p2)+S32(x2,p3)−x2p2).

From the stationary phase method (see Theorem 18 in the Appendix) we observe, first, that the
latter integral can be written as an exponential e

i
�
S31(x1,p3) for some function S31 depending on �

and, second, that in the limit � → 0, which is indicated by 0 in the subscripts, we should have

S31,0(x1, p3) = S21,0(x1, p2) + S32,0(x2, p3)− x2p2,

where the variables x2 and p2 are found from the equations

xi2 = (−1)ı̃
∂S21,0

∂p2 i
(x1, p2), p2 i =

∂S32,0

∂xi2
(x2, p3).

This is exactly the composition law for classical generating functions as given by Theorem 2. �
Theorem 13 (transformation law for quantum generating functions). Let xa = xa(x′),

yi = yi(y′) and xa
′
= xa

′
(x), yi

′
= yi

′
(y) be mutually inverse changes of local coordinates

on M1 ×M2. Then quantum generating functions S�(x, q) and S′
�
(x′, q′) specifying the same quan-

tum thick morphism Φ̂ : M1 →q M2 in the coordinate systems x, y and x′, y′ are related by the
transformation law

e
i
�
S′
�
(x′,q′) =

∫
Dy D̄q e

i
�
(S�(x(x

′),q)−yq+y′(y)q′), (4.15)

where we use abbreviated notation such as yq ≡ yiqi.
Proof. Similarly to the proof of Theorem 12, apply Φ̂∗, for a quantum thick morphism Φ̂

specified by S�(y, q) in the “old” coordinates xa, yi, to a test function w = e
i
�
yi

′
qi′ , where yi

′ are
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the “new” coordinates on M2 and qi′ are the conjugate momenta, expressing the result also via the
“new” coordinates xa

′ on M1. We obtain

Φ̂∗[e i
�
y′q′

]
=

∫
Dy D̄q e

i
�
(S(x,q)−yq) e

i
�
y′(y)q′ =

∫
Dy D̄q e

i
�
(S(x,q)−yq+y′(y)q′),

where it remains to substitute x = x(x′). The integral is of the type covered by Theorem 18 in the
Appendix, and we may conclude that it equals to an oscillating exponential of the form e

i
�
S′
�
(x′,q′),

which therefore gives the quantum generating function of the morphism Φ̂ in the “new” coordinates
on M1 and M2 expressed by (4.15), as claimed. �

(This included the independence of the notion of a quantum thick morphism of a choice of
coordinates.)

If we apply the stationary phase method to the integral on the right-hand side of (4.15), we
shall arrive at the equations

yi = (−1)ı̃
∂S�

∂qi
(x(x′), q), qi =

∂yi
′

∂yi
(y)qi′

for determining yi and qi (as functions of x′ and q′) at the stationary point. Then

S′
�(x

′, q′) = S�(x(x
′), q)− yq + y′(y)q′ +O(�).

Hence, in the limit � → 0, the transformation law for quantum generating functions S� becomes, as
anticipated, the transformation law (1.8) for classical generating functions S, S = S0, considered
before.

Remark 13. For quantum thick morphisms, there are two different kinds of power expansions:
the expansion in Planck’s constant � and the expansions already present for classical thick mor-
phisms (formal power expansions for the pullbacks and compositions), which can be compared with
expansions “in the coupling constant.” The source of latter is the higher order terms in momenta in
generating functions, which in particular result in coupled equations for determining the stationary
phase points. See also Appendix A.

5. QUANTUM THICK MORPHISMS: APPLICATION TO HOMOTOPY ALGEBRAS

Now we turn to application of quantum microformal morphisms to homotopy bracket structures.
Since the initial motivation for introducing “classical” microformal morphisms was the search for
a construction of L∞-morphisms for homotopy Poisson or Schouten brackets, it is natural to ask
about the respective position of the quantum version.

For the “quantum” context we need to recall how a bracket structure is generated by a differential
operator. Let A be a commutative associative superalgebra with unit. Suppose Δ is a linear operator
acting on A. One can say when Δ is a differential operator (d.o.) of order (less than or equal to) n.
This is defined by induction: Δ is of order 0 if it commutes with multiplication by elements of A,
and of order n if for all a ∈ A the commutator [Δ, a] is of order n − 1. (By using Hadamard’s
lemma, one can see that for a smooth manifold this leads to the usual definition with partial
derivatives.) Such an understanding can be traced back to A. Grothendieck [14, Ch. IV, § 16.8].
J.-L. Koszul [24] extracted from it a construction of a sequence of multilinear operations (later
generalized by F. Akman from commutative to other algebras; see, e.g., [1]), which we shall call
“brackets,”12 and which are defined as follows: for an arbitrary linear operator Δ on an algebra A
and for elements a1, . . . , ak ∈ A, where k ≥ 0, set

{a1, . . . , ak}Δ := [. . . [Δ, a1], . . . , ak](1). (5.1)

12Hopefully, no confusion will arise with the Koszul brackets on differential forms considered in Section 3.
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For k = 0, 1, 2, 3 one can find

{∅}Δ = Δ(1),

{a}Δ = Δ(a)−Δ(1)a,

{a, b}Δ = Δ(ab)−Δ(a)b− (−1)ã
˜bΔ(b)a+Δ(1)ab,

{a, b, c}Δ = Δ(abc)−Δ(ab)c− (−1)
˜bc̃Δ(ac)b− (−1)ã(

˜b+c̃)Δ(bc)a

+Δ(a)bc+ (−1)ã
˜bΔ(b)ac+ (−1)(ã+

˜b)c̃Δ(c)ab−Δ(1)abc,

and an expression of this form can be written for arbitrary k (see below). Koszul’s construction is
an example of “higher derived brackets” [37]. The brackets are symmetric in the super sense and
have parity equal to the parity of Δ. For any k, they satisfy the identity

{a1, . . . , ak−1, akak+1}Δ = {a1, . . . , ak−1, ak}Δak+1 + (−1)αkak{a1, . . . , ak−1, ak+1}Δ
+ {a1, . . . , ak−1, ak, ak+1}Δ, (5.2)

where αk = ãk(Δ̃ + ã1 + . . . + ãk−1), which means that the (k + 1)th bracket measures the failure
of the kth bracket to be a derivation in its arguments. If Δ is a differential operator of order n,
then all brackets with more than n arguments vanish, the top bracket is a multiderivation, and in
the formula for it there is no need to evaluate at 1,

{a1, . . . , an}Δ = [. . . [Δ, a1], . . . , an].

The top bracket can be identified with the principal symbol of a differential operator. We refer to
the operator Δ as the generating operator of the sequence of brackets {−, . . . ,−}Δ.

Remark 14. For arbitrary k, the expression for the kth bracket generated by Δ is

{a1, . . . , ak}Δ =

k∑
s=0

(−1)s
∑

(k − s, s)-shuffles

(−1)α Δ
(
aτ(1) . . . aτ(k−s)

)
aτ(k−s+1) . . . aτ(k), (5.3)

where (−1)α = (−1)α(τ ;ã1,...,ãk) is the standard “Koszul sign” for permutation of commuting factors
of given parities. (If all elements a1, . . . , ak are even, then (−1)α(τ ;ã1,...,ãk) = 1.)

If Δ is odd, the brackets are also odd and one may ask about their Jacobiators. As shown
in [37], the sequence of the Jacobiators is generated by the operator Δ2 = 1

2 [Δ,Δ]. In particular,
if Δ2 = 0, all the Jacobiators vanish and the brackets generated by Δ make A an L∞-algebra (in
the symmetric version).13

Note however that we do not obtain an S∞-algebra (or “homotopy Schouten” algebra) in this way
because the Leibniz identity is not satisfied. Following [37], we can modify Koszul’s construction to
resolve this problem. Consider A� := A[[�]]. Define �-differential operators (�-d.o.’s) as follows. Let
Δ be a linear operator on A�. Then Δ is an �-d.o. of order 0 if it commutes with the multiplication
by all a ∈ A�, and Δ is an �-d.o. of order n if for all a ∈ A� the operator [Δ, a] has the form (−i�)Δ′

a,
where Δ′

a is an �-d.o. of order n− 1. For example, if Δ′ is a d.o. of order n in the usual sense, then
the operator Δ = (−i�)nΔ′ is an �-d.o. of order n.

Example 11. On a (super)manifold M , an arbitrary �-d.o. of order n has the form

Δ = (−i�)nAa1...an
�

(x) ∂a1 . . . ∂an + (−i�)n−1A
a1...an−1

�
(x) ∂a1 . . . ∂an−1 + . . . +A0

�(x). (5.4)

13This was first found in physics literature related to the Batalin–Vilkovisky formalism (see, e.g., [3]).
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We note that the algebra of oscillatory wave functions introduced above is stable under �-d.o.’s.
(It is not stable under arbitrary differential operators because they may create the factors of �

−1.)
For an �-d.o. Δ of arbitrary order, all k-fold commutators [. . . [Δ, a1], . . . , ak] are divisible

by (−i�)k, and we can (re)define the brackets generated by Δ by setting

{a1, . . . , ak}Δ,� := (−i�)−k[. . . [Δ, a1], . . . , ak](1). (5.5)

We can also introduce the corresponding “classical” brackets by

{a1, . . . , ak}Δ,0 := lim
�→0

(−i�)−k[. . . [Δ, a1], . . . , ak](1) (5.6)

(the limit has the meaning of substituting 0 in the nonnegative power expansion in �). We refer
to (5.5) as the quantum brackets as opposed to the classical brackets (5.6). The quantum brackets
satisfy the identity

{a1, . . . , ak−1, akak+1}Δ,� = {a1, . . . , ak−1, ak}Δ,� ak+1 + (−1)α̃ak{a1, . . . , ak−1, ak+1}Δ,�

+ (−i�){a1, . . . , ak−1, ak, ak+1}Δ,�, (5.7)

which for � → 0 becomes the derivation property

{a1, . . . , ak−1, akak+1}Δ,0 = {a1, . . . , ak−1, ak}Δ,0 ak+1 + (−1)α̃ak{a1, . . . , ak−1, ak+1}Δ,0. (5.8)

Here α̃ = ãk(Δ̃ + ã1 + . . . + ãk−1). We call the sequence of all classical brackets generated by Δ
the principal symbol of an �-d.o. Δ. On a (super)manifold, since the classical brackets are sym-
metric multiderivations of the algebra of functions, the principal symbol can be identified with an
inhomogeneous polynomial in momentum variables. (In the language of Section 3, it is the master
Hamiltonian of the brackets.)

Example 12. For an �-d.o. of Example 11, the principal symbol is

H(x, p) = Aa1...an
0 (x) pa1 . . . pan +A

a1...an−1

0 (x) pa1 . . . pan−1 + . . .+A0
0(x), (5.9)

which is an inhomogeneous fiberwise polynomial function on T ∗M , well-defined independently of a
choice of coordinates! (The subscript 0 means substituting 0 for � in the coefficients.)

Remark 15. If we only keep the condition that all k-fold commutators [. . . [Δ, a1], . . . , ak] be
divisible by (−i�)k, formula (5.5) still makes sense and we obtain, generally, an infinite sequence of
brackets. We shall refer to such operators as formal �-differential operators. On manifolds, this gives
operators whose principal symbols are formal power series in momenta. Algebraic constructions
here agree with the known notion of �-pseudodifferential operators defined in local coordinates by
integrals

(Δu)(x) =

∫∫
D̄pDx′ e

i
�
(xa−x′a)paH�(x, p)u(x

′),

with a function H�(x, p) from a suitable symbol class (see, e.g., [31]). Here the “full symbol” H�(x, p)
is coordinate-dependent, but the principal symbol H(x, p) = H0(x, p) is well defined as a function
on T ∗M .

Suppose an odd operator Δ squares to 0. Consider the quantum brackets (5.5). They define
an L∞-algebra (in the odd symmetric version) and additionally satisfy the modified Leibniz iden-
tity (5.7). We shall call such an algebraic structure an S∞,�-algebra (so that for � = 0 we come
back to an S∞-algebra, S∞,0 = S∞). We shall give a formula for the corresponding homological
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vector field, as well as a formula for the master Hamiltonian for the classical S∞-algebra (i.e., the
principal symbol of Δ).

Lemma 2. The quantum brackets (5.5) correspond to a formal vector field Q on an algebra A
(more accurately, on the corresponding supermanifold A), where

Q = e−
i
�
aΔ

(
e

i
�
a
) δ

δa
. (5.10)

Here a ∈ A and Δ(e
i
�
a) denotes the application of the operator to the function.

Proof. The formal vector field corresponding to a sequence of symmetric multilinear functions
of fixed parity on a superspace A is the formal sum

Q(a) =
+∞∑
k=0

1

k!
{a, . . . , a︸ ︷︷ ︸

k

}

(see, e.g., [37]). Here a ∈ A is a “running” even element (or a point of the corresponding superman-
ifold). A vector field here is identified with a vector function. It can also be expressed as

Q =

+∞∑
k=0

1

k!
{a, . . . , a︸ ︷︷ ︸

k

} δ

δa
,

meaning an infinitesimal shift a �→ a + εQ(a). The relation of the vector field Q to the given
multilinear functions is by the higher derived bracket formula [37]

{a1, . . . , ak} = [. . . [Q, a1], . . . , ak](0)

(the value of a vector field at the origin). Here the vectors ai are regarded as constant vector fields.
Now, to obtain (5.10), we take an even element a in the algebra A and consider

{a, . . . , a︸ ︷︷ ︸
k

}Δ,� =

[
. . .

[
Δ,

i

�
a

]
, . . . ,

i

�
a

]
(1) =

((
ad

(
− i

�
a

))k

Δ

)
(1);

hence

Q(a) =
+∞∑
k=0

1

k!

((
ad

(
− i

�
a

))k

Δ

)
(1) =

(
ead

(
− i

�
a
)
Δ
)
(1) =

(
Ad

(
e−

i
�
a
)
Δ
)
(1)

=
(
e−

i
�
aΔe

i
�
a
)
(1) = e−

i
�
aΔ

(
e

i
�
a(1)

)
= e−

i
�
aΔ

(
e

i
�
a
)
. �

Lemma 3. In the differential-geometric setting, the principal symbol of Δ, or the master
Hamiltonian of the classical brackets (5.6), is given by

H(x, p) = lim
�→0

e−
i
�
xapaΔ

(
e

i
�
xapa

)
. (5.11)

Proof. Recall that the master Hamiltonian H of symmetric brackets is defined by the rela-
tion [37]

{f1, . . . , fk} = (. . . (H, f1), . . . , fk)
∣∣
M

for functions fi ∈ C∞(M). Hence, in local coordinates,

H(x, p) =
+∞∑
k=0

1

k!

{
xa1pa1 , . . . , x

akpak
}
,
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where the momentum variables pa are treated as parameters when the brackets are taken; therefore,
for the classical brackets generated by an operator Δ, we obtain

H(x, p) = lim
�→0

+∞∑
k=0

1

k!

[
. . .

[
Δ,

i

�
xa1pa1

]
, . . . ,

i

�
xakpak

]
(1) = lim

�→0
e−

i
�
xapaΔ

(
e

i
�
xapa

)

(where we have effectively repeated the argument used in the proof of Lemma 2). �
Remark 16. For neither formula (5.10) nor (5.11) it is important that the operator Δ generat-

ing the brackets is odd or satisfies Δ2 = 0. In particular, it makes sense to consider “L∞-morphisms”
of the infinite sequences of brackets generated by arbitrary operators Δ without such assumptions.
It is interesting what such morphisms would mean in the classical context of partial differential
equations.

Now we shall give a “quantum analog” of Theorem 6 of [44], which says that Poisson thick
morphisms induce L∞-morphisms of homotopy Poisson brackets.

Definition 8. We say that M is a Batalin–Vilkovisky manifold, or shortly a BV-manifold, if
M is a supermanifold equipped with an odd formal �-differential operator Δ of square zero. The
operator Δ is referred to as the BV-operator. For BV-manifolds M1 and M2 with BV-operators Δ1

and Δ2, we say that a quantum thick morphism Φ̂ : M1 →q M2 is a quantum BV-morphism if

Δ1 ◦ Φ̂∗ = Φ̂∗ ◦Δ2. (5.12)

The BV-operator on a BV-manifold M specifies an S∞,�-structure on the algebra C∞
�
(M1).

We shall show that a quantum BV-morphism Φ̂ : M1 →q M2 induces an L∞-morphism of the
corresponding S∞,�-algebras. Note that it cannot be the pullback Φ̂∗ itself, since Φ̂∗ is linear and
we are looking for a nonlinear map of the function supermanifolds

C∞
� (M2) → C∞

� (M1).

For a quantum thick morphism Φ̂ (not necessarily a BV-morphism), define Φ̂! by

Φ̂!(g) :=
�

i
ln
(
Φ̂∗e

i
�
g
)

(5.13)

for a g ∈ C∞
�
(M2). If we introduce the notation exp� g := exp

(
i
�
g
)

and ln� f := �

i ln f , then

Φ̂! = ln� ◦ Φ̂∗◦ exp�. (5.14)

For the composition of quantum thick morphisms

M1

̂Φ21→q M2

̂Φ32→q M3,

we have
(Φ̂32 ◦ Φ̂21)

! = Φ̂!
21 ◦ Φ̂!

32.

Theorem 14. If Φ̂ : M1 →q M2 is a quantum BV-morphism, then Φ̂! is an L∞-morphism of
the S∞,�-algebras of functions. In greater detail, the map

Φ̂! : C∞
� (M2) → C∞

� (M1)

is a morphism of Q-manifolds, where the homological vector fields Qi ∈ Vect(C∞
�
(Mi)) correspond-

ing to the BV-operators Δi, i = 1, 2, are given by Lemma 2.
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Proof. By Lemma 2, the homological vector fields Qi regarded as infinitesimal shifts on the
supermanifold C∞

�
(Mi) are given by

Qi(f) = e−
i
�
fΔi

(
e

i
�
f
)
,

so that f �→ f + εQi(f). We need to show that Φ̂! commutes with these shifts. Indeed, let
g ∈ C∞

�
(M2); apply the infinitesimal shift by Q2 followed by Φ̂!. We obtain

Φ̂!(g + εQ2(g)) = Φ̂!
(
g + εe−

i
�
gΔ2

(
e

i
�
g
))

=
�

i
ln Φ̂∗ exp

(
i

�

(
g + εe−

i
�
gΔ2

(
e

i
�
g
)))

=
�

i
ln Φ̂∗

(
e

i
�
g

(
1 + ε

i

�
e−

i
�
gΔ2

(
e

i
�
g
)))

=
�

i
ln Φ̂∗

(
e

i
�
g + ε

i

�
Δ2

(
e

i
�
g
))

=
�

i
ln

(
Φ̂∗e

i
�
g + ε

i

�
Φ̂∗(Δ2

(
e

i
�
g
)))

=
�

i
ln

(
Φ̂∗e

i
�
g + ε

i

�
Δ1

(
Φ̂∗e

i
�
g
))

=
�

i
ln Φ̂∗e

i
�
g + ε

(
Φ̂∗e

i
�
g
)−1

Δ1

(
Φ̂∗e

i
�
g
)
= Φ̂!(g) + ε

(
Φ̂∗e

i
�
g
)−1

Δ1

(
Φ̂∗e

i
�
g
)
.

Here we used the commutativity condition (5.12). Now apply first Φ̂! and then the infinitesimal
shift by Q1. We have

Φ̂!(g) + εQ1

(
Φ̂!(g)

)
= Φ̂!(g) + εe−

i
�
̂Φ!(g)Δ1

(
e

i
�
̂Φ!(g)

)
;

note that
e

i
�
̂Φ!(g) = Φ̂∗e

i
�
g.

Hence
Φ̂!(g) + εQ1

(
Φ̂!(g)

)
= Φ̂!(g) + ε

(
Φ̂∗e

i
�
g
)−1

Δ1

(
Φ̂∗e

i
�
g
)
,

which is exactly as above. Thus, Φ̂! intertwines Q1 and Q2 as claimed. �
Remark 17. The definition of the map Φ̂! by formulas (5.13) and (5.14) is motivated by the

stationary phase method (before the limit � → 0 is taken). By Theorem 10, we have lim�→0 Φ̂
! = Φ∗,

where Φ is the classical thick morphism corresponding to a quantum thick morphism Φ̂. On the
other hand, this construction is entirely algebraic and makes sense, together with an analog of
Theorem 14, in the abstract setting as follows.

Let Δ be an odd formal �-differential operator on a commutative unital superalgebra A that
satisfies Δ2 = 0; we call it a BV-operator. Call an algebra A endowed with such a Δ a BV-algebra.
(This terminology is not standard, but is convenient for our present purpose.) Every BV-operator
generates an infinite sequence of brackets by (5.5), which defines an S∞,�-structure on the algebra A.
In fact, an S∞,�-structure is completely determined by its 0- and 1-brackets, as all the higher brackets
are inductively obtained as the discrepancies in the Leibniz identities. Since we can recover Δ as
Δ(a) = �

i {a}Δ,� + {∅}Δ,�a and the Jacobi identities will give Δ2 = 0, the notions of a BV-algebra
and S∞,�-algebra coincide. Note also that since the parameter � plays a formal role here, we can
set −i� ≡ 1; then being a “formal �-differential operator” becomes an empty condition and the
brackets (5.5) turn back into the original operations introduced by Koszul. Let A1 and A2 be
BV-algebras and let Φ: A1 → A2 be an even linear transformation such that Φ ◦Δ1 = Δ2 ◦ Φ (Φ is
not assumed to be a homomorphism with respect to the associative multiplication). Call such a Φ
a BV-morphism. Define

Φ! := ln� ◦ Φ ◦ exp�.
(There is an obvious functoriality relation (Φ1 ◦ Φ2)! = Φ1! ◦ Φ2!. If Φ is a homomorphism,
then Φ! = Φ.)
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Theorem 15. If Φ is a BV-morphism, then Φ! is an L∞-morphism of the S∞,�-structures.
Proof. The proof of Theorem 14 applies verbatim. �
Corollary 5 (to Theorem 14). If Φ̂ : M1 →q M2 is a BV-morphism, then the classical pullback

Φ∗ = lim�→0 Φ̂
! is an L∞-morphism of the classical S∞-structures.

Proof. Indeed, Φ̂! is an L∞-morphism of the S∞,�-structures. Passing to the limit � → 0 gives
the claim. �

In [44], we showed, for S∞-manifolds, that if a thick morphism Φ: M1 → M2 is Poisson, i.e.,
the master Hamiltonians on M1 and M2 are Φ-related, then the pullback Φ∗ is an L∞-morphism of
the homotopy Schouten brackets. We shall now relate this with Theorem 14.

Theorem 16. Let M1 and M2 be BV-manifolds and let Φ̂ : M1 →q M2 be a quantum BV-mor-
phism. Then its classical limit Φ: M1 →M2 is a Poisson morphism for the induced S∞-structures.

Proof. Let Hi ∈ C∞(T ∗Mi), i = 1, 2, be the master Hamiltonians for the S∞-structures on
M1 and M2 arising from the BV-operators Δ1 and Δ2. In other words, H1 and H2 are the principal
symbols of Δ1 and Δ2. We need to show that H1 and H2 are Φ-related, i.e., π∗

1H1 = π∗
2H2 on the

canonical relation Φ ⊂ M2 × (−M1) (see [44]). This is a Hamilton–Jacobi equation

H1

(
x,

∂S

∂x

)
= H2

(
(−1)q̃

∂S

∂q
, q

)
, (5.15)

where S(x, q) is the generating function of Φ. We are given that

Δ1 ◦ Φ̂∗ = Φ̂∗ ◦Δ2.

In order to deduce (5.15) from this, write Δ1 and Δ2 as integral operators:

(Δ1u)(x) =

∫
Dx′ D̄p′ e

i
�
(x−x′)p′H1,�(x, p

′)u(x′)

and

(Δ2w)(y) =

∫
Dy′ D̄q′ e

i
�
(y−y′)q′H2,�(y, q

′)w(y′).

Here H1,� and H2,� are full symbols, which are coordinate-dependent objects. When � → 0, we
get from them the principal symbols H1 = H1,0 and H2 = H2,0, which we need, and they are
well-defined functions on T ∗M1 and T ∗M2. We have

(Δ1Φ̂
∗w)(x) =

∫
Dx′ D̄p′ e

i
�
(x−x′)p′H1,�(x, p

′)

∫
Dy D̄q e

i
�
(S�(x

′,q)−yq)w(y)

and

(Φ̂∗Δ2w)(x) =

∫
Dy D̄q e

i
�
(S�(x,q)−yq)

∫
Dy′ D̄q′ e

i
�
(y−y′)q′H2,�(y, q

′)w(y′),

where S�(x, q) is the quantum generating function for Φ̂. Take w = e
i
�
yc as a “test function” as in

Example 6 and obtain, respectively,

(Δ1Φ̂
∗w)(x) =

∫
Dx′ D̄p′Dy D̄q e

i
�
(S�(x

′,q)+(x−x′)p′+y(c−q))H1,�(x, p
′)

and

(Φ̂∗Δ2w)(x) =

∫
Dy D̄q Dy′ D̄q′ e

i
�
(S�(x,q)+y(q′−q)+y′(c−q′))H2,�(y, q

′).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 302 2018



122 Th.Th. VORONOV

In each case, the integral is simplified by the integration giving a delta function and the subsequent
integration with the delta function. This finally gives

(Δ1Φ̂
∗w)(x) =

∫
Dx′ D̄p′ e

i
�
(S�(x

′,c)+(x−x′)p′)H1,�(x, p
′)

and

(Φ̂∗Δ2w)(x) =

∫
Dy D̄q e

i
�
(S�(x,q)+y(c−q))H2,�(y, c).

Now we apply the stationary phase method. The stationary points for the phases are specified,
respectively, by the equations

xa − x′
a
= 0,

∂S�

∂xa
(x′, c) − p′a = 0 and ci − qi = 0,

∂S�

∂qi
(x, q)− (−1)ı̃yi = 0,

and both Hessians are equal to 1. Altogether we obtain

(Δ1Φ̂
∗w)(x) = e

i
�
S�(x,c)H1,�

(
x,

∂S�

∂x
(x, c)

)(
1 +O(�)

)

and

(Φ̂∗Δ2w)(x) = e
i
�
S�(x,c)H2,�

(
(−1)q̃

∂S�

∂q
(x, c), c

)(
1 +O(�)

)
.

The phase factors coincide; so, by eliminating them and setting � → 0, we arrive at the equality

H1

(
x,

∂S0

∂x
(x, c)

)
= H2

(
(−1)q̃

∂S0

∂q
(x, c), c

)
,

as desired because S0 = S is the generating function of Φ. �
Theorem 16 is similar to Egorov’s fundamental theorem about canonical transformations of pseu-

dodifferential operators [8, 9] (see also [11]), which was one of the chief early sources for the theory
of Fourier integral operators [18]. More precisely, in Egorov’s theorem, Fourier integral operators
are constructed that intertwine pseudodifferential operators whose principal symbols are related by
a canonical transformation. The statement of our Theorem 16 is analogous to the converse Egorov
theorem. An analog of the direct Egorov theorem would be the following statement that should also
be true: every S∞-structure, i.e., homotopy Schouten brackets for an arbitrary manifold, can be
lifted to an S∞,�-structure or equivalently to a BV-operator Δ, and every Poisson thick morphism
between S∞-manifolds can be lifted to a quantum BV-morphism, which intertwines Δ1 and Δ2.

CONCLUSIONS AND DISCUSSION

Let us summarize what we have achieved so far. We have introduced a new class of morphisms
between smooth manifolds (or supermanifolds). They include smooth maps, but are not themselves
maps in the ordinary sense, i.e., not maps of sets. In practice they are described by their “generating
functions” S(x1, p2) depending on position variables on the source manifold and momentum variables
on the target manifold as arguments. The geometric objects underlying such morphisms (which we
called thick or microformal) are canonical relations between the cotangent bundles of the source
and target, of a particular type maximally close to those induced by ordinary maps of the base
manifolds. Namely, these are relations that project without degeneration onto the source manifold
and onto the fibers of the cotangent of the target; for the latter condition to make invariant sense,
we are forced to consider our relations as formal. Hence the generating functions are formal power
expansions in the cotangent directions. This explains the terminology “microformal morphisms”
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and “microformal geometry.” Since generating functions that differ by a constant define the same
canonical relation and we actually need the functions themselves, not up to constants, we may think
that we work with “framed” relations (meaning a choice of additive constants).

The composition of thick morphisms between (super)manifolds is of course the standard com-
position of relations; however, the statement is that the resulting relation is of the same type and
that the composition law is itself formal. The generating function of the composition of two thick
morphisms is expressed as a formal power expansion in their generating functions. This composition
law is local (depends only on the values of the generating functions and their derivatives of orders
bounded from above in each term of the expansion). It is obtained by an iterative procedure.
A similar iterative procedure defines the action of a thick morphism on smooth functions, i.e., the
pullback. A distinctive feature of the pullback is that it is in general a nonlinear transformation.

This nonlinearity, first of all, forces us to distinguish between even functions and odd functions.
There are two parallel constructions, of “even” and “odd” thick morphisms, corresponding to these
two cases. Secondly, since the pullback of functions by a thick morphism of supermanifolds is in
general nonlinear and in particular non-additive, it cannot be a ring homomorphism in the ordinary
sense. This at the first glance contradicts the philosophy of “space–algebra duality,” according to
which to “spaces” there correspond algebras (interpreted as algebras of functions) and to maps of
spaces there correspond algebra homomorphisms (with reversed direction). However, it turns out
that the derivative of the pullback by a thick morphism, which is automatically a linear transforma-
tion, is the pullback in the ordinary sense (by some perturbed map between the source and target)
and hence is an algebra homomorphism. This naturally suggests a “nonlinear generalization” of the
notion of algebra homomorphisms and the corresponding generalization of the algebra/geometry
duality. Such a generalization is yet to be explored. The author wishes to stress that his initial
motivation was very concrete, namely, to obtain a method of construction of L∞-morphisms for
homotopy Poisson structures,14 and that microformal geometry is indeed successful for that and
other applications, such as those to vector bundles and Lie algebroids.

Still, since we have obtained two new (formal) categories, in the versions adapted to even
functions and to odd functions, whose objects are supermanifolds, this inevitably leads to further
questions. Such are, in particular,

(1) extending the functoriality from functions to other geometric objects such as, for example,
differential forms;

(2) if the previous is successful, obtaining, further, an action of thick morphisms (possibly nonlin-
ear) on various cohomology spaces or, for example, on the Fukaya categories of the cotangent
bundles;

(3) exploring, by making use of these larger classes of morphisms, what, for example, group
objects in the “thick” sense would be, and what could be obtained by gluing by thick diffeo-
morphisms.

There are also other specific questions which can be addressed in future studies. For instance, is
it possible to obtain a more efficient description of the power expansions which specify the pullback
and the composition (perhaps, by some graphic calculus)?

In microformal geometry, particularly in applications to homotopy Poisson structures, arises
prominently the Hamilton–Jacobi equation: for example, in the form of the infinitesimal action on
functions by thick diffeomorphisms [42],

f(x) �→ f(x) + εH

(
x,

∂f

∂x

)
,

14We mean both homotopy Poisson and homotopy Schouten structures, i.e., the strongly homotopy versions of
even and odd Poisson brackets.
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also as an expression of the condition for a thick morphism between homotopy Poisson manifolds
to be (homotopy) Poisson, and in the formula for a homological vector field on the space of func-
tions [44]. Such prominence of the Hamilton–Jacobi equation in our constructions, together with its
fundamental relation to the Schrödinger equation in quantum mechanics, has led us to building the
quantum version of microformal geometry. In it, nonlinear pullbacks by “classical” thick morphisms
are replaced by Fourier integral operators of some special kind (resembling the early version of
such operators studied by Fock, Vishik and Eskin, Fedoryuk, and Egorov in the 1950s–1960s).
The “classical” thick morphisms (in the bosonic case) are recovered from “quantum” ones in the
limit � → 0. This may be seen in hindsight as an elucidation of the classical picture. Since the
first motivation for microformal morphisms was related to homotopy Poisson structures and their
L∞-morphisms, it was natural to ask about a similar application of quantum thick morphisms. This
has turned out to be indeed possible by replacing master Hamiltonians by Batalin–Vilkovisky type
Δ-operators (cf. [19, 20]). We see here a fascinating interplay between homotopy algebras and some
purely algebraic ideas on the one hand and very classical ideas from partial differential equations,
pseudodifferential operators and Fourier integral operators on the other. Obviously, just as in the
classical version, there are plenty of questions for further study.

Appendix A. A VERSION OF THE STATIONARY PHASE FORMULA

Here we recall a general type stationary phase formula and give its particular version adapted for
application to quantum thick morphisms considered in Sections 4 and 5. We are basically following
Fedoryuk’s approach [11], with some modification and simplification (and extending it to the super
case). For a general type formula, we consider an integral of the form

Iφ(a) =

∫

Rn|2m

Dx e
i
�
φ(x)a(x). (A.1)

Here � is a formal parameter and both functions φ(x) (called “phase”) and a(x) are assumed to be
formal power series in � over nonnegative powers. To simplify the notation, we do not explicitly
indicate this dependence on �. It is assumed that a(x) is compactly supported and the phase φ(x)
has one stationary point on the support of a(x). (Obviously a more general case is reduced to this
one by using partitions of unity.) Denote this point by x0. There is an expansion

φ(x) = φ(x0) +
1

2
d2φ(x0)(x− x0) + φ+(x;x0), (A.2)

where the function φ+(x;x0) has a zero of order 3 at x = x0. Assume that the quadratic form
d2φ(x0) is nondegenerate (that is why we need the dimension n|2m). We rewrite the integral as

Iφ(a) = e
i
�
φ(x0)

∫

Rn|2m

Dx e
i
�

1
2
d2φ(x0)(x−x0)

(
e

i
�
φ+(x;x0)a(x)

)
, (A.3)

which, apart from the factor, has the general form of∫
Dx e

i
�

1
2
Q(x−x0) u(x),

where Q(x − x0) is a nondegenerate quadratic form and u(x) some “test function.” (We suppress
the domains of integration when convenient.) Any such integral can be expressed as an application
of a (formal) differential operator as follows. For an arbitrary function or distribution f(x), the
equality ∫

Dxf(x0 − x)u(x) = f̃

(
�

i

∂

∂x

)
u(x)

∣∣∣∣
x=x0

(A.4)
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holds, where f̃(p) denotes the �-Fourier transform of f(x). Indeed, f(x − x′) and f̃(p) are, re-
spectively, the kernel and full symbol of a translationally invariant operator. In particular, for a
Gaussian oscillating exponential E(x) = e

i
�

1
2
Q(x) on R

n|2m, its �-Fourier transform is

Ẽ(p) = cn|2m,�
e

iπ
4

sgnQ√
|BerQ|

e−
i
�

1
2
Q−1(p), (A.5)

where cn|2m,� = (2π�)
n
2 (i�)−m. Here we use Q both for the quadratic form Q(x) = xaxbQba and for

its matrix Qab, and sgnQ is the signature (the difference of the numbers of positive and negative
squares of the even variables in the canonical form). By Q−1(p) = Qabpbpa we denote the induced
quadratic form on the momentum space, where (Qab) = (Qab)

−1. It is the super analog of the
familiar formula and can be obtained by a manipulation with standard Gaussian integrals. Hence,
for any function u(x), we have

∫

Rn|2m

Dx e
i
�

1
2
Q(x−x0) u(x) = cn|2m,�

e
iπ
4

sgnQ√
|BerQ|

e−
�

i
1
2
Q−1

(
∂
∂x

)
u(x)

∣∣∣∣
x=x0

. (A.6)

By applying this to the integral (A.3), we arrive at the following statement.
Theorem 17 (a variant of [11, Theorem 2.3]). For the integral Iφ(a), under the assumptions

and in the notation above, there is a formula

Iφ(a) = cn|2m,�
e

iπ
4

sgn d2φ(x0)√
|Ber d2φ(x0)|

e
i
�
φ(x0)

(
e−

�

i
1
2
d2φ(x0)−1

(
∂
∂x

)(
e

i
�
φ+(x;x0)a(x)

)∣∣∣
x=x0

)
, (A.7)

where the expression in the big brackets is an expansion in nonnegative powers of � which equals
a(x0)(1 +O(�)) in the lowest order in �.

Proof. All that is left to prove is the crucial observation that the result of the application of
the operator L = − �

i
1
2d

2φ(x0)
−1

(
∂
∂x

)
and its powers to the oscillating function

u(x) = e
i
�
φ+(x;x0)a(x),

evaluated at x = x0, does not contain negative powers of �. This is because φ+(x;x0) has a zero of
order 3 at x = x0. Indeed, any derivative of order r of the function u(x) is a sum of monomials of
the form a(k)(b′)k1(b′′)k2 . . . (b(r))kr , where b(x) := φ(x;x0) and by a(k), b′, b′′, etc., we mean partial
derivatives in x of orders k, 1, 2, etc. We have

k + k1 + 2k2 + 3k3 + . . . + rkr = r

and each such monomial carries a factor of �−1 to the power

k1 + k2 + k3 + . . .+ kr,

which arises from differentiating the exponential e
i
�
b(x). Consider r = 2s and let k1 + k2 +

k3 + . . . + k2s ≥ s. Then the monomial must contain the derivative b′ or b′′. (If it does not, i.e.,
k1 = k2 = 0, then k3 + . . . + k2s ≥ s and the inequality 2s = k + k1 + 2k2 + 3k3 + . . . + 2sk2s =
k + 3k3 + . . .+ 2sk2s ≥ k + 3(k3 + . . . + k2s) ≥ 3s holds, which is a contradiction.) Since b′(x0) = 0
and b′′(x0) = 0, any partial derivative of u(x) of order 2s at x = x0 may contain �

−1 only to the
powers <s. Hence Lsu(x0), for s > 0, contains only positive powers of �. Also u(x0) = a(x0). So
the expansion is as claimed. �
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Now we consider a special case of integrals Iφ(a) where integration is over a 2n|2m-dimensional
space and the phase has the form

φ(y, q) = S(q)− yq + λg(y). (A.8)

Here λ is a formal parameter. The functions S(q) and g(y) may depend on other variables not shown
explicitly. In particular, they may be formal power series in �. This type of phase function covers
all the examples that we meet in Sections 4 and 5: quantum pullback, composition of quantum
thick morphisms, transformation of coordinates and BV-morphisms. Let S(q) be a formal power
series in qi,

S(q) = S0 + ϕiqi +
1

2!
Sijqjqi +

1

3!
Sijkqkqjqi + . . . (A.9)

(while g(y) be a smooth function). We write yq for yiqi and apply similar abbreviations. The
integrals we are interested in have the form

Iφ(a) =

∫

R2n|2m

Dy D̄q e
i
�
φ(y,q)a(y, q), (A.10)

where D̄q = (2π�)−n(i�)mDq. (Note that the factor is exactly c−1
2n|2m,� in our notation.)

Lemma 4. For the phase φ(y, q) given by (A.8), there is a unique stationary point (y0, q
0),

which is the (unique) solution of the equations

yi = (−1)ı̃
∂S

∂qi
(q), qi = λ

∂g

∂yi
(y) (A.11)

as perturbation series in λ,

yi0 = ϕi + λci(1) +
λ2

2!
ci(2) + . . . , (A.12)

q0i = λ
∂g

∂yi
(y0) = λ

∂g

∂yi

(
ϕ+ λc(1) +

λ2

2!
c(2) + . . .

)
, (A.13)

where the coefficients c(k) are homogeneous polynomials of degrees k in the derivatives of g of
orders ≤ k at y = ϕ,

ci(1) = Sij ∂g

∂yj
(ϕ), ci(2) = SijSkl ∂g

∂yl
(ϕ)

∂2g

∂yk ∂yj
(ϕ) + Sijk ∂g

∂yk
(ϕ)

∂g

∂yj
(ϕ), . . . .

The stationary value is φ(y0, q
0) = S0 + λg(ϕ) +O(λ2). The matrix of d2φ(y0, q

0) is

Q =

(
λ ∂2g

∂yi ∂yj
(y0) −(−1)ı̃δi

j

−δij
∂2S

∂qi ∂qj
(q0)

)
. (A.14)

Therefore, the stationary point (y0, q
0) is nondegenerate; for the Hessian, we have

∣∣Ber d2φ(y0, q0)∣∣ = Ber

(
δi

k − λ
∂2g

∂yi ∂yj
(y0)

∂2S

∂qj ∂qk
(q0)

)
= 1 +O(λ). (A.15)

Also, sgn d2φ(y0, q0) = 0.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 302 2018



MICROFORMAL GEOMETRY AND HOMOTOPY ALGEBRAS 127

Proof. Equations (A.11) are obtained by differentiating (A.8). They combine to give

yi = (−1)ı̃
∂S

∂qi

(
λ
∂g

∂y
(y)

)
,

solvable by iterations, giving a unique (y0, q
0) as in (A.12), (A.13) with the claimed properties

(cf. [44, Sect. 1]). The expression (A.14) for the Hesse matrix Q is obtained directly (for the relevant
tensor notation and quadratic forms in the super case see, e.g., [43]). Its invertibility is clear from
considering it in the zeroth order in λ. Equation (A.15) for BerQ is obtained by multiplying the
matrix Q by a matrix J =

(
0 −δjk

−δjk(−1)k 0

)
with Ber J = ±1, which gives QJ =

(
δi

k −λgik

−sik(−1)
˜k δik

)
,

where gij = ∂2g
∂yi ∂yj

(y0) and sij = ∂2S
∂qi ∂qj

(q0), and by applying to the result the formula for the
Berezinian of a block matrix (analogous to the well-known formula for the determinant). To see
that the signature of Q = d2φ(y0, q

0) is zero, set λ = 0 and notice that by a linear change of the
variables yi the form can be brought to Q = ziqi. �

Combining Lemma 4 with Theorem 17, we immediately obtain the desired statement.
Theorem 18. For φ(y, q) = S(q)− yq + λg(y) as in (A.8), we have

Iφ(a) =

∫

R2n|2m

Dy D̄q e
i
�
(S(q)−yq+λg(y))a(y, q)

= e
i
�
φ(y0,q0) b

− 1
2

0

(
e
− �

i
1
2
L
(

∂
∂y

, ∂
∂q

)(
e

i
�
φ+(y,q;y0,q0)a(y, q)

)∣∣∣
y=y0,q=q0

)
. (A.16)

Here (y0, q
0) is the stationary point given by (A.11)–(A.13). The function φ+(y, q; y0, q

0) is as
above. The matrix L = Q−1 is the inverse for Q given by (A.14), so that

L

(
∂

∂y
,
∂

∂q

)
= Lij ∂

∂yi
∂

∂yj
+ 2Li

j
∂

∂qj

∂

∂yi
+ Lij

∂

∂qj

∂

∂qi
,

and b0 = |BerQ| is given by (A.15). �
Note that φ(y0, q

0) in (A.16) has the form φ(y0, q
0) = φ0 + O(�), where φ0 is the stationary

phase value for φ0(y, q) when � → 0. Also, b0 = b00 + O(�), where b00 is invertible; hence the
Hessian factor can be moved to the phase as a term of order ≥ 1 in �. Finally, since the expression
in the big brackets in (A.16) has the form a0 + O(�), where a0 is the “classical limit” of a(y0, q0)
when � → 0, we may say that

Iφ(a) = e
i
�
(φ0+O(�))

(
a0 +O(�)

)
. (A.17)

In particular, if a ≡ 1, then Iφ(1) = e
i
�
(φ0+O(�)). From the construction, we also see that both the

phase and the amplitude of the integral Iφ(a) are formal power series in λ, which plays the role of
a “coupling constant” (if we borrow the physicists’ term). We do not use λ explicitly in the main
text, speaking instead of expansions in the powers of the derivatives of the function g.
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