
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФИЗИКА ТВЕРДОГО ТЕЛА

Сборник материалов XVI Российской научной студенческой конференции

Томск, 17-20 апреля 2018 г.

ТОМСК «Издательство НТЛ» 2018

Ориентационная зависимость механического поведения монокристаллов сплава Fe₄₀Mn₄₀Co₁₀Cr₁₀ при деформации растяжением*

А.В. Выродова¹, З.В. Победенная²

¹Томский государственный университет, г. Томск 2 Сибирский физико-технический институт им. акад. В.Д. Кузнецова Томского государственного университета, г. Томск

Высокоэнтропийные сплавы (ВЭС) – это класс металлических соединений, в котором за счет смешивания пяти и более элементов в равных атомных пропорциях достигается значительный эффект деформационного упрочнения в широком температурном интервале от 300 до 77 К, физическая природа которого до конца остается еще не выясненной [1]. В настоящей работе представлены исследования стадийности $\sigma(\varepsilon)$ -кривых течения, коэффициента деформационного упрочнения $\Theta = d\sigma/d\epsilon$ и пластичности на монокристаллах ГЦК $Fe_{40}Mn_{40}Co_{10}Cr_{10}$ сплава с энергией дефекта упаковки $(ДУ) \gamma_0 = 0.022 \ Дж/м^2$, ориентированных вдоль направлений [001], [$\overline{1}11$] и [123], при деформации растяжением.

Монокристаллы Fe₄₀Mn₄₀Co₁₀Cr₁₀ были получены методом Бриджмена. Химический состав монокристаллов после роста и закалки определяли рентгенофлуоресцентным методом: Co = 10,47 %, Cr = 10,09 %, Fe = 40,28 %, Мп = 39,16 % (ат. %). Энтропия смешения полученных монокристаллов, определенная по соотношению

$$\Delta S^{\text{cm}} = -R \sum_{i=1}^{N} c_i \ln c_i,$$

где R — универсальная газовая постоянная; c_i — атомное содержание i-го компонента в сплаве; N – число элементов, равна 9,97 Дж/(моль·К). Таким образом, согласно [2], монокристаллы данного сплава по количеству элементов и энтропии смешения относятся к классу среднеэнтропийных сплавов, но по своим механическим свойствам, как показали исследования на поликристаллах [3], они близки к классу высокоэнтропийных. Критические скалывающие напряжения для скольжения определяли, используя выражение $\tau_{\rm kp}^{\ \ ck} = \sigma_{0,1} \cdot m_{\rm ck} \ (\sigma_{0,1} - {\rm oce}$ вые напряжения на пределе текучести, $m_{\rm ck}$ – фактор Шмида для скольжения). Коэффициент деформационного упрочнения рассчитывали по формуле $\Theta = d\sigma/d\varepsilon$.

^{*} Работа выполнена при финансовой поддержке гранта РНФ № 16-19-10193.

На рис. 1 приведены кривые течения $\sigma(\epsilon)$ для монокристаллов ГЦК $Fe_{40}Mn_{40}Co_{10}Cr_{10}$ сплава трех ориентаций при 296 К.

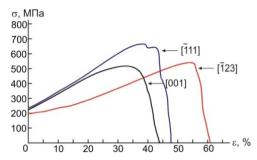


Рис. 1. Кривые течения $[\overline{1}11]$ -, $[\overline{1}23]$ -, [001]- монокристаллов сплава $Fe_{40}Mn_{40}Co_{10}Cr_{10}$ при растяжении

Анализ данных, представленных на рис. 1, показывает, что $\tau_{\kappa p}^{\ c\kappa}$, стадийность кривых течения, коэффициент деформационного упрочнения Θ_{II} и пластичность зависят от ориентации кристалла.

В [$\overline{1}23$]- и [001]-монокристаллах $\tau_{\kappa\rho}^{c\kappa}$ оказываются близки по величине, а в [$\overline{1}11$]-кристаллах ниже на 24 и 26 МПа соответственно (таблица). Таким образом, в кристаллах исследуемого сплава с $\gamma_0 = 0.022$ Дж/м² закон Боаса – Шмида не выполняется, в отличие от монокристаллов $Al_{0.3}$ CoCrFeNi BЭС с $\gamma_0 = 0.05$ Дж/м², как было показано ранее в работе [4]. При исследовании дислокационной структуры в [001]-кристаллах наблюдаются нерасщепленные дислокации, а в [$\overline{1}11$]-кристаллах – расщепленные дислокации и дефекты упаковки. Следовательно, ориентационная зависимость $\tau_{\kappa\rho}^{c\kappa}$ определяется ориентационной зависимостью типа дислокационной структуры.

Механические свойства сплава Fe₄₀Mn₄₀Co₁₀Cr₁₀ при деформации растяжением в зависимости от ориентации оси кристалла

Ориентация	Механические свойства					
	$m_{\rm ck}$	σ _{0,1} , ΜΠα	т ^{ск} ±2, МПа	$θ_{II}$, ΜΠ a	δ max	σв, МПа
[001]	0,41	222±5	90±2	1107	44	517
[111]	0,27	236±5	64±1,5	1114	47	665
[123]	0,45	196±5	88±2	660	61	540

Пластическое течение в [001]- и [$\overline{1}11$]-кристаллах развивается преимущественно в одну линейную стадию и имеет вид, типичный для ГЦК-кристаллов, ориентированных для множественного сдвига, при деформации растяжением. При $\varepsilon = 0,1-15$ % Θ_{II} в этих кристаллах оказывается близким

(таблица), тогда как при $\epsilon > 15$ % в [$\overline{1}11$]-кристаллах Θ_{II} возрастает. Увеличение Θ_{II} в [$\overline{1}11$]-кристаллах, как показывают исследования дислокационной структуры, связано с двойникованием, которое при взаимодействии со скольжением приводит не только к росту Θ_{II} , но и к повышению уровня напряжений для разрушения (рис. 1, таблица) [5], в отличие от [001]-кристаллов, где двойникования не наблюдается.

В отличие от [001]- и [$\overline{1}11$]-кристаллов, в [$\overline{1}23$]-кристаллах на $\sigma(\epsilon)$ кривой наблюдается классическая стадийность, характерная для кристаллов, ориентированных для одиночного сдвига: при $\epsilon=0,1-10$ % — имеет место стадия I легкого скольжения с $\Theta_{\rm I}=370$ МПа, при $\epsilon>10$ % — стадия II линейного упрочнения, где $\Theta_{\rm II}$ увеличивается до 660 МПа и при $\epsilon>45$ % происходит переход к стадии III динамического возврата с низким $\Theta_{\rm III}$. Как видно из таблицы, $\Theta_{\rm II}$ в [$\overline{1}23$]-кристаллах оказывается меньше, а пластичность, напротив, больше, чем в [001]- и [$\overline{1}11$]-кристаллах, ориентированных для множественного сдвига. Таким образом, исследования на монокристаллах $F_{\rm e40} Mn_{\rm 40} Co_{\rm 10} Cr_{\rm 10}$ сплава показывают, что величина $\Theta_{\rm II}$ и пластичность определяются числом систем сдвига и механизмом деформации — скольжением и двойникованием.

Авторы выражают благодарность своим руководителям гл.н.с. И.В. Киреевой и проф. Ю.И. Чумлякову за помощь в эксперименте и в обсуждении полученных результатов.

ЛИТЕРАТУРА

- 1. Zhang Y., Zuo T.T., Tang Z., et al. Microstructures and properties of high-entropy alloys // Progress in Materials Science 2014. V. 61. P. 1–93.
- 2. Древаль Л А., Агравал П.Г., Турчанин М.А. Высокоэнтропийные сплавы как материалы, имеющие в основе множество базовых элементов // Вестник ДГМА. 2014. № 1(32). С. 58–64.
- 3. Deng Y., Tasan C.C., Pradeep K.G., et al. Design of a twinning-induced plasticity high entropy alloy // Acta Materialia 2015. V. 94. P. 124–133.
- Киреева И.В., Ю Чумляков.И., Победенная З.В. и др. Ориентационная зависимость критических скалывающих напряжений в монокристаллах высокоэнтропийного сплава Al_{0.3}CoCrFeNi // Письма в ЖТФ. – 2017. – Т. 43. – Вып. 13. – С. 51–57.
- Киреева И.В., Чумляков Ю.И., Победенная З.В. и др. Скольжение и двойникование в [149]-монокристаллах высокоэнтропийного сплава // Изв. вузов. Физика. – 2016. – Т. 59. – № 8. – С. 106–113.

Vyrodova A.V., Pobedennaya Z.V. Orientation dependence of the mechanical behavior of single crystals of $Fe_{40}Mn_{40}Co_{10}Cr_{10}$ alloy under tensile strain

Выродова Анна Вячеславовна, студентка, wirodowa@mail.ru; Победенная Зинаида Владимировна, н.с.; pobedennay zina@mail.ru