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Abstract

In this paper for the first time the nonparametric autoreg-
ression estimation problem for the quadratic risks is considered.
To this end we develop a new adaptive sequential model selec-
tion method based on the efficient sequential kernel estimators
proposed by Arkoun and Pergamenshchikov (2016). Moreover,
we develop a new analytical tool for general regression models
to obtain the non asymptotic sharp oracle inequalities for both
usual quadratic and robust quadratic risks. Then, we show that
the constructed sequential model selection procedure is optimal
in the sense of oracle inequalities.
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One of the standard linear models in general theory of time series
is the autoregressive model (see, for example, [1] and the references
therein). Natural extensions for such models are nonparametric auto-
regressive models which are defined by

Y = S(@p)yp_1 + & and  zy :a‘f‘W» (1)
where S(-) € Lyla,b] is unknown function, a < b are fixed known
constants, 1 < k < n, the initial value y, is a constant and the noise
(&) p>1 1s 1.i.d. sequence of unobservable random variables with E¢; =
0 and Eff =1.

The problem is to estimate the function S on the basis of the ob-
servations (y);<p<, under the condition that the noise distribution is
unknown. The minimax estimation problem for the model (1) has been
treated for the first time in [3] and [8] in the nonadaptive case, i.e. for
the known regularity of the function S. Then, in [2] it is proposed to use
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the sequential analysis method for the adaptive pointwise estimation
problem in the case where the unknown Hélder regularity is less than
one and it is also shown that for the model (1), the adaptive pointwise
estimation is possible only in the sequential analysis framework.

Here we study sequential estimation methods for a smooth function
S that belongs to a certain Lipschitzian e-stability set ©_ ; (see [4]) for
the quadratic risk defined as

b
R,(5,.5) = B, 48, - S|*, [S]? = / PL@)de,  (2)

where S is an estimator of S based on observations (y,);<j<, and
E, 5 is the expectation with respect to the distribution law P;’ 5 of the
process (Y )1<p<n given the coefficient S and the distribution density
p of the random variables (&)<, Moreover, taking into account
that the distribution p is unknown, we use the robust nonparametric
estimation approach proposed in [5]. To this end we set the robust risk
as R R

R*(S,,S) = sgng(Sn,S), (3)
where P is a family of distributiofls depending on a fixed parameter

¢=>1
To give a pointwise estimation of .S, we follow the approach proposed
in [7], i.e. we pass to a discrete time regression model by making use of
the truncated sequential procedure introduced in [4]. More precisely,
at any point (z;);<;<,4 of a partition of the interval [a, b], we define a
sequential procedure (7;,S;) with a stopping rule 7; and an estimator
S} of S(z). ~
Note that the performance of any estimator S will be measured by
the empirical squared error
d
. b—a .
18 = 815 === >_(S(z) = $(=))*
=1

For Y, = Sl* with 1 <1 <d, we Eome to the regression equation on
some set I' C Q:

the noise sequence (;);<;<4 having a complex structure, namely,
G=mn+w,

where (1;)1<;<q4 18 & "main noise" sequence of uncorrelated random
variables and (w;); <<, is a sequence of random variables for which

*

2
w,=E, s1p|w|; <oco.
Moreover, for any 1 <! < d and p € P, the random variable n; will



satisfy some properties, in particular
2 2
E,s(nG)=0and E,(n|G) =0},
and there exist some constants 0 < o, , < 0y , such that

0 < min 02§ maxafgol*.
’ 1<1<d 1<i<d ’

In addition, we show that the probability of I'“ goes to zero faster than
any power function of the number of observations n.

In order to estimate the function S in model (12) we make use of
the estimator family (§ s A € A), where S \ is a weighted least square
estimator with the Pinsker weights.

We construct the set A as

A={\,acA},
where A is a numerical grid with cardinal v. For each oo = (3,1) € A,
we define the weight sequence

)\a = (Aa(j))lgjgn
with the elements
Mald) =Ygy + (1= (/wa)’) 1 <jcuys
where j, = 1+ [Inn], w, = (dgln)/@#+D) and
(B+1)(28+1)
w283 '
For this family, similarly to [3], we construct a special selection rule,

dﬁ:

i.e. a random variable A with values in some set A, for which we define
the selection estimator as S, = S5.

First we obtain the sharp oracle inequality for this selection model
procedure for the general regression model (12).

Theorem 1. There exists some constant 1* > 0 such that for any
weight vectors set A, any p € P, anyn > 1 and 0 < § < 1/12, the

selection estimator §* satisfies the following oracle inequality

~ 1446 ~
2 : 2
E,slIS, =Sl < 165 Jun E, slIS\ — SlI3

2 0'2
)

0,%*
Then we obtain the oracle inequality for the quadratic risks (2).

Theorem 2. There exists some constant 1* > 0 such that for any
weight vectors set A, any continuously differentiable function S, any
pe€P,anyn > 1 and 0 < 6 < 1/12, the selection estimator S,



satisfies the following oracle inequality

. (1+48)(1+6)?% . 5
< M TN
R,(S,,8) < =65 min R,,(S5, 5)

v (|IS)> | o N —
"‘I*T “!‘774‘1124'5 PS(FC) .

d’ 09 .d

Furthermore, assuming that the cardinal v = v(n) of A and the
parameter ¢ = ¢(n) in the density family P are functions of the number

observations n of the form o(n’) for any > 0, we obtain the oracle
inequality for the estimation problem for the model (1).

Theorem 3. For anyp € P, S€ 0O, n> 3 and 0 < 4§ < 1/12, the

selection estimator :S’; satisfies the following oracle inequality

< >~ 7 7 2
Rp(S*,S:) 165 rAneljr\lep(SA,S) + Sn
where the term B,,(p) is such that for any 6 >0

lim M:O.

n—oo  n
Eventually, we obtain the same inequality for the robust risk (3).
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Apkyn V., Bpya 2K.-U., Ilepramenimukos C. M. (Pyauckuii
yuusepcureT, Pyan, ToMcKuit rocyIapcTBeHHBIN yHUBEpCUTET, TOMCK,
2018) ITocegoBarenbHbIil MeTO BHIGOPA MOJEJIN [JIsSI Hemapa-
METPUYECKOIl aBTOperpeccun

Annoranus. B pabore paccmarpuBaercs 3a1a4a HellapaMeTpude-
CKOT'O OIEHUBAHUS aBTOPETPECCHU I KBaJIPATUIHBIX PUCKOB. Pa3-
pabaTrbIBaeTCsl HOBBIN aIalTHBHBIN IOCJIEI0BATEILHBI METO BhIOOpa
MOJIE/IA, OCHOBAHHBIA Ha 9P(MEKTUBHBIX MOCACIOBATEILHBIX ATCPHBIX
olleHKaX, npejiozkeHHbix ApkyH u Ilepramenmukosbim (2016). Kpo-
Me TOro, pa3pabaTbiBaeTCs HOBBIM AHAJUTUIECKUIT WHCTPYMEHT JIJIst
001X MOJIeJIell Perpeccuul JJjisl MOJIy9YeHUs HECUMIITOTUIECKUX TOU-
HBIX OPAKYJIbHBIX HEPABEHCTB KaK JJIsT OOBITHBIX KBAIPATUIHBIX, TAK U
JI71sT POOACTHBIX KBAAPATHIHBIX PUCKOB. YCTAHABIMBAETCSI, ITO IIOCTPO-
E€HHAasl TPOIEIyPa IMOCJIEI0BATETLHOIO BHIOOpA MOJIE/N ONTHMAJIbHA B
CMBICJIE OPAKYJIbHBIX HEPABEHCTB.

KuroueBble ciioBa: HenmapaMeTpUiecKoe OlleHUBaHue, HelapaMeT-
puYecKasi aBTOPErpeccsi, HeaCUMITOTUIECKOe OIIeHMBAHME, POOACTHBINI
PUCK, BEIOOP MOJEIN, TOYHBIE OPaKyJIbHbIE HEPABEHCTBA.



