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Particle scattering and vacuum instability in a constant inhomogeneous electric field of particular peak
configuration that consists of two (exponentially increasing and exponentially decreasing) independent
parts are studied. It presents a new kind of external field where exact solutions of the Dirac and Klein-
Gordon equations can be found. We obtain and analyze in- and out-solutions of the Dirac and Klein-
Gordon equations in this configuration. By their help we calculate probabilities of particle scattering and
characteristics of the vacuum instability. In particular, we consider in details three configurations: a smooth
peak, a sharp peak, and a strongly asymmetric peak configuration. We find asymptotic expressions for total
mean numbers of created particles and for vacuum-to-vacuum transition probability. We discuss a new
regularization of the Klein step by the sharp peak and compare this regularization with another one given
by the Sauter potential.
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I. INTRODUCTION

Particle creation from a vacuumby strong electromagnetic
and gravitational fields is a well-known quantum effect [1],
which has a number of important applications in laser
physics, heavy ion collisions, astrophysics, and condensed
matter processes (seeRefs. [2–4] for a review).Dependingon
the strong field structure different approaches have been
proposed for nonperturbative calculating of the effect. In
these approaches the strong fields are considered as external
ones (external classical backgrounds). Initially, the effect of
particle creation was studied for time-dependent external
electric fields that are switched on and off at the initial and
final time instants, respectively. We call such external fields
t-electric potential steps. Initially, scattering, particle crea-
tion, and particle annihilation by t-electric potential steps
have been considered in the framework of the relativistic
quantum mechanics, see for example Refs. [5,6]. At present
it is well understood that only an adequate quantum field
theory (QFT)with a corresponding external backgroundmay
consistently describe this effect and possible accompanying
processes. In the framework of such a theory, particle
creation is related to a violation with time of a vacuum
stability. In quantum electrodynamics (QED), backgrounds
that may violate the vacuum stability are electriclike electro-
magnetic fields. A general nonperturbative formulation
of QED with t-electric potential steps was developed in
Refs. [7–9]. The corresponding technique uses essentially

special sets of exact solutions of the Dirac equation with the
corresponding external backgrounds. The cases when such
solutions can be found explicitly (analytically) are called
exactly solvable cases. At the current moment, all known
exactly solvable cases for t-electric potential steps are studied
in detail, see Ref. [10] for a review.
However, there exist many physically interesting situa-

tions where external backgrounds are formally presented
by time independent fields (which is obviously some kind
of idealization). For example, one can mention time-
independent nonuniform electric fields that are concen-
trated in restricted spatial areas. Such fields represent a kind
of spatial or, as we call them, conditionally, x-electric
potential steps for charged particles. The x-electric poten-
tial steps can also create particles from the vacuum; the
Klein paradox is closely related to this process [11–13].
Approaches for treating quantum effects in the t-electric
potential steps are not applicable to x-electric potential
steps. Some heuristic calculations of particle creation by
x-electric potential steps in the framework of the relativistic
quantum mechanics with a qualitative discussion from the
point of view of QFT were first presented by Nikishov in
Refs. [6,14]. In the recent article [15], quantizing the Dirac
and the Klein-Gordon (scalar) fields in the presence of
x-electric potential steps, Gavrilov and Gitman presented
a consistent nonperturbative formulation of QED with
x-electric potential steps. Similar to t-electric potential step
case, special sets of exact solutions of the Dirac equation
with the corresponding external field are used to form a
base of this formulation. By the help of this approach
particle creation in the Sauter field EðxÞ ¼ Ecosh−2ðx=LSÞ
and in the so-called L-constant electric field (a constant
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electric field between two capacitor plates) were studied
in Refs. [15,16], respectively. These two cases are exactly
solvable for x-electric potential steps. In the present article,
we consider another new exactly solvable case of this
kind, which is a constant electric field of particular peak
configuration. The corresponding field is a combination
of two exponential parts, one exponentially increasing and
the other one exponentially decreasing. Different choice of
these two parts allows one to imitate different realistic and
physically interesting spatial configuration of electric
fields. Besides of this, a very sharp peak can be considered
as a field of a regularized Klein step. We compare
this regularization with one given by the Sauter potential
in Ref. [15].
The article is organized as follows. In Sec. II, a general

form of the constant electric field of a peak configuration
that consist of two (exponentially increasing and exponen-
tially decreasing) independent parts is introduced. We
obtain and analyze corresponding in- and out-solutions
of the Dirac and Klein-Gordon equations. By their help we
introduce initial and final sets of creation and annihilation
operators of electrons and positrons and define initial and
final vacua. In Sec. III we discuss scattering and reflection
of particles outside of the Klein zone while possible
processes in the Klein zone are studied in Sec. [11].
Characteristics of the vacuum instability in the Klein zone
are calculated by the help of in- and out-solutions using
results of a general theory [15]. Here a particular case of a
small-gradient field is discussed as well. In Sec. V we study
a strongly asymmetric peak configuration. In Sec. VI we
consider a very sharp peak. Mathematical details of study in
the Klein zone are placed in Appendix A. In Appendix B
some necessary asymptotic expansions of the confluent
hypergeometric function are given.
Throughout the article, the Greek indices span the

Minkowski space-time, μ ¼ 0; 1;…; D. We use the system
of units where ℏ ¼ c ¼ 1 in which the fine structure
constant is α ¼ e2=cℏ ¼ e2.

II. IN- AND OUT-SOLUTIONS IN
EXPONENTIAL STEPS

A. Dirac equation

We consider an external electromagnetic field, placed in
ðd ¼ Dþ 1Þ-dimensional Minkowski space, parametrized
by the coordinates X ¼ ðXμ; μ ¼ 0; 1;…; DÞ ¼ ðt; rÞ,
X0 ¼ t, r ¼ ðx; r⊥Þ, r⊥ ¼ ðX2;…; XDÞ. The potentials
of an external electromagnetic field are chosen as
AμðXÞ ¼ δμ0AμðxÞ,

AμðXÞ¼ðA0¼A0ðxÞ; Ak¼0; k¼1;…;DÞ; ð2:1Þ

which corresponds to the zero magnetic field and the
electric field of the form

EðXÞ ¼ EðxÞ ¼ ðExðxÞ; 0;…; 0Þ;
ExðxÞ ¼ −∂xA0ðxÞ ¼ EðxÞ: ð2:2Þ

The electric field (2.2) is directed along the x-axis,
inhomogeneous and constant in time in general case.
The backgrounds of this kind represent a kind of spatial
x-electric potential steps for charged particles. The main
properties common to any x-electric potential steps are

A0ðxÞ ⟶x→�∞
A0ð�∞Þ; EðxÞ⟶jxj→∞

0; ð2:3Þ

where A0ð�∞Þ are some constant quantities, and the
derivative of the potential ∂xA0ðxÞ does not change its
sign for any x ∈ R. For definiteness, we suppose that

∂A0ðxÞ
∂x ≤ 0 ⇒

�
EðxÞ ¼ −∂xA0ðxÞ ≥ 0

A0ð−∞Þ > A0ðþ∞Þ : ð2:4Þ

The basic Dirac particle is an electron, and the positron is
its antiparticle. The electric charge of the electron q ¼ −e,
e > 0. The potential energy of the electron in this field is
UðxÞ ¼ −eA0ðxÞ (see Fig. 1) and the magnitude of the
corresponding x-potential step is

U¼UR−UL>0; UR¼−eA0ðþ∞Þ; UL¼−eA0ð−∞Þ:
ð2:5Þ

One can distinguish two types of electric steps: noncritical
and critical,

U ¼
�
U < Uc ¼ 2m;

U > Uc;

noncritical steps

critical steps
: ð2:6Þ

In the case of noncritical steps, the vacuum is stable, see
Ref. [15]. We are interested in the critical steps, where there
is electron-positron pair production from vacuum.

FIG. 1. Potential energy of electron UðxÞ in peak electric field.
For this picture k1 > k2 was chosen.
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System under consideration consists of a Dirac field
ψðXÞ interacting with the electric field of particular
exponential configuration. This electric field is composed
of independent parts, wherein for each one the Dirac
equation is exactly solvable. The field in consideration
grows exponentially from the minus infinity x ¼ −∞,
reaches its maximal amplitude E at x ¼ 0 and decreases
exponentially to the infinity x ¼ þ∞. Its maximum E > 0
occurs at a very sharp point, say at x ¼ 0, such that the limit

lim
x→−0

∂EðxÞ
∂x ≠ lim

x→þ0

∂EðxÞ
∂x ; ð2:7Þ

is not defined. The latter property implies that a peak at
x ¼ 0 is present. We label the exponentially increasing
interval by I ¼ ð−∞; 0� and the exponentially decreasing
interval by II ¼ ð0;þ∞Þ. The field and its corresponding
x-electric potential step are

EðxÞ ¼ E

�
ek1x; x ∈ I

e−k2x; x ∈ II
;

UðxÞ ¼ eE

�
k−11 ðek1x − 1Þ; x ∈ I

k−12 ð−e−k2x þ 1Þ; x ∈ II
; ð2:8Þ

where E > 0, and k1, k2 > 0; see Fig. 2. The potential
energies of electron at x ¼ −∞ and x ¼ þ∞ for this
particular configuration are

UL ¼ −
eE
k1

; UR ¼ eE
k2

: ð2:9Þ

It should be noted that, for example, the strongly
asymmetric peak configuration, given by the potential

Aas
0 ðxÞ ¼ E

�
0; x ∈ I

k−12 ðe−k2x − 1Þ; x ∈ II
; ð2:10Þ

can be considered as a particular case of the step, that is, k1
is sufficiently large for this case, k1 → ∞.
The Dirac equation for the system under consideration

has the following form:

i∂0ψðXÞ ¼ ĤψðXÞ; Ĥ ¼ γ0ð−iγj∂j þmÞ þ UðxÞ;
j ¼ 1;…D; ð2:11Þ

where the Dirac field ψðXÞ is a 2½d=2�-component spinor
(where ½d=2� is integer part of d=2) in d dimensions, Ĥ is
the one-particle Hamiltonian, γμ are 2½d=2� × 2½d=2� gamma-
matrices in d dimensions (see, for example, Ref. [17]):

½γμ; γν�þ ¼ 2ημν; ημν ¼ diagð1;−1;…;−1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
d

Þ;

μ; ν ¼ 0; 1;…; D: ð2:12Þ

Due to the configuration of the field (2.8), the structure
of Dirac spinor ψðXÞ in directions X0 and X2;…XD is a
simple plane wave, so we consider stationary solutions of
the Dirac equation (2.11) having the following form

ψnðXÞ ¼ exp ½−ip0tþ ip⊥r⊥�ψnðxÞ; n ¼ ðp0;p⊥; σÞ;
ψnðxÞ ¼ fγ0½p0 − UðxÞ� þ iγ1∂x − γ⊥p⊥ þmgϕnðxÞ;

p⊥ ¼ ðp2;…; pDÞ; γ⊥ ¼ ðγ2;…; γDÞ; ð2:13Þ

where ψnðxÞ and ϕnðxÞ are spinors that depend on x alone.
These spinors are stationary states with the given total
energy p0 and transversal momentum p⊥ (the index ⊥
stands for the spatial components perpendicular to the
electric field). Spin variables are separated by substitution

ϕnðxÞ ¼ ϕðχÞ
n ðxÞ ¼ φnðxÞvχ;σ; ð2:14Þ

where vχ;σ is the set of constant orthonormalized spinors
with χ ¼ �1, σ ¼ ðσ1;…; σ½d=2�−1Þ, σs ¼ �1, satisfying
the following relations

γ0γ1vχ;σ ¼ χvχ;σ; v†χ;σvχ0;σ0 ¼ δχ;χ0δσ;σ0 : ð2:15Þ

The quantum numbers χ and σ describe a spin polarization
and provide parametrization of the solutions. In d dimen-
sions there are exist only JðdÞ ¼ 2½d=2�−1 different spin
states. This is a well-known property related to the specific
structure of the projection operator in the brackets f:::g in
Eq. (2.13) that sets of solutions of the Dirac equation,
which only differ by values of χ are linearly dependent.
That is why it is sufficient to work only with solutions
corresponding to one of the values of χ; e.g., see Ref. [16]
for details.
The scalar functions φnðxÞ have to obey the second order

differential equation

I II

x

E x

FIG. 2. Strongly asymmetric peak field configuration.
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ðp̂2
x − iχ∂xUðxÞ − ½p0 −UðxÞ�2 þ π2⊥ÞφnðxÞ ¼ 0;

p̂x ¼ −i∂x; ð2:16Þ

where π2⊥ ¼ p2⊥ þm2.

B. Solutions with special left and right asymptotics

In each interval we introduce new variables ηj, j ¼ 1 for
x ∈ I, j ¼ 2 for x ∈ II:

η1 ¼ ih1ek1x; η2 ¼ ih2e−k2x; hj ¼
2eE
k2j

; ð2:17Þ

and represent the scalar functions φnðxÞ as

φj
nðxÞ¼e−ηj=2η

νj
j ρjðxÞ;

ν1¼ i
jpLj
k1

; jpLj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½π0ðLÞ�2−π2⊥

q
; π0ðLÞ¼p0þ

eE
k1

;

ν2¼ i
jpRj
k2

; jpRj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½π0ðRÞ�2−π2⊥

q
; π0ðRÞ¼p0−

eE
k2

:

ð2:18Þ

Here π0ðLÞ and π0ðRÞ are the sum of its asymptotic kinetic
and rest energies at x ¼ −∞ and x ¼ þ∞, respectively. We
call the quantity π⊥ the transversal energy. The functions
ρjðxÞ satisfy the confluent hypergeometric equation [18]

�
ηj

d2

dη2j
þ ½cj − ηj�

d
dηj

− aj

�
ρjðxÞ ¼ 0;

cj ¼ 2νj þ 1; a1 ¼
ð1 − χÞ

2
þ ν1 −

iπ0ðLÞ
k1

;

a2 ¼
ð1 − χÞ

2
þ ν2 þ

iπ0ðRÞ
k2

: ð2:19Þ

A fundamental set of solutions for the equation is com-
posed by two linearly independent confluent hypergeo-
metric functions:

Φðaj; cj; ηjÞ and η
1−cj
j eηjΦð1 − aj; 2 − cj;−ηjÞ;

where

Φða; c; ηÞ ¼ 1þ a
c
η

1!
þ aðaþ 1Þ

cðcþ 1Þ
η2

2!
þ � � � : ð2:20Þ

The general solution of Eq. (2.16) in the intervals I and II
can be expressed as the following linear superposition:

φj
nðxÞ ¼ Aj

2y
j
1ðηjÞ þ Aj

1y
j
2ðηjÞ;

yj1 ¼ e−ηj=2η
νj
j Φðaj; cj; ηjÞ;

yj2 ¼ eηj=2η
−νj
j Φð1 − aj; 2 − cj;−ηjÞ

¼ e−ηj=2η
−νj
j Φðaj − cj þ 1; 2 − cj; ηjÞ; ð2:21Þ

with constants Aj
1 and Aj

2 being fixed by boundary
conditions.
The complete set of solutions for Klein-Gordon equation

can be formally obtained by setting χ equal to zero in all
formulas,

ϕj
nðxÞ ¼ exp ½−ip0tþ ip⊥r⊥�φj

nðxÞ: ð2:22Þ

In this case n ¼ p.
The Wronskian of the yj1;2ðηjÞ functions is

W ¼ yj1
d
dηj

yj2 − yj2
d
dηj

yj1 ¼
1 − cj
ηj

: ð2:23Þ

In what follows, we use solutions of the Dirac equation
denoted as ζψn

ðXÞ and ζψnðXÞ; ζ ¼ �, with special left and
right asymptotics at x → −∞ and x → þ∞, respectively,
where there is no electric field. Nontrivial solutions ζψnðXÞ
exist only for quantum numbers n that obey the relation

½π0ðRÞ�2 > π2⊥⇔
�
π0ðRÞ > π⊥
π0ðRÞ < −π⊥

; ð2:24Þ

whereas nontrivial solutions ζψn
ðXÞ exist only for quantum

numbers n that obey the relation

½π0ðLÞ�2 > π2⊥⇔
�
π0ðLÞ > π⊥
π0ðLÞ < −π⊥

: ð2:25Þ

Such solutions have the form (2.13) with the functions
φnðxÞ denoted as ζφn

ðxÞ or ζφnðxÞ, respectively. The latter
functions satisfy Eq. (2.16) and the following asymptotic
conditions:

ζφn
ðxÞ ¼ ζN eiζjpLjx if x → −∞;

ζφnðxÞ ¼ ζN eiζjpRjx if x → þ∞; ζ ¼ �: ð2:26Þ

The solutions ζψn
ðXÞ and ζψnðXÞ asymptotically describe

particles with given momenta ζjpLj and ζjpRj, correspond-
ingly, along the axis x.
We consider our theory in a large spacetime box that

has a spatial volume V⊥ ¼ Q
D
j¼2Kj and the time dimen-

sion T, where all Kj and T are macroscopically large. The
integration over the transverse coordinates is fulfilled from
−Kj=2 to þKj=2, and over the time t from −T=2 to þT=2.
The limits Kj → ∞ and T → ∞ are assumed in final
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expressions. In this case the electric current of the Dirac
field through the hypersurface x ¼ const,

ðψ ;ψ 0Þx ¼
Z

ψ†ðXÞγ0γ1ψ 0ðXÞdtdr⊥; ð2:27Þ

is x-independent. Using Eq. (2.27) we subject the solutions

ζψn
ðXÞ and ζψnðXÞ to the orthonormality conditions and

calculate the normalization constants ζN and ζN in (2.26)
as (see Ref. [15] for details)

ζN ¼ ζCY;
ζN ¼ ζCY; Y ¼ ðV⊥TÞ−1=2;

ζC ¼ ½2jpLjjπ0ðLÞ − χζjpLjj�−1=2;
ζC ¼ ½2jpRjjπ0ðRÞ − χζjpRjj�−1=2: ð2:28Þ

By virtue of these properties, electron (positron) states
can be selected as follows:

þφnðxÞ ¼ þN exp ð−iπν1=2Þy11;
−φnðxÞ ¼ −N exp ðiπν1=2Þy12; x ∈ I;
þφnðxÞ ¼ þN exp ðiπν2=2Þy22;
−φnðxÞ ¼ −N exp ð−iπν2=2Þy21; x ∈ II: ð2:29Þ

The solutions ζψnðXÞ and ζψn
ðXÞ are connected by the

decomposition

ηL
ζψnðXÞ ¼ þψnðXÞgðþjζÞ − −ψnðXÞgð−jζÞ;

ηRζψnðXÞ ¼ þψnðXÞgðþjζÞ − −ψnðXÞgð−jζÞ; ð2:30Þ

if the conditions (2.24) and (2.25) are simultaneously
fulfilled, where ηL=R ¼ sgnπ0ðL=RÞ, and the coefficients
g are defined by the corresponding inner product,

gðζjζ
0 Þ ¼ ðζψn

; ζ0ψnÞx; gðζjζ
0 Þ� ¼ gðζ0jζÞ: ð2:31Þ

These coefficients satisfy the following unitary relations

jgð−jþÞj2 ¼ jgðþj−Þj2; jgðþjþÞj2 ¼ jgð−j−Þj2;
gðþj−Þ
gð−j−Þ

¼ gðþj−Þ
gðþjþÞ

; jgðþj−Þj2 − jgðþjþÞj2 ¼ −ηLηR:

ð2:32Þ

Taking into account the complete set of exact solutions
(2.21) and mutual decompositions (2.30), for example, one
can present the functions−φnðxÞ andþφnðxÞ in the form

þφnðxÞ ¼
�
ηL½þφnðxÞgðþjþÞ − −φnðxÞgð−jþÞ�; x ∈ I
þN exp ðiπν2=2Þy22; x ∈ II

;

ð2:33Þ

−φnðxÞ ¼
�

−N exp ðiπν1=2Þy12; x ∈ I

ηR½þφnðxÞgðþj−Þ − −φnðxÞgð−j−Þ�; x ∈ II
;

ð2:34Þ
for the whole axis x.

C. In- and out-sets

According to the general theory, in the case of x-electric
potential steps, the manifold of all the quantum numbers n
denoted by Ω can be divided into five ranges of quantum
numbers Ωi; i ¼ 1;…; 5, where the corresponding solu-
tions of the Dirac equation have similar forms, so that
Ω ¼ Ω1∪ � � �∪Ω5; see Fig. 1. Note that the range Ω3 exists
if 2π⊥ < U. We denote the quantum numbers in corre-
sponding zone Ωi by ni. The conditions (2.24) and (2.25)
are simultaneously fulfilled for Ωi, i ¼ 1, 3, 5, as follows

π0ðLÞ > π0ðRÞ > π⊥ if n ∈ Ω1;

π0ðRÞ < π0ðLÞ < −π⊥ if n ∈ Ω5;

π0ðLÞ > π⊥; π0ðRÞ < −π⊥ if n ∈ Ω3: ð2:35Þ
For the detailed description of the ranges Ωi and their
properties see Ref. [15].
The exact expressions for g’s can be obtained from

Eqs. (2.33) and (2.34) as follows. The functions−φnðxÞ and
þφnðxÞ given by Eqs. (2.33) and (2.34) and their derivatives
satisfy the following gluing conditions:

þ−φnðxÞjx¼−0 ¼ þ−φnðxÞjx¼þ0;

∂x
þ−φnðxÞjx¼−0 ¼ ∂x

þ−φnðxÞjx¼þ0: ð2:36Þ
Using Eq. (2.36) and the Wronskian (2.23), one can find
each coefficient gðζjζ

0 Þ and gðζjζ0 Þ in Eqs. (2.33) and (2.34).
For example, applying these conditions to the set (2.33),
one can find the coefficient gð−jþÞ:

gð−jþÞ ¼ CΔ; C ¼ ηL
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jπ0ðLÞ þ χjpLjj

jpLjjpRjjπ0ðRÞ − χjpRjj

s

× exp

�
iπ
2
ðν2 − ν1Þ

�
;

Δ ¼
�
k1h1y22

d
dη1

y11 þ k2h2y11
d
dη2

y22

�				
x¼0

: ð2:37Þ

The same can be done to Eq. (2.34) to obtain

gðþj−Þ ¼ C0Δ0; C0 ¼ −ηR
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jπ0ðRÞ − χjpRjj

jpRjjpLjjπ0ðLÞ þ χjpLjj

s

× exp

�
iπ
2
ðν1 − ν2Þ

�
;

Δ0 ¼
�
k1h1y21

d
dη1

y12 þ k2h2y12
d
dη2

y21

�				
x¼0

: ð2:38Þ
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One can easily verify that the symmetry under a simulta-
neous change k1⇆k2 and π0ðLÞ⇆ − π0ðRÞ holds,

gðþj−Þ⇆ − ηLηRgð−jþÞ: ð2:39Þ

A formal transition to the Klein-Gordon case can be done
by setting χ ¼ 0 and ηL ¼ ηR ¼ 1 in Eqs. (2.37) and (2.38).
In this case, normalization factors ζC and ζC are

ζC ¼ j2pLj−1=2; ζC ¼ j2pRj−1=2: ð2:40Þ

The coefficient gð−jþÞ for scalar particles is

gð−jþÞ¼CscΔjχ¼0; Csc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4jpLjjpRj

s
exp

�
iπ
2
ðν2−ν1Þ

�
ð2:41Þ

with Δ given by Eq. (2.37). The symmetry under the
simultaneous change k1⇆k2 and π0ðLÞ⇆ − π0ðRÞ holds as

gðþj−Þ⇆gð−jþÞ: ð2:42Þ

As follows from Eqs. (2.37), (2.38), and (2.41), if either
jpRj or jpLj tends to zero, one of the following limits holds
true:

jgð−jþÞj−2∼ jpRj→0; jgðþj−Þj−2∼ jpLj→0; ∀ λ≠0:

ð2:43Þ

These properties are essential for the justification of in- and
out-particle interpretation in the general construction [15].
However, it should be noted that quantum field theory

deals with physical quantities that are presented by volume
integrals on t-constant hyperplane. The time-independent
inner product for any pair of solutions of the Dirac
equation, ψnðXÞ and ψ 0

n0 ðXÞ, is defined on the t ¼ const
hyperplane as follows:

ðψn;ψ 0
n0 Þ ¼

Z
V⊥

dr⊥
Z

KðRÞ

−KðLÞ
ψ†
nðXÞψ 0

n0 ðXÞdx; ð2:44Þ

where the improper integral over x in the right-hand side
of Eq. (2.44) is reduced to its special principal value to
provide a certain additional property important for us and
the limits KðL=RÞ → ∞ are assumed in final expressions. As
a result, we can see that all the wave functions having
different quantum numbers n are orthogonal with respect of
the inner product (2.44). We can find the linear independent
pairs of ψnðXÞ and ψ 0

n0 ðXÞ for each n and identify initial
and final states on the t ¼ const hyperplane as follows (see
Ref. [15] for details):

in-solutions∶ þψn1 ;
−ψn1 ; −ψn5 ;

þψn5 ; −ψn3 ;
−ψn3 ;

out-solutions∶ −ψn1 ;
þψn1 ; þψn5

; −ψn5 ; þψn3
; þψn3 : ð2:45Þ

In the rangesΩ2 (−π⊥ < π0ðRÞ < π⊥ and π0ðLÞ > π⊥) any
solution has zero right asymptotic, which means that
we deal with electron standing waves ψn2ðXÞ. It means
that we deal with a total reflection. Similarly, we can treat
positron standing waves ψn4ðXÞ in the range Ω4

(−π⊥ < π0ðLÞ < π⊥ and π0ðRÞ < −π⊥) and see a total
reflection of positrons. It has to be noted that the complete
set of in- and out-solution must include solution ψn2ðXÞ
and ψn4ðXÞ.
Using the identification (2.45) we decompose the

Heisenberg field operator Ψ̂ðXÞ in two sets of solutions
of the Dirac Eq. (2.11) complete on the t ¼ const hyper-
plane. Operator-valued coefficients in such decompositions
are creation and annihilation operators of electrons and
positrons which do not depend on coordinates. Following
this way we complete initial and final sets of creation and
annihilation operators as

in-set∶ þan1ðinÞ; −an1ðinÞ; −bn5ðinÞ; þbn5ðinÞ;
−bn3ðinÞ; −an3ðinÞ;

out-set∶ −an1ðoutÞ; þan1ðoutÞ; þbn5ðoutÞ; −bn5ðoutÞ;
þbn3ðoutÞ; þan3ðoutÞ: ð2:46Þ

We interpret all a and b as annihilation and all a† and b† as
creation operators. All a and a† are interpreted as describ-
ing electrons and all b and b† as describing positrons. All
the operators labeled by the argument in are interpreted as
in-operators, whereas all the operators labeled by the
argument out as out-operators. This identification is con-
firmed by a detailed mathematical and physical analysis
of solutions of the Dirac equation with subsequent QFT
analysis of correctness of such an identification in Ref. [15].
We define two vacuum vectors j0; ini and j0; outi, one of
which is the zero-vector for all in-annihilation operators and
the other is zero-vector for all out-annihilation operators.
Besides, both vacua are zero-vectors for the annihilation
operators an2 and bn4 . We know that in the rangesΩi, i ¼ 1,
2, 4, 5 the partial vacua, j0; iniðiÞ and j0; outiðiÞ, are stable.
The vacuum-to-vacuum transition amplitude cv coincides

with the vacuum-to-vacuum transition amplitude cð3Þv in the
Klein zone Ω3,

cv ¼ h0; outj0; ini ¼ cð3Þv ¼ ð3Þh0; outj0; inið3Þ: ð2:47Þ

III. SCATTERING AND REFLECTION OF
PARTICLES OUTSIDE OF THE KLEIN ZONE

To extract results of the one-particle scattering theory,
all the constituent quantities, such as reflection and
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transmission coefficients etc., have to be represented with
the help of the mutual decomposition coefficients g.
As an example, in the range Ω1, one can calculate

absolute ~R and relative R amplitudes of an electron
reflection, and absolute ~T and relative T amplitudes of
an electron transmission, which can be presented as the
following matrix elements

Rþ;n ¼ ~Rþ;nc−1v ~Rþ;n ¼ h0; outj−anðoutÞþa†nðinÞj0; ini;
Tþ;n ¼ ~Tþ;nc−1v ~Tþ;n ¼ h0; outjþanðoutÞþa†nðinÞj0; ini;
R−;n ¼ ~R−;nc−1v ~R−;n ¼ h0; outjþanðoutÞ−a†nðinÞj0; ini;
T−;n ¼ ~T−;nc−1v ~T−;n ¼ h0; outj−anðoutÞ−a†nðinÞj0; ini;

ð3:1Þ

It follows from the Eq. (3.1) that the relative reflection
jRζ;nj2 and transition jTζ;nj2 probabilities are

jTζ;nj2¼1− jRζ;nj2; jRζ;nj2¼½1þjgð−jþÞj−2�−1; ζ¼�:

ð3:2Þ

Similar expressions can be derived for positron ampli-
tudes in the range Ω5. In particular, relation (3.2) holds true
literally for the positrons in the range Ω5. It is clear that
jRζ;nj2 ≤ 1. This result may be interpreted as QFT justi-
fication of the rules of time-independent potential scatter-
ing theory in the ranges Ω1 and Ω5.
Amplitudes of Klein-Gordon particle reflection and

transmission in the ranges Ωi, i ¼ 1, 2, 4, 5 have the same
form as in the Dirac particle case with coefficients g
given by the corresponding inner product. Substituting
the corresponding coefficients g into relations (3.2), one
can find explicitly reflection and transmission probabilities
in the field under consideration.
It is clear that jgð−jþÞj−2 and then jRζ;nj2 and jTζ;nj2 are

functions of modulus squared of transversal momentum
p2⊥. It follows from Eq. (2.39) and Eq. (2.42), respectively,
that jRζ;nj2 and jTζ;nj2 are invariant under the simultaneous
change k1⇆k2 and π0ðLÞ⇆ − π0ðRÞ for both fermions and
bosons. Then if k1 ¼ k2, jRζ;nj2 and jTζ;nj2 appear to be an
even function of p0. The limits (2.43) imply that

(i) jgð−jþÞj−2 → 0 in the range Ω1 if n tends to the
boundary with the range Ω2 ðjpRj → 0Þ;

(ii) jgð−jþÞj−2 → 0 in the range Ω5 if n tends to the
boundary with the range Ω4 ðjpLj → 0Þ.

Thus, in these two cases the relative probabilities of
reflection jRζ;nj2 tend to unity; i.e., they are continuous
functions of the quantum numbers n on the boundaries. It
can be also seen that jRζ;nj2 → 0 as p0 → �∞.

IV. PROCESSES IN THE KLEIN ZONE

A. General

Here we consider possible processes in the Klein zone,
Ω3, following the general consideration [15]. It is of special
interest due to the vacuum instability. Due to specific
choice of quantum numbers, processes for different modes
n are independent. One sees that physical quantities are
factorized with respect to quantum modes n and calcu-
lations in each mode can be performed separately. In
particular, one can represent the introduced vacua, j0; ini
and j0; outi, as tensor products of all the corresponding
partial vacua in each mode n, respectively, and see that
the probability for a vacuum to remain a vacuum can be
expressed as product of the probabilities pn

v for a partial
vacuum to remain a vacuum in each mode n,

Pv ¼ jcvj2 ¼ jcð3Þv j2 ¼
Y
n∈Ω3

pn
v; ð4:1Þ

where it is taken into account that in the rangesΩi, i ¼ 1, 2,
4, 5 the partial vacua are stable.
The differential mean numbers of electrons and positrons

from electron-positron pairs created are equal:

Na
nðoutÞ ¼ h0; injþa†nðoutÞþanðoutÞj0; ini ¼ jgð−jþÞj−2;

Nb
nðoutÞ ¼ h0; injþb†nðoutÞþbnðoutÞj0; ini ¼ jgð−j−Þj−2;

Ncr
n ¼ Nb

nðoutÞ ¼ Na
nðoutÞ; n ∈ Ω3; ð4:2Þ

and they present the number of pairs created, Ncr
n . It follows

from the Eqs. (2.37) and (2.41) that

Ncr
n ¼ jCΔj−2 for fermions;

Ncr
n ¼ jCscΔjχ¼0j−2 for bosons: ð4:3Þ

It is clear that Ncr
n is a function of modulus squared

of transversal momentum p2⊥. It follows from Eq. (2.39)
and Eq. (2.42), respectively, that Ncr

n is invariant under the
simultaneous change k1⇆k2 and π0ðLÞ⇆ − π0ðRÞ for both
fermions and bosons. Then if k1 ¼ k2, Ncr

n appears to be an
even function of p0.
From properties (2.43), one finds that Ncr

n → 0 if n tends
to the boundary with either the range Ω2 (jpRj → 0) or the
range Ω4 (jpLj → 0),

Ncr
n ∼ jpRj → 0; Ncr

n ∼ jpLj → 0; ∀ λ ≠ 0; ð4:4Þ

in the latter ranges, the vacuum is stable.
Absolute values of the asymptotic momenta jpLj and

jpRj are determined by the quantum numbers p0 and
p⊥, see Eq. (2.18). This fact imposes certain relation
between both quantities. In particular, one can see that
djpLj=djpRj < 0, and at any given p⊥ these quantities are
restricted inside the range Ω3,
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0 ≤ jpR=Lj ≤ pmax; pmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðU − 2π⊥Þ

p
: ð4:5Þ

It implies that

0 ≤ jjpLj − jpRjj ≤ pmax: ð4:6Þ

We have jpLj ¼ k1jν1j, jpRj ¼ k2jν2j, and U ¼
eEðk−11 þ k−12 Þ for the case under consideration. Then
for any p0 and p⊥ the numbers Ncr

n are negligible if the
Klein zone is tiny,

Ncr
n ∼ jpRpLj → 0 if pmax → 0: ð4:7Þ

The total number of pairs Ncr created by the field under
consideration can be calculated by summation over all
possible quantum numbers in the Klein zone. Calculating
this number in the fermionic case, one has to sum the
corresponding differential mean numbers Ncr

n over the
spin projections and over the transversal momenta p⊥
and energy p0. Since the Ncr

n do not depend on the spin

polarization parameters σ, the sum over the spin projections
produces only the factor JðdÞ ¼ 2½d=2�−1. The sum over the
momenta and the energy transforms into an integral in the
following way:

Ncr¼
X
n∈Ω3

Ncr
n ¼

X
p⊥;p0∈Ω3

X
σ

Ncr
n →

V⊥TJðdÞ
ð2πÞd−1

Z
Ω3

dp0dp⊥Ncr
n ;

ð4:8Þ

where V⊥ is the spatial volume of the (d − 1) dimensional
hypersurface orthogonal to the electric field direction, x,
and T is the time duration of the electric field. The total
number of bosonic pairs created in all possible states
follows from Eq. (4.8) at JðdÞ ¼ 1.
Both for fermions and bosons, the relative probabilities

of an electron reflection, a pair creation, and the probability
for a partial vacuum to remain a vacuum in a mode n can
be expressed via differential mean numbers of created
pairs Ncr

n ,

pnðþjþÞ ¼ jh0; outjþanðoutÞ−a†nðinÞj0; inij2P−1
v ¼ ð1 − κNcr

n Þ−1;
pnðþ − j0Þ ¼ jh0; outjþanðoutÞþbnðoutÞj0; inij2P−1

v ¼ Ncr
n ð1 − κNcr

n Þ−1;

pn
v ¼ ð1 − κNcr

n Þκ; κ ¼
�þ1 for fermions

−1 for bosons
; ð4:9Þ

where Pv is defined by Eq. (4.1). The partial absolute
probabilities of an electron reflection and a pair creation in
a mode n are

PnðþjþÞ¼pnðþjþÞpn
v; Pnðþ− j0Þ¼pnðþ− j0Þpn

v;

ð4:10Þ

respectively. The relative probabilities for a positron
reflection pnð−j−Þ and a pair annihilation pnð0j −þÞ
coincide with the probabilities pnðþjþÞ and pnðþ − j0Þ,
respectively.
We recall, as it follows from the general consideration

[15], that if there exists an in-particle in the Klein zone, it
will be subjected to the total reflection. For example, it can
be illustrated by a result following from Eqs. (4.9) and
(4.10), the probability of reflection of a Dirac particle with
given quantum numbers n, under the condition that all other
partial vacua remain vacua, is PnðþjþÞ ¼ 1. In the Dirac
case, the presence of an in-particle with a given n ∈ Ω3

disallows the pair creation from the vacuum in this state
due to the Pauli principle. By the same reason, if an initial
state is vacuum, there are only two possibilities in a cell
of the space with given quantum number n, namely, this
partial vacuum remains a vacuum, or with the probability
Pnðþ − j0Þ a pair with the quantum number n will be

created. It is in agreement with the probability conservation
law pn

v þ Pnðþ − j0Þ ¼ 1 that follows from Eqs. (4.9)
and (4.10).
Of course, pairs of bosons can be created from the

vacuum in any already-occupied states. For example, the
conditional probability of a pair creation with a given
quantum numbers n, under the condition that all other
partial vacua with the quantum numbers m ≠ n remain the
vacua is the sum of probabilities of creation from vacuum
for any number l of pairs

Pnðpairsj0Þ ¼ pn
v

X∞
l¼1

pnðþ − j0Þl: ð4:11Þ

In this case the probability conservation law has the form of
a sum of probabilities of all possible events in a cell of the
space of quantum numbers n:

Pðpairsj0Þn þ pn
v ¼ 1: ð4:12Þ

B. Small-gradient field

The inverse parameters k−11 , k−12 represent scales of
growth and decay of the electric field in the intervals I
and II, respectively. In particular, we have a small-gradient
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field at small values of both k1, k2 → 0, obeying the
conditions

min ðh1; h2Þ ≫ max ð1; m2=eEÞ: ð4:13Þ
This case can be considered as a two-parameter regulari-
zation for an uniform electric field. That is a reason the
Klein zone, Ω3, is of interest under the condition (4.13).
Let us analyze how the numbers Ncr

n depend on the
parameters p0 and π⊥. By virtue of the symmetry properties
of Ncr

n discussed above, one can only consider p0 either
positive or negative.
Let us, for example, consider the interval of negative

energies p0 ≤ 0. In this case, taking into account that both
π0ðLÞ and π0ðRÞ satisfy the inequalities given by Eq. (2.35)
in the range Ω3, we see that π0ðLÞ varies greatly while
π0ðRÞ is negative and very large,

π⊥ ≤ π0ðLÞ ≤
eE
k1

;
eE
k2

≤ −π0ðRÞ ≤
eE
k2

þ eE
k1

− π⊥:

ð4:14Þ
It can be seen from the asymptotic behavior of a confluent
hypergeometric function that Ncr

n is exponentially small,
Ncr

n ≲ exp ½−2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2jπ0ðRÞj=k2

p �, if jpRj ≪ jπ0ðRÞj for large
jπ0ðRÞj. In this case, π⊥ ∼ eEk−12 . Then the range of fixed
π⊥ is of interest, and in the following we assume that
condition

ffiffiffi
λ

p
< K⊥; λ ¼ π2⊥

eE
ð4:15Þ

holds true, where any given number K⊥ satisfies the
inequality

min ðh1; h2Þ ≫ K2⊥ ≫ max ð1; m2=eEÞ: ð4:16Þ
Using the asymptotic expressions of the confluent hyper-

geometric functions we find that the differential mean
numbers of created pairs Ncr

n , given by Eq. (4.3), can be

approximated by the forms (A6); see details in Appendix A.
These forms are exponentially small if π0ðLÞ ∼ π⊥. Then
substantial value of Ncr

n are formed in the range

h1 ≥ 2π0ðLÞ=k1 > K ≫ K⊥; ð4:17Þ

where K is any given number and K⊥ satisfies the inequal-
ities (4.15) and (4.16). In this range we approximate the
distributions (A6) by the formula

Ncr
n ≈ exp

�
−
2π

k1
½π0ðLÞ − jpLj�



ð4:18Þ

both for bosons and fermions.
Considering positive p0 > 0, we find that Ncr

n can be
approximated by forms (A8); see details in Appendix A.
In this case, the substantial value of Ncr

n are formed in the
range

eE=k2 ≥ jπ0ðRÞj=k2 > K ð4:19Þ

and has a form

Ncr
n ≈ exp

�
−
2π

k2
½jπ0ðRÞj − jpRj�



: ð4:20Þ

Consequently, the quantity Ncr
n is almost constant over

the wide range of energies p0 for any given λ satisfying
Eq. (4.15). When h1, h2 → ∞, one obtains the result in a
constant uniform electric field [6,14].
The analysis presented above reveals that the dominant

contributions for particle creation by a slowly varying field
occurs in the ranges of large kinetic energies, whose
differential quantities have the asymptotic forms (4.18)
for p0 < 0 and (4.20) for p0 > 0. Therefore, one may
represent the total number (4.8) as

Ncr ¼ V⊥Tncr; ncr ¼ JðdÞ
ð2πÞd−1

Z ffiffi
λ

p
<K⊥

dp⊥Ip⊥ ; Ip⊥ ¼ Ið1Þp⊥ þ Ið2Þp⊥ ;

Ið1Þp⊥ ¼
Z

0

−eE=k1þπ⊥
dp0Ncr

n ≈
Z

eE=k1

Kk1

dπ0ðLÞ exp
�
−
2π

k1
½π0ðLÞ − jpLj�



;

Ið2Þp⊥ ¼
Z

eE=k2−π⊥

0

dp0Ncr
n ≈

Z
eE=k2

Kk2

djπ0ðRÞj exp
�
−
2π

k2
½jπ0ðRÞj − jpRj�



: ð4:21Þ

Here ncr presents the total number density of pairs created per unit time and unit surface orthogonal to the electric field
direction.
As it is shown in Appendix A, the leading term reads

ncr ¼ rcr
�
1

k1
þ 1

k2

�
G

�
d
2
; π

m2

eE

�
; rcr ¼ JðdÞðeEÞd=2

ð2πÞd−1 exp

�
−π

m2

eE



; ð4:22Þ
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where function G is given by Eq. (A11). The density rcr is
known in the theory of constant uniform electric field as
the pair-production rate (see the d dimensional case in
Refs. [16,19]). The density given by Eq. (4.22) coincides
with the number density of pairs created per unit space
volume, Ncr=Vðd−1Þ, due to the uniform peak electric field
given by a time-dependent potential AxðtÞ; see Ref. [20].
We see that the dominant contributions to the number

density ncr, given by Eq. (4.22), is proportional to the total
energy of a pair created and then the magnitude of the
potential step, π0ðLÞ þ jπ0ðRÞj ¼ U. This magnitude is
equal to a work done on a charged particle by the electric
field under consideration. The same behavior we see for
the number density ncr of pairs created due to the small-
gradient potential steps of the other known exactly solvable
cases: the Sauter field [15] and the L-constant electric field
[16] with the step magnitudesUS ¼ 2eELS andUL ¼ eEL,
respectively. In these cases we have

ncr ¼ LSδrcr for Sauter field;

ncr ¼ Lrcr for L-constant field; ð4:23Þ
where L is the length of the applied constant field,
δ ¼ ffiffiffi

π
p

Ψð1
2
; 2−d

2
; π m2

eEÞ, and Ψða; b; xÞ is the confluent
hypergeometric function [18]. All three cases can be
considered as regularizations for an uniform electric field.
This fact allows one to compare pair creation effects in such
fields. Thus, for a given magnitude of the electric field E
one can compare, for example, the pair creation effects in
fields with equal step magnitude, or one can determine such
step magnitudes for which particle creation effects are the
same. In the latter case, equating the densities ncr for
the Sauter field and for the peak field to the density ncr for
the L-constant field, we find an effective length of the fields
in both cases,

Leff ¼ LSδ for Sauter field;

Leff ¼ ðk−11 þ k−12 ÞG
�
d
2
; π

m2

eE

�
for peak field: ð4:24Þ

By the definition Leff ¼ L for the L-constant field. One can
say that the Sauter and the peak electric fields with the same
Leff are equivalent to the L-constant field in pair production.

Using the above considerations and Eq. (4.9) we perform
the summation (integration) in Eq. (4.1) and obtain the
vacuum-to-vacuum probability,

Pv ¼ exp ð−μNcrÞ; μ ¼
X∞
l¼0

κlϵlþ1

ðlþ 1Þd=2 exp
�
−lπ

m2

eE

�
;

ϵl ¼ G

�
d
2
; πl

m2

eE

��
G

�
d
2
;
πm2

eE

��−1
; ð4:25Þ

where Ncr ¼ V⊥Tncr and ncr is given by Eq. (4.22).
Previously, similar results were obtained for the Sauter
field [15] and the L-constant fields [16] with the corre-
sponding ncr, given by Eq. (4.23), and

ϵl ¼ ϵLl ¼ 1 for L-constant field;

ϵl ¼ ϵSl ¼ δ−1
ffiffiffi
π

p
Ψ
�
1

2
;
2 − d
2

; lπ
m2

eE

�
for Sauter field:

ð4:26Þ

V. VERY ASYMMETRIC PEAK

In the examples considered before [15,16] and above,
increasing and decreasing parts of the electric field are near
symmetric. Here we consider an essentially asymmetric
configuration of the step. We suppose that the field grow
from zero to its maximum value at the origin x ¼ 0 very
rapidly (that is, k1 is sufficiently large), while the value of
parameter k2 > 0 remains arbitrary and includes the case of
a smooth decay. We assume that the corresponding asymp-
totic potential energy, UL, given by Eq. (2.9), define finite
magnitude of the potential step ΔU1 ¼ −UL for increasing
part of the field. Note that due to the invariance of the mean
numbers Ncr

n under the simultaneous change k1⇆k2 and
π0ðLÞ⇆ − π0ðRÞ, one can easily transform this situation to
the case with a large k2 and arbitrary k1 > 0. Let us assume
that a sufficiently large k1 satisfies the following inequal-
ities at given ΔU1 and π0ðLÞ ¼ p0 þ ΔU1:

jπ0ðLÞj=k1 ≪ 1: ð5:1Þ

Making use of condition Eq. (5.1), we can approximately
present jΔj2, given by Eq. (2.37), as

jΔj2 ≈ jΔapj2 ¼ e−iπν2
				
�
−χΔU1 þ jpLj − jpRj þ k2h2

�
1

2
þ d
dη2

��
Φð1 − a2; 2 − c2;−η2Þ

				2
				
x¼0

: ð5:2Þ

and finally obtain

jgð−jþÞj−2 ≈
( jCΔapj−2 for fermions

jCscΔapjχ¼0
j−2 for bosons

ð5:3Þ

for the ranges Ω1, Ω3, and Ω5.

In an asymmetric case with k1 ≫ k2, we have eE ¼
k1ΔU1 at given ΔU1 that implies eE=k2 ≫ ΔU1. Then
one can disregard the term ΔU1 in the leading-term-
approximation of jgð−jþÞj−2 given by Eq. (5.3) for the
ranges Ω1 and Ω5, that is, outside of the Klein zone. Such
an approximation does not depend on the details of the field
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growth at x < 0. We see that the relative reflection jRζ;nj2
and transition jTζ;nj2 probabilities in the leading-term-
approximation are the same with ones produced due to
the exponentially decaying electric field, given by the
potential (2.10).
Let us consider the most asymmetric case when Eq. (5.3)

hold and the parameter k2 is sufficiently small,

h2 ≫ max ð1; m2=eEÞ: ð5:4Þ

In this case the exponentially decaying field (2.10) is a
small-gradient field and we are interesting in the Klein
zone, Ω3, where Ncr

n ¼ jgð−jþÞj−2.
Taking into account that both π0ðLÞ and π0ðRÞ satisfy

the inequalities given by Eq. (2.35) in the range Ω3, we see
that π0ðRÞ varies greatly,

π⊥ ≤ −π0ðRÞ ≤ eE=k2 þ ΔU1 − π⊥: ð5:5Þ

Note that in this range 2π⊥ < eE=k2 þ ΔU1. It can be seen
from the asymptotic behavior of a confluent hypergeomet-
ric function that Ncr

n is exponentially small if both jπ0ðRÞj
and π⊥ are large ∼eE=k2 with π⊥=jπ0ðRÞj ∼ 1 such that
jpRj ≪ jπ0ðRÞj. Then the range of fixed π⊥ is of interest in
the range (5.5) and we assume that the inequality (4.15)
holds, in which K⊥ is any given number satisfying the
condition

h2 ≫ K2⊥ ≫ max ð1; m2=eEÞ: ð5:6Þ

Using asymptotic expressions of the confluent hyper-
geometric functions, we find that the differential mean
numbers of created pairs Ncr

n , given by Eq. (5.3), can be
approximated by distributions that vary from Eq. (A14) to
Eq. (A17); see details in Appendix A. The only distribution
(A14) depends on ΔU1. However, the range of transverse
momenta is quite tiny for this distribution. It implies that in
the leading term approximation the total number Ncr of
pairs created does not depend on ΔU1 and therefore does
not feel peculiarities of the field growth at x < 0 in this
approximation.
We see that Ncr

n given by Eq. (A17) are exponentially
small if jπ0ðRÞj ∼ π⊥. Then the substantial value of Ncr

n are
formed in the range

K⊥ ≪ K < −2π0ðRÞ=k2 < ð1 − εÞh2; ð5:7Þ

where K is any given number and K⊥ satisfies the
inequalities (4.15) and (5.6). In this range jπ0ðRÞj ≫ π⊥
and the distributions (A17) is approximated by Eq. (A15)
both for bosons and fermions. Thus, Eq. (A15) gives us the
leading-term approximation for the substantial value of Ncr

n
over all the range (5.7). Note that the same distribution
takes place in a small-gradient field for p0 > 0, see
Eq. (4.20). Approximation (A15) does not depend on

the details of the field growth at x < 0, therefore, it is
the same as in the case of the exponentially decaying
electric field, given by the potential (2.10).
Using the above considerations, we can estimate dom-

inant contributions to the number density ncr of pairs
created by the very asymmetric peak as

ncr ¼ rcr

k2
G
�
d
2
; π

m2

eE

�
; ð5:8Þ

where rcr is given by Eq. (4.22); see details in Appendix A.
Thus, ncr given by Eq. (5.8), is k2-dependent part of the
mean number density of pairs created in the small-gradient
field, given by Eq. (4.22).
Finally, we can see that the vacuum-to-vacuum proba-

bility is

Pv ¼ exp ð−μNcrÞ; ð5:9Þ

where Ncr ¼ V⊥Tncr and ncr is given by Eq. (5.8) and μ is
given by Eq. (4.25).
As it was mentioned above, the form of Ncr

n does not
depend on the details of the field growth at x < 0 in the
range of dominant contribution. Therefore, calculations
of total quantities in an exponentially decaying field are
quite representative for a large class of the exponentially
decaying electric fields switching on abruptly.

VI. SHARP PEAK

The choosing certain parameters of the peak field, one
can obtain sharp gradient fields that exist only in a small
area in a vicinity of the origin x ¼ 0. The latter fields grows
and/or decays rapidly near the point x ¼ 0.
Let us consider large parameters k1, k2 → ∞with a fixed

ratio k1=k2. We assume that the corresponding asymptotic
potential energies, UR and UL, given by Eq. (2.9), define
finite magnitudes of the potential steps ΔU1 and ΔU2 for
increasing and decreasing parts,

−UL ¼ ΔU1; UR ¼ ΔU2; ð6:1Þ

respectively, and satisfy the following inequalities:

ΔU1=k1 ≪ 1; ΔU2=k2 ≪ 1: ð6:2Þ

In the ranges Ω1 and Ω5 the energy jp0j is not restricted
from the above, that is why in what follows we consider
only the subranges, where

max ðjπ0ðLÞj=k1; jπ0ðRÞj=k2Þ ≪ 1: ð6:3Þ

In the rangeΩ3 for any given π⊥ the absolute values of jpRj
and jpLj are restricted from above, see (4.6). Therefore,
condition (6.2) implies Eq. (6.3). This case corresponds to a
very sharp peak of the electric field with a given step
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magnitude U ¼ ΔU1 þ ΔU2. At the same time this con-
figuration imitates a sufficiently high rectangular potential
step (the Klein step; see Ref. [15] for details and the
resolution of the Klein paradox) and coincides with it as k1,
k2 → ∞. Thus, this potential step can be considered as a
regularization of the Klein step. We have to compare this
regularization with another one presented by the Sauter
potential in Ref. [15]. In the case under consideration the
confluent hypergeometric function can be approximated by
the first two terms in Eq. (2.20), which are Φða; c; ηÞ with
c ≈ 1 and a ≈ ð1 − χÞ=2. Then in the ranges Ω1, Ω3,
and Ω5, the coefficient jgð−jþÞj−2, given by Eq. (2.37)
for fermions, can be presented in the leading-term approxi-
mation as

jgð−jþÞj−2 ≈
4jpLjjpRjjπ0ðRÞ − jpRjj

ðUþ jpRj − jpLjÞ2jπ0ðLÞ þ jpLjj : ð6:4Þ

This leading-term does not depend on k1 and k2. Note
that in the ranges Ω1 and Ω5, the coefficient jgð−jþÞj−2
determinate the relative reflection jRζ;nj2 and transition
jTζ;nj2 probabilities in the form (3.2) while in the range Ω3

it gives the differential mean number of pairs created,
Ncr

n ¼ jgð−jþÞj−2. Of course, Ncr
n ≤ 1, while jgð−jþÞj−2 is

unbounded in the ranges Ω1 and Ω5. For example,
jgð−jþÞj−2 ≈ π2⊥=U2 if π0ðRÞ ≫ π2⊥.
For bosons in the ranges Ω1, Ω3, and Ω5, the leading-

term approximation of jgð−jþÞj−2, given by Eq. (2.41), is

jgð−jþÞj−2 ≈
4jpLjjpRj

ðjpLj − jpRjÞ2 þ b2
;

b ¼ 2ΔU1

k1

�
π0ðLÞ −

ΔU1

4

�

þ 2ΔU2

k2

�
−π0ðRÞ −

ΔU2

4

�
: ð6:5Þ

Taking into account that jjpLj − jpRjj > U in the ranges Ω1

and Ω5, we obtain that

jgð−jþÞj−2 ≈
4jpLjjpRj

ðjpLj − jpRjÞ2 : ð6:6Þ

In the range Ω3 the difference jjpLj − jpRjj are restricted
from above by Eq. (4.6) and can tend to zero. That is
why the differential mean number of boson pairs created,
Ncr

n ¼ jgð−jþÞj−2 given by Eq. (6.5), can be large. It has a
maximum, Ncr

n ¼ 4jpLjjpRj=b2 → ∞ at jpLj − jpRj ¼ 0.
This is an indication of a big backreaction effect at
jpLj − jpRj → 0. In contrast with the Fermi case the k1,
k2 -dependent term b2 in Eq. (6.5) can be neglected only in
the range where

b2 ≪ ðjpLj − jpRjÞ2: ð6:7Þ

Under the latter condition, one obtain

Ncr
n ≈

4jpLjjpRj
ðjpLj − jpRjÞ2 : ð6:8Þ

Thus, we see that the concept of a sharp peak in the scalar
QED is limited by the condition minðΔU1=k1;ΔU2=k2Þ≳1
for the fields under consideration. We do not see similar
problem in the spinor QED.
If k1 ¼ k2 (in this case ΔU2 ¼ ΔU1 ¼ U=2), we can

compare the above results with the regularization of the
Klein step by the Sauter potential; see Ref. [15]. We see
that both regularizations are in agreement for bosons under
condition (6.7). Both regularizations are in agreement for
fermions in the rangeΩ3 if jjpLj − jpRjj ≪ U. For fermions
in the rangesΩ1 if jpLj ≪ π⊥ andΩ5 if jpRj ≪ π⊥ we have
jjpLj − jpRjj ≫ U and obtain from Eq. (6.4) that

jgð−jþÞj−2 ≈
4jpLjjpRjjπ0ðRÞj

ðjpRj − jpLjÞ2jπ0ðLÞj
: ð6:9Þ

In the nonrelativistic subrange, jπ0ðR=LÞj ≫ U, the leading-
term in Eq. (6.9) has a form given by Eq. (6.6), that is, it is the
same for fermions and bosons and both regularizations are in
agreement. To compare our exact results with results of the
nonrelativistic consideration for a noncritical rectangular
step, U < 2m, (in this case the range Ω3 does not exist)
obtained in any textbook for one dimensional quantum
motion (e.g., see [21]), one set p⊥ ¼ 0, then π⊥ ¼ m,
π0ðLÞ¼p0¼mþE, and π0ðRÞ¼p0−U¼mþE−U.

VII. CONCLUDING REMARKS

We have presented new exactly solvable cases available
in the nonperurbative QED with x-electric potential steps
that were formulated recently in Ref. [15]. In particular,
we have considered in details three new configurations of
x-electric potential steps: a smooth peak, a strongly
asymmetric peak, and a sharp peak. Thus, together, with
two recently presented exactly solvable cases available in
the QED with the steps (QED with the Sauter field [15] and
with a constant electric field between two capacitor plates
[16]), the most important physically exactly solvable cases
in such QED are described explicitly at present. We note that
varying parameters defining these steps it is possible to
imitate, at least qualitatively, awide class of physically actual
configurations of x-electric potential steps (constant electro-
magnetic inhomogeneous fields) and calculate nonperturba-
tively various quantum vacuum effects in such fields.
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APPENDIX A: MATHEMATICAL DETAILS OF
STUDY IN THE KLEIN ZONE

1. Small-gradient field

Considering negative energies p0 ≤ 0, the total range for
π0ðLÞ given by Eq. (4.14) can be divided in four subranges

ðaÞ h1 ≥ 2π0ðLÞ=k1 > h1½1 − ð
ffiffiffiffiffi
h1

p
g2Þ−1�;

ðbÞ h1½1 − ð
ffiffiffiffiffi
h1

p
g2Þ−1� ≥ 2π0ðLÞ=k1 > h1ð1 − εÞ;

ðcÞ h1ð1 − εÞ ≥ 2π0ðLÞ=k1 > h1=g1;

ðdÞ h1=g1 ≥ 2π0ðLÞ=k1 ≥ 2π⊥=k1; ðA1Þ

where g1, g2, and ε are any given numbers satisfying the
conditions g1 ≫ 1, g2 ≫ 1, and ð ffiffiffiffiffi

h1
p

g2Þ−1 ≪ ε ≪ 1. Note
that τ1 ¼ ih1=c1 ≈ h1k1=2jπ0ðLÞj in the subranges (a), (b),
and (c), and τ2 ¼ −ih2=ð2 − c2Þ ≈ h2k2=2jπ0ðRÞj in the
whole range (4.14).
In these subranges we have for τ−12 that

ðaÞ 1 ≤ τ−12 < 1þ ð
ffiffiffiffiffi
h2

p
g2Þ−1;

ðbÞ ½1þ ð
ffiffiffiffiffi
h2

p
g2Þ−1� < τ−12 < 1þ εk2=k1;

ðcÞ 1þ εk2=k1 < τ−12 < 1þ ð1 − 1=g1Þk2=k1;
ðdÞ 1þ ð1 − 1=g1Þk2=k1 < τ−12 ≲ 1þ k2=k1: ðA2Þ

We see that τ1 − 1 → 0 and τ2 − 1 → 0 in the range (a),
while jτ1 − 1j is some finite number in the range (c), and
jτ2 − 1j some finite number in the ranges (c) and (d). In the
range (b) these quantities vary from their values in the
ranges (a) and (c).
We choose χ ¼ 1 for convenience in the Fermi case. In

the range (a) we can use the asymptotic expression of the
confluent hypergeometric function given by Eq. (B1) in
the Appendix B. Using Eqs. (B6) and (B7), we finally find
the leading term as

Ncr
n ¼ e−πλ½1þOðjZ1jÞ�; ðA3Þ

for fermions and bosons, where max jZ1j ≲ g−12 . This
expression in the leading order coincide with the one for
the case of uniform constant field [6,14],

Nuni
n ¼ e−πλ: ðA4Þ

In the range (c), the confluent hypergeometric function
Φð1 − a2; 2 − c2;−ih2Þ is approximated by Eq. (B8) and
the function Φða1; c1; ih1Þ is approximated by Eq. (B9)
given in the Appendix B. Then we find that

Ncr
n ¼ e−πλ½1þOðjZ1jÞ−1 þOðjZ2jÞ−1�; ðA5Þ

where max jZ1j−1 ≲
ffiffiffiffiffiffiffiffiffiffiffiffi
g1=h1

p
and max jZ2j−1 ≲ g−12 . Using

the asymptotic expression Eq. (B1) and taking into account

Eq. (A3) and (A5), we can estimate that Ncr
n ∼ e−πλ in the

range (b).
In the range (d), the confluent hypergeometric function

Φð1 − a2; 2 − c2;−ih2Þ is approximated by Eq. (B8) and
the function Φða1; c1; ih1Þ is approximated by Eq. (B10)
given in the Appendix B. In this range the differential mean
numbers in the leading-order approximation are

Ncr
n ≈ sinh ð2πjpLj=k1Þ exp

�
−

π

k1
½π0ðLÞ − jpLj�




×

�
sinh fπ½π0ðLÞ þ jpLj�=k1g−1 for fermions

cosh fπ½π0ðLÞ þ jpLj�=k1g−1 for bosons
:

ðA6Þ

It is clear that Ncr
n given by Eq. (A6) tends to Eq. (A5),

Ncr
n → e−πλ, when π0ðLÞ ≫ π⊥. Consequently, the forms

(A6) are valid in the whole range (A1).
Considering positive p0 > 0 and using the inequalities

(2.35) in the range Ω3, we see that negative π0ðRÞ varies
greatly while π0ðLÞ is positive and very large,

π⊥ ≤ −π0ðRÞ <
eE
k2

;
eE
k1

< π0ðLÞ ≤
eE
k2

þ eE
k1

− π⊥:

ðA7Þ

Taking into account that exact Ncr
n and its range of

formation is invariant under the simultaneous exchange
k1⇆k2 and π0ðLÞ⇆ − π0ðRÞ, we find for p0 > 0 that the
differential mean numbers in the leading-order approxi-
mation are

Ncr
n ≈ sinh ð2πjpRj=k2Þ exp

�
π

k2
½π0ðRÞ þ jpRj�




×

�
sinh fπ½jpRj − π0ðRÞ�=k2g−1 for fermions

cosh fπ½jpRj − π0ðRÞ�=k2g−1 for bosons
:

ðA8Þ

Let us find the dominant contributions to the number
density ncr given by Eq. (4.21). Using the variable changes,

s¼ 2

k1λ
½π0ðLÞ− jpLj� inIð1Þp⊥ ; s¼ 2

k2λ
½jπ0ðRÞj− jpRj� inIð2Þp⊥ ;

we respectively represent the quantities Ið1Þp⊥ and Ið2Þp⊥ as

Ið1Þp⊥ ≈
Z

smax
1

1

ds
s
jpLje−πλs; Ið2Þp⊥ ≈

Z
smax
2

1

ds
s
jpRje−πλs;

ðA9Þ

where
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smax
j ¼ eE

k2jK
; j ¼ 1; 2; jpL=Rj ¼ eE

sk1=2
−
1

4
k1=2λs:

Assuming min ½ðm=k1Þ2; ðm=k2Þ2� ≫ K we see that the
leading term in Ip⊥ (4.21) takes the following final form:

Ip⊥≈
�
eE
k1

þeE
k2

�Z
∞

1

ds
s2
e−πλs¼eE

�
1

k1
þ 1

k2

�
e−πλGð1;πλÞ;

ðA10Þ

where

Gðα; xÞ ¼
Z

∞

1

ds
sαþ1

e−xðs−1Þ ¼ exxαΓð−α; xÞ; ðA11Þ

and Γð−α; xÞ is the incomplete gamma function.
Neglecting an exponentially small contribution, one can
extend the integration limit over p⊥ in Eq. (4.21) fromffiffiffi
λ

p
< K⊥ to

ffiffiffi
λ

p
< ∞. Then calculating the Gaussian

integral, we finally obtain the expression (4.22).

2. Very asymmetric peak

The total range (5.5) can be divided into following
subranges:

ðaÞ ð1þεÞh2≤−2π0ðRÞ=k2≤h2

�
1þ2ðΔU1−π⊥Þ

k2h2

�
;

ðbÞ h2½1þð
ffiffiffiffiffi
h2

p
g2Þ−1�≤−2π0ðRÞ=k2< ð1þεÞh2;

ðcÞ h2½1−ð
ffiffiffiffiffi
h2

p
g2Þ−1�≤−2π0ðRÞ=k2<h2½1þð

ffiffiffiffiffi
h2

p
g2Þ−1�;

ðdÞ ð1−εÞh2≤−2π0ðRÞ=k2<h2½1−ð
ffiffiffiffiffi
h2

p
g2Þ−1�;

ðeÞ h2=g1<−2π0ðRÞ=k2< ð1−εÞh2;
ðfÞ 2π⊥=k2≤−2π0ðRÞ=k2<h2=g1; ðA12Þ

where g2, g1, and ε are any given numbers satisfying the
conditions g2 ≫ 1, g1 ≫ 1, and ε ≪ 1. We assume that
ε

ffiffiffiffiffi
h2

p
g2 ≫ 1. There exists the range (a) if

ffiffiffi
2

p ðΔU1 − π⊥Þ ≫ffiffiffiffiffiffi
eE

p
=g2 and then we assume that ε < 2ðΔU1 − π⊥Þ=k2h2

while the range (b) exists if
ffiffiffi
2

p ðΔU1 − π⊥Þ >
ffiffiffiffiffiffi
eE

p
=g2.

If
ffiffiffi
2

p ðΔU1 − π⊥Þ <
ffiffiffiffiffiffi
eE

p
=g2 then there exists only the

subrange of the range (c) defined by an inequality
−π0ðRÞ < eE=k2 þ ΔU1 − π⊥. Note that τ2 ¼ −ih2=
ð2 − c2Þ ≈ h2k2=2jπ0ðRÞj in subranges from (a) to (e) and
τ2 varies from 1 −Oðh−12 Þ to g1.
In the range (a) if it exists, the confluent hypergeometric

function Φð1 − a2; 2 − c2;−η2Þ is approximated by
Eq. (B8) given in Appendix B. In this range the differential
mean numbers in the leading-order approximation are
very small,

Ncr
n ≈

2

ðh2Þ2
½1þOðjZ2j−1Þ� ×

8<
:

jpLj
π0ðLÞþjpLj for fermions

4jpLj
k2

for bosons
;

ðA13Þ

where max jZ2j−1 ∼ ðε ffiffiffiffiffi
h2

p Þ−1.
In the range (c), τ2 − 1 → 0 and, using Eqs. (B2), (B3),

and (B4) from Appendix B we find that

Ncr
n ≈ jpLj exp

�
−
πλ

4

�
½1þOðjZ2j−1Þ�

×

8<
:

2
jjpLjþπ0ðLÞj cosh ðπλ=4Þ for fermions

jΓð1
4
þiλ

4
Þj2ffiffiffiffi

eE
p

π
for bosons

: ðA14Þ

Note that Ncr
n given by Eq. (A14) are finite and restricted,

Ncr
n ≤ 1 for fermions and Ncr

n ≲ 1=g2 for bosons. This form
depends on ΔU1. The range of transverse momenta is quite
tiny here. In the range (b) if it exists the distributions Ncr

n
vary between their values in the ranges (a) and (c).
In the range (e) parameters η2 and c2 are large with a2

fixed and τ2 > 1 with arg ð2 − c2Þ < 0. In this case, using
the asymptotic expression of the confluent hypergeometric
function given by Eq. (B9) in Appendix B, we find that

Ncr
n ¼ exp

�
2π

k2
½jpRj þ π0ðRÞ�



½1þOðjZ2j−1Þ�: ðA15Þ

both for fermions and bosons, whereZ2 is given by Eq. (B2).
We note thatmodulus jZ2j−1 varies from jZ2j−1 ∼ ðε ffiffiffiffiffi

h2
p Þ−1

to jZ2j−1 ∼ ½ðg1 − 1Þ ffiffiffiffiffi
h2

p �−1. Approximately, expression
(A15) can be written as

Ncr
n ≈ exp

�
−

ππ2⊥
k2jπ0ðRÞj

�
: ðA16Þ

Note that eE=g1 < k2jπ0ðRÞj < ð1 − εÞeE in the range (e).
It is clear that the distribution Ncr

n given by Eq. (A16) has
the following limiting form:

Ncr
n → e−πλ as k2jπ0ðRÞj → ð1 − εÞeE:

Thus, we see that the result in a constant uniform electric
field, given by Eq. (A4) is reproduced in the wide range
of high energies, jπ0ðRÞj ∼ eE=k2. In the range (d), the
distributions Ncr

n vary from their values in the ranges (c) and
(e) for fermions and bosons.
In the range (f), we can use the asymptotic expression

of the confluent hypergeometric function for large h2 with
fixed a2 and c2 given by Eq. (B10) in Appendix B to show
that the number of particles created is
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Ncr
n ≈ sinh ð2πjpRj=k2Þ exp

�
π

k2
½π0ðRÞ þ jpRj�


�
sinh fπ½jpRj − π0ðRÞ�=k2g−1 for fermions

cosh fπ½jpRj − π0ðRÞ�=k2g−1 for bosons
: ðA17Þ

The same distribution takes place in a small-gradient field for p0 > 0, see Eq. (A8).
Let us find the dominant contributions to the total number Ncr of pairs created. To this end, we represent the leading

terms of integral (4.8) as a sum of two contributions, one due to the ranges (e) and (f) and another one due to the ranges
(a), (b), (c), and (d):

Ncr ¼ Vðd−1Þncr; ncr ¼ V⊥TJðdÞ
ð2πÞd−1

Z ffiffi
λ

p
<K⊥

dp⊥Ip⊥ ; Ip⊥ ¼ Ið1Þp⊥ þ Ið2Þp⊥ ;

Ið1Þp⊥ ¼
Z
π0ðRÞ∈ðaÞ∪ðbÞ∪ðcÞ∪ðdÞ

dπ0ðRÞNcr
n ; Ið2Þp⊥ ¼

Z
π0ðRÞ∈ðeÞ∪ðfÞ

dπ0ðRÞNcr
n : ðA18Þ

The main contribution to the integral (A18) is due to the wide range ðeÞ∪ðfÞ of a large kinetic energy jπ0ðRÞj with a
relatively small transverse momentum jp⊥j. The contribution to this quantity from the relatively narrow momentum ranges

(a), (b), (c), and (d) is finite and the corresponding integral Ið1Þp⊥ is of the order
ffiffiffiffiffiffi
eE

p
=g2. The integral I

ð2Þ
p⊥ can be taken from

Eq. (4.21) and approximated by the form from Eq. (A9). Thus, the dominant contribution is given by integral (A10) at
k1 → ∞. Then calculating the Gaussian integral, we find the form (5.8).

APPENDIX B: SOME ASYMPTOTIC EXPANSIONS

The asymptotic expression of the confluent hypergeometric function for large η and c with fixed a and τ ¼ η=c ∼ 1 is
given by Eq. (13.8.4) in [22] as

Φða; c; ηÞ≃ ca=2eZ
2=4Fða; c; τÞ; Z ¼ −ðτ − 1ÞWðτÞ ffiffiffi

c
p

;

Fða; c; τÞ ¼ τW1−aD−aðZÞ þRD1−aðZÞ;
R ¼ ðWa − τW1−aÞ=Z; WðτÞ ¼ ½2ðτ − 1 − ln τÞ=ðτ − 1Þ2�1=2 ðB1Þ

where D−aðZÞ is the Weber parabolic cylinder function (WPCF) [18]. Using Eq. (B1) we present the functions y22, y
1
1 and

their derivatives at x ¼ 0 as

y11jx¼0 ≃ e−ih1=2ðih1Þν1ca1=21 eZ
2
1
=4Fða1; c1; τ1Þ;

Z1 ¼ −ðτ1 − 1ÞWðτ1Þ
ffiffiffiffiffi
c1

p
; τ1 ¼ ih1=c1;

dy11
dη1

				
x¼0

≃ e−ih1=2ðih1Þν1ca1=21 eZ
2
1
=4

�
−

1

2ih1
þ 1

c1

∂
∂τ1

�
Fða1; c1; τ1Þ;

y22jx¼0 ≃ eih2=2ðih2Þ−ν2ð2 − c2Þð1−a2Þ=2eZ2
2
=4Fð1 − a2; 2 − c2; τ2Þ;

Z2 ¼ −ðτ2 − 1ÞWðτ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − c2

p
; τ2 ¼ −ih2=ð2 − c2Þ;

dy22
dη2

				
x¼0

≃ eih2=2ðih2Þ−ν2ð2 − c2Þð1−a2Þ=2eZ2
2
=4

�
−

1

2ih2
−

1

2 − c2

∂
∂τ2

�
Fð1 − a2; 2 − c2; τ2Þ: ðB2Þ

Assuming τ − 1 → 0, one has

W1−a ≈ 1þ a − 1

3
ðτ − 1Þ; R ≈

2ðaþ 1Þ
3

ffiffiffi
c

p ; Z ≈ −ðτ − 1Þ ffiffiffi
c

p
;

∂Fða; c; τÞ
∂τ ≈

2þ a
3

D−aðZÞ þ ∂D−aðZÞ
∂τ þR

∂D1−aðZÞ
∂τ :

Expanding WPCFs near Z ¼ 0, in the leading approximation at Z → 0 one obtains that
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∂Fða; c; τÞ
∂τ ≈ −

ffiffiffi
η

p
D0

−að0Þ þOðηÞ;
Fða; c; τÞ ≈D−að0Þ þOðc−1=2Þ; ðB3Þ

and

D−að0Þ ¼
2−a=2

ffiffiffi
π

p
Γðaþ1

2
Þ ; D0

−að0Þ ¼
2ð1−aÞ=2

ffiffiffi
π

p
Γða

2
Þ ; ðB4Þ

where ΓðzÞ is the Euler gamma function. We find under condition (4.13) that

jpL=Rj ≈ jπ0ðL=RÞjð1 − λ=h1=2Þ; a1 ≈ a2 ≈ ð1 − χÞ=2 − iλ=2;

c1 ≈ 1þ i

�
2π0ðLÞ
k1

− λ

�
; 2 − c2 ≈ 1 − i

�
2jπ0ðRÞj

k2
− λ

�
;

τ1 − 1 ≈ −
1

h1

�
−i − λþ 2p0

k1

�
; τ2 − 1 ≈

1

h2

�
−iþ λþ 2p0

k2

�
: ðB5Þ

Using Eqs. (B2), (B3), and (B5) we represent Eq. (4.3) in the form

Ncr
n ¼ e−πλ=2½jδ0j−2 þOðh−1=21 Þ þOðh−1=22 Þ�;
δ0 ¼ eiπ=4D−a1ð0ÞD0

a2−1ð0Þ − e−iπ=4D0
−a1ð0ÞDa2−1ð0Þ: ðB6Þ

Assuming χ ¼ 1 for fermions and χ ¼ 0 for bosons, and using the relations of the Euler gamma function we find that

δ0 ¼ exp

�
i
3π

4
− i

πχ

2

�
eπλ=4: ðB7Þ

Assuming jτ − 1j ∼ 1, one can use the asymptotic expansions of WPCFs in Eq. (B1), e.g., see [18,22]. Note that
argðZÞ ≈ 1

2
argðcÞ if 1 − τ > 0. Then one finds that

Φða; c; ηÞ ¼ ð1 − τÞ−a½1þOðjZj−1Þ� if 1 − τ > 0: ðB8Þ

In the case of 1 − τ < 0, one has

argðZÞ ≈
(

1
2
argðcÞ þ π if argðcÞ < 0

1
2
argðcÞ − π if argðcÞ > 0

:

Then one obtains finally that

Φða; c; ηÞ ¼
(
ðτ − 1Þ−ae−iπa½1þOðjZj−1Þ� if argðcÞ < 0

ðτ − 1Þ−aeiπa½1þOðjZj−1Þ� if argðcÞ > 0
: ðB9Þ

The asymptotic expression of the confluent hypergeometric function Φða; c;�ihÞ for large real h with fixed a and c is
given by Eq. (6.13.1(2)) in [18] as

Φða; c;�ihÞ ¼ ΓðcÞ
Γðc − aÞ e

�iπa=2h−a þ ΓðcÞ
ΓðaÞ e

�ihðe�iπ=2hÞa−c þOðjhj−a−1Þ þOðjhja−c−1Þ: ðB10Þ
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